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Abstract: Diabetes mellitus represents a persistent metabolic
condition distinguished by elevated levels of blood sugar, which
results from the inadequacy of the body to secrete and respond
to insulin, leading to health risks and frequent hospitalizations.
Accurate predictive models are vital for targeted interventions
to reduce readmissions and improve healthcare quality and cost.
Early prediction can mitigate its impact, aid in control, and
potentially save lives. Machine learning algorithms show
promise in medical applications, including diabetes prediction
and diagnosis. Limited data quality hinders accurate diabetes
prediction due to missing values and inconsistencies. This paper
investigates machine learning's potential for predicting and
diagnosing diabetes, aiming to enhance accuracy and efficiency
in disease management. Feature engineering techniques are
applied to preprocess the data and extract relevant features for
model development. To address class imbalance, SMOTE
(Synthetic Minority Oversampling Technique) is employed.
Various machine learning algorithms, including logistic
regression, Naive Bayes, random forests, support vector
machines (SVM), K-Nearest Neighbors (KNN), and eXtreme
Gradient Boosting (XGBoost), are utilized to build predictive
models. The performance evaluation employs standard metrics
such as accuracy, recall, precision, and F1-Score. Notably,
Random Forest achieves an accuracy of 82% followed by
XGBoost(80%) , surpassing other ML algorithms utilized.

Index Terms: Diabetes mellitus, Machine
Prediction, SVM, logistic regression, Accuracy.
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I. INTRODUCTION

Diabetes is a long-term health condition caused by either
inadequate production of insulin or the body's ineffective use
of insulin. Insulin, a hormone crucial for regulating blood
sugar levels, plays a key role in this mechanism. Common
symptoms comprise increased thirst, frequent urination,
blurred vision, fatigue, and unintentional weight loss.
Prolonged diabetes can harm the heart, eyes, kidneys, and
nerves, increasing the risk of heart attack, stroke, kidney
failure, and vision loss, along with potential foot ulcers and
amputation [1].

Currently, 537 million adults worldwide have diabetes, and
by 2030, an estimated 643 million people will be living with
diabetes, rising to a staggering 783 million by 2045. Over
three-quarters reside in low- to middle-income nations. In
2021, diabetes claimed 6.7 million lives, with a health
expenditure toll of at least USD 966 billion—a 316% surge
over 15 years. Additionally, 541 million adults face Impaired
Glucose Tolerance (IGT), heightening their risk of
developing type 2 diabetes [2].

There are three major forms of diabetes: type-1, type-2,
and gestational diabetes. Type-1, affecting 5-10% of cases, is
an autoimmune condition where the body mistakenly attacks
insulin-producing cells. This necessitates lifelong insulin
therapy to manage blood sugar levels. Type 2, comprising 90-
95% of cases, occurs when insulin is ineffective in regulating
blood sugar, often diagnosed in adults but increasingly in
younger individuals. Regular blood sugar testing is crucial
due to subtle symptoms, and prevention through lifestyle
changes is feasible. Gestational diabetes affects pregnant
women, raising health risks for both mother and baby, with
implications for future health conditions. [3].

While a cure for diabetes remains elusive, early, and
accurate prediction offers promising avenues for control and
prevention. However, predicting diabetes poses a challenge
due to the non-linear nature of data. Recent rescarch,
employing machine learning's ability to learn without explicit
programming, has shown promising results in forecasting
diabetes risk. While machine learning holds promise in
medicine, ensuring consistent accuracy across different
algorithms remains a challenge. Identifying the algorithm
with the highest performance is crucial for building better
classifiers. The pervasive reach of machine learning across
industries extends to medicine, where its potential to
revolutionize healthcare is significant [4]. Machine learning
and statistics are used in predictive modeling to find patterns
in data and estimate the likelihood that certain events will
occur [5]. This work aims to create a model predicting
diabetes in patients. Afterward, different methods are
investigated to increase the model's accuracy.
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II. RELATED WORK

In a study by lIyer A. [6], a diabetic dataset was analyzed
to identify hidden patterns using classification algorithms.
Naive Bayes and Decision Trees were compared,
demonstrating the effectiveness of both methods.

In a study by Mercaldo et al. [7], researchers investigated
machine learning algorithms for diagnosing diabetes. They
compared six algorithms, including J48, multilayer
perceptron, JRip, Hoeffding Tree, Bayes Net, and random
forest, using the WEKA software and the PIDD dataset.
Notably, the Hoeffding Tree algorithm showed promising
results for diabetes prediction.

