
E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 25, December 2023
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2508

CVR College of Engineering

Received on 17-10-2023, Revised on 11-11-2023, Accepted on 09-12-2023.

Optimizing Hyper Parameters for Enhanced
Performance: A Comparative Study on K-Nearest

Neighbor and Support Vector Machine Models
 Arun Kumar Katkoori1 and R. Prakash Kumar2

1Sr. Asst. Professor, CVR College of Engineering/ECE Department, Hyderabad, India
Email: arun.katkoori@gmail.com

2Sr. Asst. Professor, CVR College of Engineering/ECE Department, Hyderabad, India
Email: prakash.rachmagdu@gmail.com

Abstract: Numerous applications and areas benefit from the
use of machine learning algorithms. The hyperparameters
needed to fit a suitable model must be tuned to address
different issues. The choice of the best configuration directly
affects the performance of the model. User-defined hyper-
parameters are those that are set before the training process is
carried out. In machine learning, optimizing the
hyperparameters is a process that can reduce the cost function.
This paper presents a couple of methods that are used to
optimize the K-Nearest Neighbor algorithm and the Support
Vector Machine model. We have performed several
experiments on the different optimization techniques to
evaluate their accuracy and complexity.

Index Terms: Hyper parameters, Optimization Techniques,

KNN, SVM, Random Search, Grid Search.

I. INTRODUCTION

Machine learning has been widely used in various
applications, such as advertising and recommendation
systems. These algorithms are generally good at handling
data analytics-related challenges. ML techniques can be
used for different kinds of datasets or issues [1]. Developing
an efficient model can be a time-consuming process, as it
involves choosing the best algorithm and tuning its
hyperparameters. There are two kinds of parameters that are
used in developing machine learning models. The first is
called model parameters, which can be updated and
initialised through the learning process. The other is called
hyper-parameters, which are defined by the model
architecture. ML models cannot directly be estimated from
data learning, and these must first be set [2].

One of the most important factors that are considered
when developing machine learning algorithms is
hyperparameters [3]. These are settings that are set before
the training process, and they can be used to control the
model's behavior. They also help determine how well the
model can learn from new data. A hyperparameter is
different from a machine learning model’s parameter, which
are acquired from data gathered during the training phase.
For instance, the learning rate, the number of trees in a
randomly generated forest, and the regularisation term are
examples of hyperparameters [4].

In machine learning, optimizing hyperparameters is an
important step. Doing so can significantly affect the model's
performance. There are various techniques for doing so,
such as random search [5], grid searching [6], and Bayesian

optimization [7], among others. Grid searching is a type of
algorithm that involves trying out a set of predefined
hyperparameters and picking the one that gives you the best
validation set performance. Random search, on the other
hand, is a process that involves randomly sampling the
combinations. For instance, in Bayesian optimization, a
probabilistic model is used to guide the search.

There are many advantages to implementing HPO
techniques in machine learning frameworks.

By utilizing HPO to identify the ideal set of
hyperparameters, user can greatly enhance the performance
and accuracy of ML model. User can also fine-tune the
parameters to make the model more capable of learning
from and generalising new data.

One of the most common issues that an ML model
encounters when it comes to training data is overfitting. This
occurs when the model fails to perform well on fresh data.
With the help of HPO, you can identify the appropriate
hyperparameters that will help minimize overfitting.

Utilizing hyperparameter optimization (HPO) techniques
can help find the ideal hyperparameters efficiently, resulting
in reduced training times for models. This is especially
advantageous when dealing with large datasets or complex
models. The use of HPO techniques can help ensure the
consistency and reproducible nature of your ML models,
even if the same set of parameters is used by different
developers. This is because their hyperparameters are
precisely optimized, utilizing an objective and systematic
approach.

Hyperparameter optimization techniques are different
from standard optimization methods in several aspects.

� Traditional optimization techniques are
commonly used to improve a single function
with a small number of variables. On the other
hand, HPO involves optimizing several
hyperparameters in a search area, which can be
more challenging.

