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Abstract: Numerous applications and areas benefit from the 
use of machine learning algorithms. The hyperparameters 
needed to fit a suitable model must be tuned to address 
different issues. The choice of the best configuration directly 
affects the performance of the model. User-defined hyper-
parameters are those that are set before the training process is 
carried out. In machine learning, optimizing the 
hyperparameters is a process that can reduce the cost function. 
This paper presents a couple of methods that are used to 
optimize the K-Nearest Neighbor algorithm and the Support 
Vector Machine model. We have performed several 
experiments on the different optimization techniques to 
evaluate their accuracy and complexity. 

 
Index Terms: Hyper parameters, Optimization Techniques, 

KNN, SVM, Random Search, Grid Search. 

I.  INTRODUCTION   

Machine learning has been widely used in various 
applications, such as advertising and recommendation 
systems. These algorithms are generally good at handling 
data analytics-related challenges. ML techniques can be 
used for different kinds of datasets or issues [1]. Developing 
an efficient model can be a time-consuming process, as it 
involves choosing the best algorithm and tuning its 
hyperparameters. There are two kinds of parameters that are 
used in developing machine learning models. The first is 
called model parameters, which can be updated and 
initialised through the learning process. The other is called 
hyper-parameters, which are defined by the model 
architecture. ML models cannot directly be estimated from 
data learning, and these must first be set [2]. 

One of the most important factors that are considered 
when developing machine learning algorithms is 
hyperparameters [3]. These are settings that are set before 
the training process, and they can be used to control the 
model's behavior. They also help determine how well the 
model can learn from new data. A hyperparameter is 
different from a machine learning model’s parameter, which 
are acquired from data gathered during the training phase. 
For instance, the learning rate, the number of trees in a 
randomly generated forest, and the regularisation term are 
examples of hyperparameters [4]. 

In machine learning, optimizing hyperparameters is an 
important step. Doing so can significantly affect the model's 
performance. There are various techniques for doing so, 
such as random search [5], grid searching [6], and Bayesian 

optimization [7], among others. Grid searching is a type of 
algorithm that involves trying out a set of predefined 
hyperparameters and picking the one that gives you the best 
validation set performance. Random search, on the other 
hand, is a process that involves randomly sampling the 
combinations. For instance, in Bayesian optimization, a 
probabilistic model is used to guide the search. 

There are many advantages to implementing HPO 
techniques in machine learning frameworks. 

By utilizing HPO to identify the ideal set of 
hyperparameters, user can greatly enhance the performance 
and accuracy of ML model. User can also fine-tune the 
parameters to make the model more capable of learning 
from and generalising new data. 

One of the most common issues that an ML model 
encounters when it comes to training data is overfitting. This 
occurs when the model fails to perform well on fresh data. 
With the help of HPO, you can identify the appropriate 
hyperparameters that will help minimize overfitting. 

Utilizing hyperparameter optimization (HPO) techniques 
can help find the ideal hyperparameters efficiently, resulting 
in reduced training times for models. This is especially 
advantageous when dealing with large datasets or complex 
models. The use of HPO techniques can help ensure the 
consistency and reproducible nature of your ML models, 
even if the same set of parameters is used by different 
developers. This is because their hyperparameters are 
precisely optimized, utilizing an objective and systematic 
approach. 

Hyperparameter optimization techniques are different 
from standard optimization methods in several aspects.  

� Traditional optimization techniques are 
commonly used to improve a single function 
with a small number of variables. On the other 
hand, HPO involves optimizing several 
hyperparameters in a search area, which can be 
more challenging. 

� An objective function that is well-defined can be 
improved through traditional optimization 
techniques. In HPO, an objective function is 
usually focused on the performance of a machine 
learning model in a validation set. 

� The computational cost of implementing 
traditional optimization methods is typically 
high when there are many factors involved. Due 
to the complexity of the training pipeline, it can 
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also have a significant impact on the overall cost 
of computing. 