Sisodia et al. [8] compared three classifiers (Naive Bayes,
SVM, Decision Trees) for diabetes prediction using the Pima
Indian Diabetes Database. Naive Bayes achieved the highest
accuracy (76.30%) among F-Score, Precision, Recall, and
Accuracy metrics.

Maniruzzaman et al. [9] conducted in-depth research on
filling in missing variables and rejecting outliers to improve
the performance of the machine learning model.

Sneha et al. [10] used feature selection to identify the most
informative attributes from the PIMA diabetes dataset for
their prediction model. They evaluated several machine
learning algorithms, including Support Vector Machine, k-
Nearest Neighbors, Naive Bayes, Decision Tree, and Random
Forest. Naive Bayes achieved the best accuracy of §2.2%.

Lukmanto et al. [11] utilized feature selection on PIMA
Indian dataset using Fuzzy SVM for their prediction with a
promising accuracy of 89.02%.

In a study by Ahuja et al. [12], researchers evaluated 15
classification algorithms, including Multilayer Perceptron,
using Python. They addressed missing data by imputing
missing values with the median and replacing outliers. The
performance of the algorithms was assessed using five
different dataset selection methods and 2, 4, 5, and 10-fold
cross-validation. Their findings revealed that Multilayer
Perceptron achieved the highest accuracy (78.7%) when
combined with feature selection using Linear Discriminant
Analysis.

Morgan-Benita et al. proposed Hard Voting Ensemble
Approach (HVEA) for diabetes prediction [13]. Compared to
individual models like Logistic Regression (88.01%),
Support Vector Machine (89.82%), and Artificial Neural
Network (88.46%), HVEA achieved significantly higher
accuracy (90.05%) using non-glucose data from Mexico and
10-fold cross-validation.

III. METHODOLOGY

The key elements of the methodology for predicting
diabetes are visualized in figure 2. The input data is
preprocessed by handling missing values and outliers.
Feature extraction and selection are performed to reduce
complexity and focus on relevant information. Data is split
into training and testing sets. The model is trained on the
training data and evaluated on the test data. Results are
presented as confusion matrices. Using the trained model and
selected features, predictions for new diabetic patients are
made.
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Figure 2. Proposed methodology

A. Dataset

This study utilized the PIDD (Pima Indians Diabetes
Database), available from the UCI (University of California),
Irvine repository. The dataset contains information on 768
females aged 21 or older. PIDD offers ample recorded
instances and requires minimal pre-processing for integration
into various learning models. As a result, it is widely used in
machine learning and deep learning models for detecting
diabetes.
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Figure 3. number of individuals with and without diabetes

In Figure 3, a bar chart illustrates the distribution of
patients with and without diabetes. X-axis displays the
outcome and y-axis displays the count. Of these, 268 have
been diagnosed with diabetes (designated as 1), and 500 do
not have diabetes (designated as 0). Figure 3 reveals a
significant class imbalance in the dataset (268 diabetes vs.
500 non-diabetic). This imbalance can hinder machine
learning model performance. To address this, SMOTE
(Synthetic Minority Oversampling Technique) is employed.
SMOTE generates synthetic samples for the minority class,
balancing the class distribution.

Table 1 provides description of dataset. It contains nine
feature columns, including the month of pregnancy, glucose,
plasma, blood pressure, triceps, insulin, BMI, age, and
Diabetes Pedigree Function (DPF). The dataset's missing
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values, which were at first thought to be complete, were
eventually determined to be zeros. Zero values, however,
were thought to be physiologically impractical for some
characteristics, such as age or blood pressure. In a similar
vein, readings for plasma glucose, 2-hour serum insulin, and
body mass index were implausible, with almost 50% showing
zero. Crucially, every attribute present in the database is
either a real number or an integer.