� An objective function that is well-defined can be
improved through traditional optimization
techniques. In HPO, an objective function is
usually focused on the performance of a machine
learning model in a validation set.

� The computational cost of implementing
traditional optimization methods is typically
high when there are many factors involved. Due
to the complexity of the training pipeline, it can

48

E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 25, December 2023
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2508

CVR College of Engineering

also have a significant impact on the overall cost
of computing.

Decision-theoretic approaches are used to define a search
space for hyper-parameters. They allow users to identify the
ideal combination of these characteristics inside the search
space and choose the most effective one. A particular type
of search method known as grid search is used to find the
optimal configuration of these characteristics.

Due to the limited number of resources and the time
needed to perform a search, a decision-theoretic method
known as random search is used. It randomly chooses the
most appropriate hyper-parameters from the search space.

II. LITERATURE SURVEY

The paper [8] analyzed the various algorithms used in the
development of neural networks to find the best
hyperparameters. The three algorithms used in the study
were the Genetic Algorithm, the Grid Search, and the
Bayesian Algorithm. The experiments were conducted on a
dataset from Santander for customer transaction prediction.
The parameters used in the analysis included the number of
hidden layers, size, loss function, optimizers, activation
function, and drop-out. The results indicated that the grid
search performed better than the genetic algorithm, while
the latter performed better than the Bayesian algorithm. The
best hyperparameters were found in the first two algorithms,
the Grid Search, and the Bayesian. The former performed
well because it had the same number of secret layers and an
identical optimizer.

Another paper [9] proposes an IDS framework that uses
the k-nearest-neighbor tuning method to improve the
performance of its semi-supervised learning. The first step is
to identify the nearest neighbor of each unlabeled datapoint.
After that, the data points are classified into either attack or
normal classes according to the statistical information
collected from these neighboring data points. The paper
presents a comprehensive analysis of the model's robustness
using a standard dataset NSL-KDD. The results of the study
show that the proposed framework performs better than the
KNN algorithms that are based on IDS.

Authors [10] introduced several advanced techniques and
discussed their application to the algorithms. It also provides
a variety of frameworks and libraries for addressing the
issue. The paper conducted experiments to evaluate the
effectiveness of different optimization techniques and
presents practical optimization examples. The results of
these studies will help researchers and industrial users
identify the optimal configurations of their models.

Authors [11] evaluated six machine-learning and
statistical models in terms of their predictive performance.
The results revealed that the former outperformed the latter,
except for SVM. In addition, non-spatial partitioning models
exhibited overoptimistic performance when paired with
spatial autocorrelation.

This paper [12] aims to analyze the various popular
algorithms for optimizing hyperparameters in a grid search,
random search, and genetic algorithm for building a neural
network framework. The results of the study are based on
the proposed models' accuracy and execution time.

The general method for choosing SVM hyperparameters
is known as the CMA evolution strategy. It can handle
various kernel parameters and doesn't require the availability
of differentiable kernels or the separability of data. In
addition, the selection criteria typically have multiple local
optima, making it more suited for model selection than the
gradient-based approach [13].

To improve the SVM parameters, authors [14] used two
different methods: grid search and genetic algorithm. In
their experiment, it was revealed that the grid search method
is very reliable when it comes to finding optimal
combinations within the given ranges, but it was very slow
when it came to performing optimization in low dimensional
datasets. The use of GA in SVM parameter optimization can
help solve the issue of grid search. Compared to grid search,
GA is more stable. The average running time of this method
on nine datasets was 16 times faster. In fact, the results of
the GA were significantly better than those of grid search in
eight of the datasets.

Manual and grid searches are commonly used for
optimizing hyper-parameters. In this paper, the authors [15]
show that trials that are randomly chosen are more efficient
than those conducted on a grid. We also compare the
effectiveness of these two strategies with a previous study
that used both to configure deep belief networks and neural
networks. They found that random searches are more
efficient than neural networks that are configured with a grid
search. They can find better models in a fraction of the time.
In contrast, random searches are more effective when they
are granted the same computational budget.