Decision-theoretic approaches are used to define a search 
space for hyper-parameters. They allow users to identify the 
ideal combination of these characteristics inside the search 
space and choose the most effective one. A particular type 
of search method known as grid search is used to find the 
optimal configuration of these characteristics. 

Due to the limited number of resources and the time 
needed to perform a search, a decision-theoretic method 
known as random search is used. It randomly chooses the 
most appropriate hyper-parameters from the search space. 

II.  LITERATURE SURVEY  

The paper [8] analyzed the various algorithms used in the 
development of neural networks to find the best 
hyperparameters. The three algorithms used in the study 
were the Genetic Algorithm, the Grid Search, and the 
Bayesian Algorithm. The experiments were conducted on a 
dataset from Santander for customer transaction prediction. 
The parameters used in the analysis included the number of 
hidden layers, size, loss function, optimizers, activation 
function, and drop-out. The results indicated that the grid 
search performed better than the genetic algorithm, while 
the latter performed better than the Bayesian algorithm. The 
best hyperparameters were found in the first two algorithms, 
the Grid Search, and the Bayesian. The former performed 
well because it had the same number of secret layers and an 
identical optimizer. 

Another paper [9] proposes an IDS framework that uses 
the k-nearest-neighbor tuning method to improve the 
performance of its semi-supervised learning. The first step is 
to identify the nearest neighbor of each unlabeled datapoint. 
After that, the data points are classified into either attack or 
normal classes according to the statistical information 
collected from these neighboring data points. The paper 
presents a comprehensive analysis of the model's robustness 
using a standard dataset NSL-KDD. The results of the study 
show that the proposed framework performs better than the 
KNN algorithms that are based on IDS. 

Authors [10] introduced several advanced techniques and 
discussed their application to the algorithms. It also provides 
a variety of frameworks and libraries for addressing the 
issue. The paper conducted experiments to evaluate the 
effectiveness of different optimization techniques and 
presents practical optimization examples. The results of 
these studies will help researchers and industrial users 
identify the optimal configurations of their models. 

Authors [11] evaluated six machine-learning and 
statistical models in terms of their predictive performance. 
The results revealed that the former outperformed the latter, 
except for SVM. In addition, non-spatial partitioning models 
exhibited overoptimistic performance when paired with 
spatial autocorrelation.

This paper [12] aims to analyze the various popular   
algorithms for optimizing hyperparameters in a grid search, 
random search, and genetic algorithm for building a neural 
network framework. The results of the study are based on 
the proposed models' accuracy and execution time. 

The general method for choosing SVM hyperparameters 
is known as the CMA evolution strategy. It can handle 
various kernel parameters and doesn't require the availability 
of differentiable kernels or the separability of data. In 
addition, the selection criteria typically have multiple local 
optima, making it more suited for model selection than the 
gradient-based approach [13]. 

To improve the SVM parameters, authors [14] used two 
different methods: grid search and genetic algorithm. In 
their experiment, it was revealed that the grid search method 
is very reliable when it comes to finding optimal 
combinations within the given ranges, but it was very slow 
when it came to performing optimization in low dimensional 
datasets. The use of GA in SVM parameter optimization can 
help solve the issue of grid search. Compared to grid search, 
GA is more stable. The average running time of this method 
on nine datasets was 16 times faster. In fact, the results of 
the GA were significantly better than those of grid search in 
eight of the datasets. 

Manual and grid searches are commonly used for 
optimizing hyper-parameters. In this paper, the authors [15] 
show that trials that are randomly chosen are more efficient 
than those conducted on a grid. We also compare the 
effectiveness of these two strategies with a previous study 
that used both to configure deep belief networks and neural 
networks. They found that random searches are more 
efficient than neural networks that are configured with a grid 
search. They can find better models in a fraction of the time. 
In contrast, random searches are more effective when they 
are granted the same computational budget. 

III.  METHODOLOGY 

Fig. 1 illustrates the key components and the flow of 
hyperparameter tuning using optimization techniques within 
the context of building and evaluating machine learning 
models. These techniques help you systematically explore 
and optimize hyperparameters to improve the model's 
performance on dataset. 