TABLE L.
DATA SET DESCRIPTION
Attribute Description Data Range
type
Pregnancy Number of pregnancies | Number | 0-17
Plasma Blood sugar level Number | 0-199
glucose
Triceps Subcutaneous fat Number | 0-99
thickness(mm)
Blood blood pressure, expressed | Number | 0-122
pressure in mm Hg
BMI Body mass index, kg/m? float 0-67.1
Serum Two hour serum insulin | Number | 0-— 846
insulin (rU/mL)
Age Age in Years Number | 21381
DPF diabetes risk based on | float 0.078 -
family history 242
Outcome Value indicating diabetes | Boolean | 0,1
diagnosis
(Positive/Negative)

B.  Pre-processing

Machine learning algorithms rely heavily on data for
effective model training. Initially, datasets collected from
various sources are often in a raw format, prone to
inconsistencies that models may struggle with. Pre-
processing is crucial to clean the data, involving tasks such as
handling missing values, creating new features, and splitting
the data into train-test sets. To address the issue of certain
features with zero values, such as blood pressure, skin
thickness, BMI, mean, and median imputations are employed
to replace missing or zero values. Consequently, missing
values for select attributes, including Blood Pressure,
Glucose level, BMI, Skin Thickness, and Age, were imputed,
given that these attributes cannot logically hold zero values.
Following the imputation process, the dataset was scaled to
normalize all values.

A carefully chosen data set is characterized by features that
exhibit substantial correlations with the target class along
with substantial discordances with one another. A filter-based
feature selection is used for selecting features to identify the
uncorrelated features. Figure 4 illustrates the relationship
between all features. The darker colors represent less
association, while lighter colors indicate greater correlation.

Feature importance identifies the most influential features
in a machine learning model, aiding in understanding data
relationships, feature selection, model interpretation, and
debugging. Figure 5 demonstrates that the Glucose feature
has the most significant influence on predicting diabetes.
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Figure 5. Feature importance of diabetes data set
A.  Algorithms used:
i Logistic Regression
For binary classification, logistic regression

estimates outcome probabilities from predictor variables. It is
widely used in binary classification tasks. Logistic regression
estimates the probabilities using the logistic function, which
maps any real-valued input into the range 0 and 1 [14].

il. Support Vector Machines

SVM stands out as an algorithm adept at both
classification and regression tasks. It achieves this by
identifying, within a high-dimensional space, the hyperplane
that best segregates classes. This is accomplished by
maximizing the margin, or distance, between these classes.
Even in high-dimensional spaces, SVMs remain effective due
to their versatility in handling non-linear data through kernel
functions [15].

iii. K-Nearest Neighbors (KNN)

For classification tasks, the KNN (K-Nearest
Neighbors) algorithm identifies the k closest data points in the
feature space and assigns the majority class label. It is simple
yet effective for both classification and regression tasks.
However, it can be computationally expensive for large
datasets [16].
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iv.  Naive Bayes:

The Naive Bayes algorithm is a probabilistic
classification method that calculates the probability of each
class for a given set of input features. It leverages Bayes'
theorem and assumes independence between features to make
these classifications. Naive Bayes is particularly popular in
text classification tasks due to its simplicity and efficiency
[17].

V. Random Forest

Random Forest, a powerful machine learning
algorithm for classification and regression, achieves its
strength by combining a multitude of diverse decision trees.
Each tree, built on random data subsets and features, casts a
vote (classification) or contributes to an average (regression).
This democratic approach improves accuracy, handles
diverse data, and reduces overfitting, making it powerful and
versatile. It shines in various domains but might not always
outperform complex algorithms on specific tasks.

Vi. Decision Tree

Decision trees, resembling upside-down trees, excel
at both classification and regression, splitting data based on
features for clear predictions. These models shine in
interpretability, handling diverse data, and revealing feature
importance. However, they can overfit the data, are sensitive
to noise, and favor features with many categories. Despite
these limitations, decision trees remain valuable for tasks
where understanding the "why" behind predictions is
essential[19].

vii. XGBoost

XGBoost, or eXtreme Gradient Boosting, is a highly
optimized implementation of the gradient boosting algorithm,
widely recognized for its efficiency and scalability. XGBoost
boasts built-in features like automated missing value
handling, tree pruning, and hyperparameter tuning,
streamlining the process. Additionally, it unlocks insights
into important features through feature importance scores,
enhancing interpretability and model understanding [20].

B. Training and Testing

The PIDD dataset is used to train and evaluate machine
learning models in Python. For this, the data is split 70/30 for
training and testing.

IV. RESULTS

The final step of evaluating a prediction model
involves assessing its performance using various metrics like
accuracy, confusion matrix, precision, recall, and F1-score.
These metrics rely on ground truth labels, also known as
classification labels.