III. METHODOLOGY

Fig. 1 illustrates the key components and the flow of
hyperparameter tuning using optimization techniques within
the context of building and evaluating machine learning
models. These techniques help you systematically explore
and optimize hyperparameters to improve the model's
performance on dataset.

Figure 1. Block diagram of proposed method

The dataset represents the collection of data points with

features and labels, serving as the foundation for training
and evaluating machine learning models. The machine
learning model that takes the input data from the dataset and

49

E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 25, December 2023
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2508

CVR College of Engineering

produces predictions as output. The ML model generates
predictions based on the input data. These predictions are
then compared to the actual labels in the dataset to assess the
model's performance. Performance measures [16] are
metrics used to evaluate the quality of the model's
predictions, such as accuracy, precision, recall, F1-score,
mean squared error, etc.

Here four datasets are used i.e., balance scale dataset,
IRIS dataset, breast cancer dataset, and digits dataset. They
are frequently utilized to test and benchmark the
performance of various algorithms and models in the
evaluation of classification-related tasks.

i) Balance Dataset:
It displays a balanced scale with varying weights on its

sides to determine its fairness. The dataset features four
attributes, which represent the distance and weight of
objects on the balance's right and left sides. The target
variable of the dataset is the class that determines whether or
not the scale is balanced.

ii) IRIS dataset:
This dataset is used in the research of statistics and

machine learning. It contains the measurements of various
features of an iris flower, such as its sepal width, length, and
petal width. The four features represent the iris flower's
dimensions. The target is the species.

iii) Breast Dataset:
This dataset is frequently utilized for classification

purposes related to the diagnosis of breast cancer. It features
digitized images of a fine needle as an FNA. The attributes
of this dataset include various features such as the mean
radius, texture, and smoothness. The classification
parameter target determines whether the tumor is benign or
malignant.

iv) Digits Dataset:
The Digits dataset is frequently utilized for identifying

handwritten digits. It comprises images of the digits. The
features that represent them have pixel values. The target
digit is the one depicted in the image.

Hyperparameters are model settings or configurations that
are not learned from the data but must be specified before
training. Examples include learning rates, the number of
hidden layers in a neural network, regularization strength,
etc. Hyperparameter tuning is the process of finding the
optimal combination of hyperparameters to maximize the
model's performance on the given task. This is important
because different hyperparameter settings can have a
significant impact on the model's effectiveness.

The KNN [17] and SVM [18] models were then created
using the scikit-learn framework. We identified the
necessary hyperparameters for each model. For SVM, the
hyperparameters are gamma, C, and kernel. On the other
hand, for KNN, the hyperparameters are n neighbors.

A. Q-Random Search
Here, Random Search [19] is utilized to find the optimal

hyperparameters suitable for SVM and KNN models. A
quick-random search introduces various constraints and
refinements. For instance, the range or intervals that random
sampling may be restricted to may be considered more
meaningful for the analysis.

The three hyperparameters of SVM that are used in the
decision function are "C," "gamma," and "kernel." The "C"
parameter determines the optimal balance between the
training points correctly classified and the smooth decision
boundary. The "gamma" parameter indicates how far the
influence of one training example can go.

TABLE I.

PSEUDO CODE FOR Q-RANDOM SEARCH USING SVM
INPUT: maximum number of iterations(maxitr)
1. param_grid = {'c': [1, 3, 5,7],
 'gamma': [0.1, 0.01, 0.001],
 'kernel': ['linear', 'rbf'}
2.best_para={'c':lst['c'][1],'gamma':lst['gamma'][1],'kernel':lst['kernel'][0]}
3.svm_model=svm.SVC(C=best_para['c'],gamma=best_para['gamma'],
 kernel=best_para['kernel'])
4. best_acc=accuracy(svm_model)
5. For i in maxitr :

c=random(param_grid[‘c’])
gamma=random(param_grid[‘gamma’)

kernel=random(param_grid[‘kernel’])
model=svm(c,gamma,kernel)
present_acc=accuracy(model)

if(present_acc)> best_acc:
best_acc= present_acc
best_para={'c':c,'gamma':gamma,'ker

nel':kernel}
End if

End for
6. Return best_para

The optimal combination of hyperphys will be

determined by evaluating each iteration through a loop
called "maxitr". The random value of each parameter will be
used in the creation of a new SVM. Its accuracy is then
calculated by using the function "accuracy”.