 
Figure 1. Block diagram of proposed method 

 
The dataset represents the collection of data points with 

features and labels, serving as the foundation for training 
and evaluating machine learning models. The machine 
learning model that takes the input data from the dataset and 
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produces predictions as output. The ML model generates 
predictions based on the input data. These predictions are 
then compared to the actual labels in the dataset to assess the 
model's performance.  Performance measures [16] are 
metrics used to evaluate the quality of the model's 
predictions, such as accuracy, precision, recall, F1-score, 
mean squared error, etc. 

Here four datasets are used i.e., balance scale dataset, 
IRIS dataset, breast cancer dataset, and digits dataset. They 
are frequently utilized to test and benchmark the 
performance of various algorithms and models in the 
evaluation of classification-related tasks. 

i) Balance Dataset: 
It displays a balanced scale with varying weights on its 

sides to determine its fairness. The dataset features four 
attributes, which represent the distance and weight of 
objects on the balance's right and left sides. The target 
variable of the dataset is the class that determines whether or 
not the scale is balanced. 

ii) IRIS dataset: 
This dataset is used in the research of statistics and 

machine learning. It contains the measurements of various 
features of an iris flower, such as its sepal width, length, and 
petal width. The four features represent the iris flower's 
dimensions. The target is the species.  

iii) Breast Dataset: 
This dataset is frequently utilized for classification 

purposes related to the diagnosis of breast cancer. It features 
digitized images of a fine needle as an FNA. The attributes 
of this dataset include various features such as the mean 
radius, texture, and smoothness. The classification 
parameter target determines whether the tumor is benign or 
malignant.  

iv) Digits Dataset: 
The Digits dataset is frequently utilized for identifying 

handwritten digits. It comprises images of the digits. The 
features that represent them have pixel values. The target 
digit is the one depicted in the image.  

Hyperparameters are model settings or configurations that 
are not learned from the data but must be specified before 
training. Examples include learning rates, the number of 
hidden layers in a neural network, regularization strength, 
etc. Hyperparameter tuning is the process of finding the 
optimal combination of hyperparameters to maximize the 
model's performance on the given task. This is important 
because different hyperparameter settings can have a 
significant impact on the model's effectiveness. 

The KNN [17] and SVM [18] models were then created 
using the scikit-learn framework. We identified the 
necessary hyperparameters for each model. For SVM, the 
hyperparameters are gamma, C, and kernel. On the other 
hand, for KNN, the hyperparameters are n neighbors.  

A.  Q-Random Search 
Here, Random Search [19] is utilized to find the optimal 

hyperparameters suitable for SVM and KNN models. A 
quick-random search introduces various constraints and 
refinements. For instance, the range or intervals that random 
sampling may be restricted to may be considered more 
meaningful for the analysis. 

The three hyperparameters of SVM that are used in the 
decision function are "C," "gamma," and "kernel." The "C" 
parameter determines the optimal balance between the 
training points correctly classified and the smooth decision 
boundary. The "gamma" parameter indicates how far the 
influence of one training example can go. 

  
TABLE I. 

PSEUDO CODE FOR Q-RANDOM SEARCH USING SVM 
INPUT: maximum number of iterations( maxitr) 
1. param_grid = {'c': [1, 3, 5,7], 
         'gamma': [0.1, 0.01, 0.001], 
          'kernel': ['linear', 'rbf'} 
2.best_para={'c':lst['c'][1],'gamma':lst['gamma'][1],'kernel':lst['kernel'][0]} 
3.svm_model=svm.SVC(C=best_para['c'],gamma=best_para['gamma'], 
   kernel=best_para['kernel']) 
4. best_acc=accuracy(svm_model ) 
5. For i in maxitr : 

c=random(param_grid[‘c’]) 
gamma=random(param_grid[‘gamma’) 

kernel=random(param_grid[‘kernel’]) 
model=svm(c,gamma,kernel) 
present_acc=accuracy(model) 

if(present_acc)> best_acc: 
best_acc= present_acc 
best_para={'c':c,'gamma':gamma,'ker

nel':kernel} 
End if 

End for 
6. Return best_para 

 
The optimal combination of hyperphys will be 

determined by evaluating each iteration through a loop 
called "maxitr". The random value of each parameter will be 
used in the creation of a new SVM. Its accuracy is then 
calculated by using the function "accuracy”. 