A.  Confusion Matrix:
In classification tasks like diabetes
prediction, a confusion matrix clearly shows how the
model performed.

TABLE IL.
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CONFUSION MATRIX FOR DIABETES PREDICTION

Predicted Actual Positive Actual
(Diabetes) Negative
(No Diabetes)
Positive (Predicted True Positives False Positives
Diabetic) (TPD) (FPD)
Negative (Predicted False Negatives True Negatives
Non-Diabetic) (FND) (TND)

Table 2 depicts the confusion matrix for diabetes
prediction. True Positives are the cases where the SVM model
correctly predicted patients who actually have diabetes. False
Positives are the cases where the model incorrectly classified
patients as diabetic when they actually don't have diabetes
(Type I Error). False Negatives are the cases where the model
incorrectly classified patients as non-diabetic when they
actually have diabetes (Type II Error). True Negatives are the
cases where the model correctly predicted patients who do not
have diabetes.

TABLE IIL.
PERFORMANCE COMPARISON OF ML ALGORITHMS FOR DIABETES
PREDICTION
Algorithms Accuracy | Precision | Recall F1-Score

SVM 0.74 0.74 0.74 0.74
Logistic 0.74 0.71 0.80 0.75
Regression
Naive Bayes 0.77 0.78 0.75 0.77
KNN 0.72 0.71 0.75 0.73
Random Forest 0.82 0.83 0.82 0.82
Decision Tree 0.75 0.74 0.78 0.76
XGBoost 0.80 0.81 0.81 0.80

B.  Accuracy:

This metric measures how well the classifier can identify
cases of diabetes. Overall, the performance of the
algorithms on this metric is good, with all models achieving
an accuracy of over 0.72. .Random Forest and XGBoost
achieve the highest accuracy (0.82,,0.80), indicating good
ability to distinguish diabetic and non-diabetic individuals.
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Figure 6. Accuracy of classifiers for diabetes prediction
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C. Precision:

Fl-5core
Precision = (TPD) / (TPD + (FPD). (1) BN
It indicates the proportion of patients predicted to 08 4
have diabetes who do have it. A high precision signifies the
model's effectiveness in identifying individuals with diabetes 04 4
and minimizing false positives. Here, again Random
Forest(0.83) and XGBoost (0.81) outperform other models. o3
Figure 7. Precision of classifiers for diabetes prediction
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D. Recall (Sensitivity):

Recall = TPD / (TPD + FND) (2)

Recall indicates the proportion of actual diabetic
cases that the model correctly identifies. A high recall means
that the model is good at identifying all cases of diabetes and

Figure 9. Precision of classifiers for diabetes prediction

Figure 10. Performance metrics of ML classifiers in Line graph
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avoiding false negatives. Random Forest, followed by .,.ﬂ""". s L e ™
XGBoost, performs the best in terms of recall. o gt
Pecall
0o Figure 10 presents a line graph comparing evaluation
metrics for various machine learning algorithms.
M B
V. CONCLUSIONS
4 4
Early detection of diabetes is crucial for many who remain
43 4 unaware. This paper explores machine learning techniques
for high-accuracy diabetes risk prediction. Random Forest
an - ' y and XGBoost algorithms show promise, but success hinges
MM e bl “M""ﬁnﬂ"*"w on data preprocessing (cleaning, normalization, feature
'"_wm selection). A key challenge in diabetes prediction is class
imbalance. SMOTE, applied during preprocessing, mitigates
Figure 8. Recall of classifiers for diabetes prediction this issue by generating synthetic data for the
underrepresented class, improving model performance. The
E  Fl-Score: choice between precision and recall depends on the cost of

(precision * Recall)

1- =2
f1=Score * (Precision + Recall) ®)

This metric balances the importance of precision and
recall in a single score, and it takes both these factors into
account. It is a good overall measure of a model's
performance. Random Forest (0.82) and XGBoost have the
best Fl-score among all the models, which indicates that it
achieves a good balance between precision and recall.

errors. For minimizing unnecessary tests, prioritize high-
precision models like Random Forest. Conversely, for
identifying all diabetic cases, focus on high-recall models like
XGBoost. Our study achieved 82.5% accuracy using a
Random Forest classifier, demonstrating a good balance
between identifying healthy individuals and catching diabetic
cases. This system's adaptability to other diseases paves the
way for broader advancements in automated disease analysis
and user-friendly web apps for risk prediction.
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