TABLE II.

PSEUDO CODE FOR Q-RANDOM SEARCH USING KNN
INPUT: maximum number of iterations(maxitr)
1. para_grid = {'n_neighbors': [1:10]}
2. Random Search for KNN

def random_search_knn(maxitr, para_grid_knn):
3. Initialize the best accuracy and best parameters
 best_acc = 0
 best_para = {}
4. for in range(maxitr)

 n_neighbors =
random.choice(para_grid_knn['n_neighbors'])
 model = KNeighborsClassifier(n_neighbors=n_neighbors)

5. present_acc = accuracy_knn(model)
6. if present_acc > best_acc:
 best_acc = present_acc

 best_para = {'n_neighbors': n_neighbors}
 End if
 End for
7. Return best_para

50

E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 25, December 2023
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2508

CVR College of Engineering

The function "accuracy" updates the hyperphys' values if the
new model's accuracy exceeds the current best. It then
returns the most accurate set.

The given table II pseudocode provides a method that can
be used to search for hyperparameter values in a KNN
algorithm. It randomly chooses the optimal values for the
n_neighbors parameter from the grid "para_grid_knn". Each
iteration of the KNN algorithm, a model is created with a
randomly chosen n_neighbors value. The algorithm's
accuracy is calculated by using a hypothetical accuracy-knn
function. If the current model exceeds the previous best, its
corresponding hyperparameters and accuracy are updated.
The algorithm then returns the best configuration after the
random search.

B. Q-Grid Search
For Grid Search, a set of parameters are created that are

used to train the models. Then select the best ones for the
validation set and random sampling for the training.

The Q-grid (Quick) search strategy adopts a more
efficient approach, which eliminates the need to evaluate
every possible combination within a predefined grid.
Instead, it uses a randomized sampling method to evaluate
each combination. This method helps reduce the
computational demands while maintaining a level of
exhaustiveness. The new strategy avoids the need to analyze
every possible combination in each grid, especially when
dealing with large search spaces. It focuses on exploring
different hyperparameter configurations to find promising
ones.

The first value of each hyperparameter in the dictionary
of "param grid" is the initial value of the model that will be
used to create a SVM. The model's accuracy is then
calculated using the "accuracy" function. The best acc
parameter is used to represent the initial accuracy. The
algorithm iterates through the various hyperparameters in
the grid and creates new SVM models with the current set of
values. The model's accuracy is then calculated using the
"accuracy" function.

The function considers the new model's accuracy and
updates the hyperparameters with the new values. It then
returns the best set of values, which gives the highest
accuracy.

Table IV pseudocode describes a method that can be used
to search for hyperparameter values in a KNN algorithm. It
takes into account the maximum number of iterations that
can be performed to find the most appropriate values for the
n_neighbors parameter from the grid "para_grid_knn".The
KNN algorithm creates a model with the chosen
n_neighbors value in every iteration. Its accuracy is
computed by using a function known as an accuracy_knn. If
the current model's accuracy exceeds the previous best, the
corresponding hyperparameters are updated. The algorithm
then performs an iterative process to find the optimal
configuration.

TABLE III.