 
TABLE II. 

PSEUDO CODE FOR Q-RANDOM SEARCH USING KNN 
INPUT: maximum number of iterations( maxitr) 
1. para_grid = {'n_neighbors': [1:10]} 
2. Random Search for KNN 

def random_search_knn(maxitr, para_grid_knn):          
3.  Initialize the best accuracy and best parameters 
               best_acc = 0 
               best_para = {} 
4. for in range(maxitr) 

        n_neighbors = 
random.choice(para_grid_knn['n_neighbors']) 
        model = KNeighborsClassifier(n_neighbors=n_neighbors) 

5. present_acc = accuracy_knn(model) 
6. if present_acc > best_acc: 
                     best_acc = present_acc 

           best_para = {'n_neighbors': n_neighbors} 
          End if 
          End for 
7. Return best_para 
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The function "accuracy" updates the hyperphys' values if the 
new model's accuracy exceeds the current best. It then 
returns the most accurate set. 

The given table II pseudocode provides a method that can 
be used to search for hyperparameter values in a KNN 
algorithm. It randomly chooses the optimal values for the 
n_neighbors parameter from the grid "para_grid_knn". Each 
iteration of the KNN algorithm, a model is created with a 
randomly chosen n_neighbors value. The algorithm's 
accuracy is calculated by using a hypothetical accuracy-knn 
function. If the current model exceeds the previous best, its 
corresponding hyperparameters and accuracy are updated. 
The algorithm then returns the best configuration after the 
random search. 

B. Q-Grid Search 
For Grid Search, a set of parameters are created that are 

used to train the models. Then select the best ones for the 
validation set and random sampling for the training. 

The Q-grid (Quick) search strategy adopts a more 
efficient approach, which eliminates the need to evaluate 
every possible combination within a predefined grid. 
Instead, it uses a randomized sampling method to evaluate 
each combination. This method helps reduce the 
computational demands while maintaining a level of 
exhaustiveness. The new strategy avoids the need to analyze 
every possible combination in each grid, especially when 
dealing with large search spaces. It focuses on exploring 
different hyperparameter configurations to find promising 
ones. 

The first value of each hyperparameter in the dictionary 
of "param grid" is the initial value of the model that will be 
used to create a SVM. The model's accuracy is then 
calculated using the "accuracy" function. The best acc 
parameter is used to represent the initial accuracy. The 
algorithm iterates through the various hyperparameters in 
the grid and creates new SVM models with the current set of 
values. The model's accuracy is then calculated using the 
"accuracy" function. 

The function considers the new model's accuracy and 
updates the hyperparameters with the new values. It then 
returns the best set of values, which gives the highest 
accuracy. 

Table IV pseudocode describes a method that can be used 
to search for hyperparameter values in a KNN algorithm. It 
takes into account the maximum number of iterations that 
can be performed to find the most appropriate values for the 
n_neighbors parameter from the grid "para_grid_knn".The 
KNN algorithm creates a model with the chosen 
n_neighbors value in every iteration. Its accuracy is 
computed by using a function known as an accuracy_knn. If 
the current model's accuracy exceeds the previous best, the 
corresponding hyperparameters are updated. The algorithm 
then performs an iterative process to find the optimal 
configuration. 

 
 
 
 
 

 
TABLE III. 