PSEUDO CODE FOR Q-GRID SEARCH USING SVM
INPUT: maximum number of iterations(maxitr)

1. param_grid = {'c': [1, 3, 5,7],
 'gamma': [0.1, 0.01, 0.001],
 'kernel': ['linear', 'rbf']

2. best_para={'c':lst['c'][1],'gamma':lst['gamma'][1],'kernel':lst['k
ernel'][0]}

3. svm_model=svm.SVC(C=best_para['c'],gamma=best_para['ga
mma'],
kernel=best_para['kernel'])

4. best_acc=accuracy(svm_model)
For c in param_grid[‘c’]

For gamma in param_grid[‘gamma’]
For kernel in param_grid[‘kernel’]

 model=svm(c,gamma,kernel)
 present_acc=accuracy(model)
 if(present_acc)> best_acc:
 best_acc= present_acc

best_para={'c':c,'gamma':gamma,'kernel':kernel}
 End if

End for
End for

End for
5. Return best_para

TABLE IV.
PSEUDO CODE FOR Q-GRID SEARCH

INPUT: maximum number of iterations(maxitr)
1. param_grid = {'n_neighbors': [1:10]}
2. Grid Search for KNN

def grid_search_knn(maxitr, para_grid_knn):
3. Initialize the best accuracy and best parameters
 best_acc = 0
 best_para = {}
4. for in range(maxitr)

 n_neighbors = grid.choice(para_grid_knn['n_neighbors'])
 model = KNeighborsClassifier(n_neighbors=n_neighbors)

5. present_acc = accuracy_knn(model)
6. if present_acc > best_acc:
 best_acc = present_acc

 best_para = {'n_neighbors': n_neighbors}
 End if
 End for
7. Return best_para

51

E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 25, December 2023
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2508

CVR College of Engineering

IV. RESULTS

 Tables V and VI provide a comparative analysis of
different SVM configurations, KNN and their performance
on the different datasets. It demonstrates the impact of
hyperparameter tuning on accuracy and computation time,
which can be crucial when selecting the best SVM model for
a particular problem.

TABLE V.
SVM CLASSIFIER’S PERFORMANCE ON DIFFERENT DATASETS

Dataset Name Accuracy Computation time

(sec.)
 c gamma kernel

Balance
Scale Dataset

Default 0.87 0.004115 1.0 scale rbf

grid search 0.872 0.39201 1 0.01 rbf

Random 0.884 0.20400 4.64158 0.00599 linear

Q-grid search 0.884 0.13948 5 0.1 linear

Q-random search 0.884 0.2372 5 0.1 linear

IRIS Dataset

Default 0.85833 0.00373 1.0 Scale rbf

grid search 0.96666 0.362037 3 0.1 linear

Random 0.925 0.14787 215.4434 0.35938 linear

Q-gird search 0.9666 0.1012547 3 0.01 linear

Q-random search 0.96666 0.124896 3 0.01 linear

Breast
Cancer

Default 0.90789 0.00808 1.0 scale rbf

grid search 0.94736 19.35496 5 0.1 linear

Random 0.96052 17.96333 1.291549 2.7825 linear

Q-gird search 0.95614 13.00778 3 0.01 linear

Q-random search 0.95614 15.81649 3 0.01 linear

Digits Dataset

Default 0.97496 0.013361 1.0 scale rbf

grid search 0.98817 0.86540 3 0.001 rbf

Random 0.96105 0.446697 1.29154 0.04641 linear

Q-gird search 0.988178 0.913914 3 0.001 rbf

Q-random search 0.988178 0.940677 7 0.001 rbf

52

E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 25, December 2023
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2508

CVR College of Engineering

TABLE VI.
KNN CLASSIFIER’S PERFORMANCE ON DIFFERENT DATASETS

Dataset Name Accuracy Computation time (sec.) No. of neighbours

Balance Scale Dataset

Default 0.838 0.004738 3.0

grid search 0.86 1.6074438 18

Random 0.86 0.58122706 23

Q-gird search 0.874 0.63590097 16

Q-random search 0.872 0.62832236 15

IRIS Dataset Default 0.925 0.0060422 3.0

grid search 0.933333 1.6042816 1

Random 0.9333 1.08904 1

Q-gird search 0.9333 0.71362185 1

Q-random search 0.93333 0.2778687 1

Breast Cancer
Dataset

Default 0.61538 0.0025372 3.0

grid search 0.65034 1.5867512 5

Random 0.66433 1.0021665 19

Q-gird search 0.69930 0.4683482 4

Q-random search 0.69930 0.6204957 4

Digits Dataset Default 0.93421 0.0049138 3.0

grid search 0.93421 2.0322103 3

Random 0.93421 1.2464041 3

Q-gird search 0.93421 1.5173799 3

Q-random search 0.93421 0.6609208 3

Fig. 2 shows the SVM Classifier's C and gamma value,
which are optimized using Q-random and Q-grid search
techniques for 5 datasets. Also, the KNN Classifier is
evaluated using Q-random and Q-grid-based search
optimization techniques for 5 datasets. Red color dot
indicates the optimum value.

a) Balanced dataset

53

E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 25, December 2023
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2508

CVR College of Engineering

b) Balanced dataset

c) Iris Dataset

d) Iris dataset

e) Breast Cancer Dataset

f) Breast Cancer Dataset

g) Digits dataset

54

E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 25, December 2023
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2508

CVR College of Engineering

h) Digits dataset

Figure 2. SVM’s and KNN’s classifiers hyper parameters optimization
using Q-random and Q-grid Search techniques applied on Balanced, Iris,
Breast cancer and Digits datasets.

The results of the study revealed that the Q-random

algorithm is better than the grid and random search methods
when it comes to tuning hyperparameters in ML models.
The accuracy of the models that were trained using the
different algorithms was evaluated.

According to the findings, the Q-search optimization
algorithm is more accurate than the grid or random search
methods. This can be attributed to the algorithm's low
number of iterations, which aids in achieving improved
hyperparameter tuning.

It is noted that since the Q-random optimization algorithm
only iterates around 30 times, it is more accurate and
efficient than the random search method. It also has better
performance in terms of tuning time and processing
resources. The researchers attributed the improved accuracy
of the Q-random algorithm to its intelligent sampling
technique, which helps it focus on ideal hyperparameters at
a faster rate than the random search method.

V. CONCLUSIONS

The importance of tuning machine learning models is
acknowledged in this study, as it directly affects their
performance in various applications. The study also
analyzed the different KNN and SVM configurations on
different datasets.

� The study investigated optimizing
hyperparameters using various optimization
techniques, such as random and grid searches. It
found that the q-random algorithm performed
better than both random and grid searches in
tuning accuracy.

� The efficiency and accuracy of the training
models were found to be better with the q-
random algorithm. This was due to its low
number of iterations. This algorithm can
effectively fine-tune hyperparameter values.

� The efficiency of the q-random algorithm when
it comes to tuning time and computational

resources was also better than that of random
searches. Its ability to sample various
hyperparameters allowed it to improve its
accuracy and convergence.

� The findings of this study have practical
applications in the areas of machine learning. It
shows that the q-random algorithm can be
utilized to optimize hyperparameters, which
makes it an ideal alternative to traditional
techniques.

The study demonstrates that optimizing the performance
of learning models involves considering the various
hyperparameters. The q-random approach is an ideal choice,
as it offers high efficiency and accuracy. As machine
learning advances, more effective optimization techniques
will be needed to help develop AI applications that can be
used in various sectors.

REFERENCES

[1] Cherian, I. ., Agnihotri, A. ., Katkoori, A. K. ., & Prasad , V. .
(2023). Machine Learning for Early Detection of Alzheimer’s
Disease from Brain MRI. International Journal of Intelligent
Systems and Applications in Engineering, 11(7s), 36–43.

[2] Rajesh, Dr. V. and Bhanuprakash Dudi. “Performance
analysis of leaf image classification using machine learning
algorithms on different datasets.” (2021).

[3] Dudi, Bhanuprakash, and V. Rajesh. "Medicinal plant
recognition based on CNN and machine learning."
International Journal of Advanced Trends in Computer
Science and Engineering 8.4 (2019): 999-1003.