PSEUDO CODE FOR Q-GRID SEARCH USING SVM 
INPUT: maximum number of iterations( maxitr) 

1.   param_grid = {'c': [1, 3, 5,7], 
                                           'gamma': [0.1, 0.01, 0.001], 
                                            'kernel': ['linear', 'rbf'] 

2. best_para={'c':lst['c'][1],'gamma':lst['gamma'][1],'kernel':lst['k
ernel'][0]} 

3. svm_model=svm.SVC(C=best_para['c'],gamma=best_para['ga
mma'], 
kernel=best_para['kernel']) 

4. best_acc=accuracy(svm_model ) 
For c in param_grid[‘c’] 

For gamma in param_grid[‘gamma’] 
For kernel in param_grid[‘kernel’] 

                                                    model=svm(c,gamma,kernel) 
                                                    present_acc=accuracy(model) 
                                                       if(present_acc)> best_acc: 
                                                           best_acc= present_acc 
                                                    

best_para={'c':c,'gamma':gamma,'kernel':kernel} 
                                                         End if  

End for 
End for 

End for 
5. Return best_para 

 
 
 

TABLE IV. 
PSEUDO CODE FOR Q-GRID SEARCH 

INPUT: maximum number of iterations( maxitr) 
1. param_grid = {'n_neighbors': [1:10]} 
2. Grid Search for KNN 

def grid_search_knn(maxitr, para_grid_knn):          
3.  Initialize the best accuracy and best parameters 
               best_acc = 0 
               best_para = {} 
4. for in range(maxitr) 

        n_neighbors = grid.choice(para_grid_knn['n_neighbors']) 
        model = KNeighborsClassifier(n_neighbors=n_neighbors) 

5. present_acc = accuracy_knn(model) 
6. if present_acc > best_acc: 
                     best_acc = present_acc 

           best_para = {'n_neighbors': n_neighbors} 
          End if 
          End for 
7. Return best_para 
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IV.  RESULTS 

 Tables V and VI provide a comparative analysis of 
different SVM configurations, KNN and their performance 
on the different datasets. It demonstrates the impact of 
hyperparameter tuning on accuracy and computation time, 
which can be crucial when selecting the best SVM model for 
a particular problem. 

 
 

 
 
 
 
 
 
 
 
 
 

TABLE V. 
SVM CLASSIFIER’S PERFORMANCE ON DIFFERENT DATASETS 

 
Dataset Name Accuracy Computation time 

(sec.)   
  c  gamma kernel 

 
 
 

Balance 
Scale Dataset 

Default 0.87  0.004115 1.0 scale rbf 

grid search  0.872  0.39201 1 0.01 rbf 

Random 0.884 0.20400 4.64158 0.00599 linear 

Q-grid search  0.884   0.13948 5 0.1 linear 

Q-random search 0.884 0.2372 5 0.1 linear 

 
 
 
 
 
IRIS Dataset 

Default 0.85833 0.00373 1.0 Scale rbf 

grid search  0.96666 0.362037 3 0.1 linear 

Random 0.925 0.14787 215.4434 0.35938 linear 

Q-gird search  0.9666  0.1012547 3 0.01 linear 

Q-random search 0.96666 0.124896 3 0.01 linear 

 
 
 
 
 
Breast 
Cancer 

Default 0.90789 0.00808 1.0 scale rbf 

grid search  0.94736 19.35496 5 0.1 linear 

Random 0.96052 17.96333 1.291549 2.7825 linear 

Q-gird search  0.95614 13.00778 3 0.01 linear 

Q-random search 0.95614 15.81649 3 0.01 linear 

 
 
 
 
Digits Dataset 

Default 0.97496 0.013361 1.0 scale rbf 

grid search  0.98817  0.86540 3 0.001 rbf 

Random 0.96105 0.446697 1.29154 0.04641 linear 

Q-gird search  0.988178 0.913914 3 0.001 rbf 

Q-random search 0.988178 0.940677 7 0.001 rbf 

 
 
 
 
 
 
 
 
 
 

52



E-ISSN 2581 – 7957                                                       CVR Journal of Science and Technology, Volume 25, December 2023 
 P-ISSN 2277 – 3916                                                                                                                              DOI: 10.32377/cvrjst2508 

 

CVR College of Engineering 

         

TABLE VI. 
KNN CLASSIFIER’S PERFORMANCE ON DIFFERENT DATASETS 

 
Dataset Name Accuracy Computation time (sec.)    No. of neighbours 

 
 