[4] Prakash, D. Bhanu, K. Arun Kumar, and R. Prakash Kumar.
"Hyper-parameter optimization using metaheuristic
algorithms." CVR Journal of Science and Technology 23.1
(2022): 37-43.

[5] Li, B. (n.d.). Random Search Plus: A more effective random
search for Random Search Plus: A more effective random
search for machine learning hyperparameters optimization
machine learning hyperparameters optimization.

[6] Liashchynskyi, P., & Liashchynskyi, P. (2019). Grid Search,
Random Search, Genetic Algorithm: A Big Comparison for
NAS.

[7] Zhang, Y., Apley, D.W. & Chen, W. Bayesian Optimization
for Materials Design with Mixed Quantitative and Qualitative
Variables. Sci Rep 10, 4924 (2020).

[8] Alibrahim, Hussain & Ludwig, Simone. (2021).
Hyperparameter Optimization: Comparing Genetic Algorithm
against Grid Search and Bayesian Optimization. 1551-1559.
10.1109/CEC45853.2021.9504761.

[9] Wazirali, R. An Improved Intrusion Detection System Based
on KNN Hyperparameter Tuning and Cross-Validation. Arab
J.Sci Eng 45, 10859–10873(2020).

[10] Li Yang, Abdallah Shami, On hyperparameter optimization of
machine learning algorithms: Theory and practice,
Neurocomputing, Volume 415, 2020, Pages 295-316, ISSN
0925-2312.

[11] Patrick Schratz, Jannes Muenchow, Eugenia Iturritxa, Jakob
Richter, Alexander Brenning, Hyperparameter tuning and
performance assessment of statistical and machine-learning
algorithms using spatial data, Ecological Modelling, Volume
406, 2019, Pages 109-120, ISSN 0304-3800.

[12] Liashchynskyi, Petro B. and Pavlo Liashchynskyi. “Grid
Search, Random Search, Genetic Algorithm: A Big
Comparison for NAS.” ArXiv abs/1912.06059 (2019).

55

E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 25, December 2023
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2508

CVR College of Engineering

[13] Frauke Friedrichs, Christian Igel, Evolutionary tuning of
multiple SVM parameters, Neurocomputing, Volume 64,
2005, Pages 107-117, ISSN 0925-2312.

[14] Syarif, Iwan & Prugel-Bennett, A. & Wills, Gary. (2016).
SVM Parameter Optimization using Grid Search and Genetic
Algorithm to Improve Classification Performance.
TELKOMNIKA (Telecommunication Computing Electronics
and Control). 14.

[15] James Bergstra and Yoshua Bengio. 2012. Random search for
hyper-parameter optimization. J. Mach. Learn. Res. 13, null
(3/1/2012), 281–305.

[16] Kumar, K.A., Boda, R. A computer-aided brain tumor
diagnosis by adaptive fuzzy active contour fusion model and
deep fuzzy classifier. Multimed Tools Appl 81, 25405–25441
(2022).

[17] L. R. Somula and M. Meena, "K-Nearest Neighbour (KNN)
Algorithm based Cooperative Spectrum Sensing in Cognitive
Radio Networks," 2022 IEEE 4th International Conference on
Cybernetics, Cognition and Machine Learning Applications
(ICCCMLA), Goa, India, 2022, pp. 1-6, doi:
10.1109/ICCCMLA56841.2022.9988996.

[18] Katukuri Arun Kumar, Ravi Boda, A Multi-Objective
Randomly Updated Beetle Swarm and Multi-Verse
Optimization for Brain Tumor Segmentation and
Classification, The Computer Journal, Volume 65, Issue 4,
April 2022, Pages 1029–1052.
Esmaeili, Ahmad, Zahra Ghorrati, and Eric T. Matson. 2023.
"Agent-Based Collaborative Random Search for
Hyperparameter Tuning and Global Function Optimization"
Systems 11, no. 5: 228.

56