 
Balance Scale Dataset 

Default 0.838  0.004738 3.0 

grid search  0.86 1.6074438 18 

Random 0.86 0.58122706 23 

Q-gird search  0.874   0.63590097 16 

Q-random search 0.872 0.62832236  15 

IRIS Dataset Default 0.925  0.0060422 3.0 

grid search  0.933333 1.6042816 1 

Random 0.9333 1.08904 1 

Q-gird search  0.9333 0.71362185 1 

Q-random search 0.93333 0.2778687 1 

Breast Cancer 
Dataset 

Default 0.61538  0.0025372 3.0 

grid search  0.65034 1.5867512 5 

Random 0.66433 1.0021665 19 

Q-gird search  0.69930 0.4683482 4 

Q-random search 0.69930 0.6204957 4 

Digits Dataset Default 0.93421 0.0049138 3.0 

grid search  0.93421 2.0322103 3 

Random 0.93421 1.2464041 3 

Q-gird search  0.93421 1.5173799 3 

Q-random search 0.93421 0.6609208 3 

 
 

Fig. 2 shows the SVM Classifier's C and gamma value, 
which are optimized using Q-random and Q-grid search 
techniques for 5 datasets. Also, the KNN Classifier is 
evaluated using Q-random and Q-grid-based search 
optimization techniques for 5 datasets. Red color dot 
indicates the optimum value. 

 

a) Balanced dataset  
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b) Balanced dataset 

 

c) Iris Dataset 

 

d) Iris dataset 

 

e) Breast Cancer Dataset 

 

f) Breast Cancer Dataset 

 

g) Digits dataset  
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h) Digits dataset 

 
Figure 2. SVM’s and KNN’s classifiers hyper parameters optimization 
using Q-random and Q-grid Search techniques applied on Balanced, Iris, 
Breast cancer and Digits datasets. 

 
The results of the study revealed that the Q-random 

algorithm is better than the grid and random search methods 
when it comes to tuning hyperparameters in ML models. 
The accuracy of the models that were trained using the 
different algorithms was evaluated. 

According to the findings, the Q-search optimization 
algorithm is more accurate than the grid or random search 
methods. This can be attributed to the algorithm's low 
number of iterations, which aids in achieving improved 
hyperparameter tuning. 

It is noted that since the Q-random optimization algorithm 
only iterates around 30 times, it is more accurate and 
efficient than the random search method. It also has better 
performance in terms of tuning time and processing 
resources. The researchers attributed the improved accuracy 
of the Q-random algorithm to its intelligent sampling 
technique, which helps it focus on ideal hyperparameters at 
a faster rate than the random search method. 

V. CONCLUSIONS 

The importance of tuning machine learning models is 
acknowledged in this study, as it directly affects their 
performance in various applications. The study also 
analyzed the different KNN and SVM configurations on 
different datasets. 

� The study investigated optimizing 
hyperparameters using various optimization 
techniques, such as random and grid searches. It 
found that the q-random algorithm performed 
better than both random and grid searches in 
tuning accuracy. 

� The efficiency and accuracy of the training 
models were found to be better with the q-
random algorithm. This was due to its low 
number of iterations. This algorithm can 
effectively fine-tune hyperparameter values. 

� The efficiency of the q-random algorithm when 
it comes to tuning time and computational 

resources was also better than that of random 
searches. Its ability to sample various 
hyperparameters allowed it to improve its 
accuracy and convergence. 

� The findings of this study have practical 
applications in the areas of machine learning. It 
shows that the q-random algorithm can be 
utilized to optimize hyperparameters, which 
makes it an ideal alternative to traditional 
techniques. 

The study demonstrates that optimizing the performance 
of learning models involves considering the various 
hyperparameters. The q-random approach is an ideal choice, 
as it offers high efficiency and accuracy. As machine 
learning advances, more effective optimization techniques 
will be needed to help develop AI applications that can be 
used in various sectors. 
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