
CVR Journal of Science & Technology, Volume. 1, October 2011

Real Time Systems Design for
Safety Critical Applications

Rinku R. Dhruva

CVR College of Engineering, Department of ECE, Ibrahimpatan, R.R.District, A.P., India
Email: rinku_dhruva@yahoo.com

Abstract—This paper studies and suggests few of the famous
techniques employed in various applications in different
domains, and generalise the guidelines for designing and
developing Real Time Systems in safety critical applications.

I. INTRODUCTION

Today’s electronic systems infiltrate more and more
our daily life. We put our lives in the hand of complex
electronic systems. For instance, during a flight with a
modern aeroplane, where a severe failure of the electronic
flight control system may lead to a catastrophe, we
completely rely on the proper functioning of the
electronic system.

In the industry, it is an upward trend to replace
mechanical and hydraulic control systems by electronic
control systems. An example of the automotive industry:
in the model year 2001, electronics were accounted for
19% of a mid-sized automobile’s costs. It is estimated
that in the year 2005, 25% of the total costs of a mid-
sized automobile will be accounted for electronic parts,
and possibly 50% for luxury models. This includes costs
for so-called ‘by-wire systems’, which will replace
traditional mechanical and hydraulic braking and steering
systems in cars of the near future (model years 2005–
2007).

In a by-wire system, braking or steering relies on the
correct behavior of the electronic system. A failure of the
electronic system may cause a severe hazard that will
endanger human life or the environment. The design,
development, production, and maintenance of such a by-
wire system is a complex and difficult undertaking, and
system failures during operational use have to be
prevented by all possible technical means. The
difficulties are mainly caused by the complexity of these
electronic systems, mass production, and stringent
dependability (e.g., safety) requirements imposed by
authorities. Among others, a validation of the system’s
behavior in all stages of the system’s life-cycle is a
necessary and important technical mean to have
confidence that the system under consideration behaves
safe in its environment.

A. Real-time system:

A real-time system has to interact with its environment
in real-time. The correctness of a real-time system
depends not only on the logical result of the computation
but also on the time at which the results are produced [1]
(see also [2, p. 18–19]). The point in time by which the

result must be produced for the temporal behavior of the
response to be correct is called deadline.

The paucity of material on safety critical systems has
lead to widespread misunderstanding of the various terms
used to discuss safety. The most basic term is safety.
Safety is defined to be freedom from accidents or losses.
An accident is an event in time in which an undesirable
consequence occurs, such as death, injury, equipment
damage, or financial loss.

A safety-critical system in a system, which may
contain electronic, mechanical, and software aspects, that
presents an opportunity for accidents to occur. For many
people, safety-critical systems are only those that present
the opportunity for injury or loss of life, but this omits
from consideration other systems which might benefit
from the techniques and approaches common in safety
analysis. Therefore, it is better to designate a safety
critical system to be any system in which the cost of use
of a system due to an accident is potentially high. Hazard
is the effect of safety failure.

For example, the FDA[2] uses major (irreversible
injury or death), moderate (injury), and minor (no injury)
levels of concern for device safety. The German standard
DIN 19250 identifies 8 categories, along with required
safety measures for each category while the more recent
IEC 61508 [3] identifies 4 safety integrity levels (SILs):
catastrophic, critical, marginal, and negligible, although
the text notes that the severity of system-presented
hazards is actually a continuum.

The risk of a hazard is defined to be the product of the
probability of the occurrence of the hazard and its
severity:s.

Riskhazard = probabilityhazard x severityhazard
Being shocked by your car battery is relatively high

but when combined with the low severity, the overall risk
is low. Similarly, while the consequences of an abrupt
release of the kinetic energy of a commercial aircraft are
quite severe, its probability is low " again resulting in a
low risk. The various standards also identify different risk
levels based on both the severity of the hazard and its
likelihood of occurrence.

In the process of system design, hazards must be
identified and safety measures must be put in place to
reduce the risk.

II. SYSTEMS APPROACH

System safety engineering has historically
demonstrated the benefits of a “systems” approach to
safety risk analysis and mitigation. When a hazard

CVR College of Engineering 50 DOI: 10.32377/cvrjst0111

CVR Journal of Science & Technology, Volume. 1, October 2011

analysis is conducted on a hardware subsystem as a
separate entity, it will produce a set of unique hazards
applicable only to that subsystem. However, when that
same subsystem is analyzed in the context of its physical,
functional, and zonal interfaces with the rest of the
“system components,” the analysis will likely produce
numerous other hazards which were not discovered by
the original analysis. Conversely, the results of a system
analysis may demonstrate that hazards identified in the
subsystem analysis were either reduced or eliminated by
other components of the system. Regardless, the
identification of critical subsystem interfaces (such as
software) with their associated hazards is a vital aspect of
safety risk minimization for the total system. When
analyzing software that performs, and/or controls, safety-
critical functions within a system, a “systems approach”
is also required. The success of a software safety program
is predicated on it. Today’s software is a very critical
component of the safety risk potential of systems being
developed and fielded. Not only are the internal interfaces
of the system important to safety, but so are the external
interfaces.

III. THE HARDWARE DEVELOPMENT LIFE CYCLE

A. Figures and Tables

The typical hardware development life cycle has been
in existence for many years. It is a proven acquisition
model which has produced, in most instances, the desired
engineering results in the design, development,
manufacturing, fabrication, and test activities. It consists
of five phases. These are identified as the concept
exploration and definition, demonstration and validation,
engineering and manufacturing development, production
and deployment, and operations and support phases. Each
phase of the life cycle ends, and the next phase begins,
with a milestone decision point (0, I, II, III, and IV). An
assessment of the system design and program status is
made at each milestone decision point, and plans are
made or reviewed for subsequent phases of the life cycle.

Figure 1. Hardware Development Life Cycle

The one shown in Figure identifies and establishes

defined phases for the development life cycle of a system
and can be overlaid on a proposed timetable to establish a
milestone schedule.

IV. THE SOFTWARE DEVELOPMENT LIFE CYCLE

The system safety is critically depend on the software
life cycle being used by the development activity. In the
past several years, numerous life cycle models have been
identified, modified, and used in some capacity on a
variety of software development programs. The important

issue here is to recognize which ever model is being used,
but decide how to correlate and integrate safety activities
with the chosen software development model to achieve
the desired outcomes and safety goals. Several different
models will be presented to introduce examples of the
various models.

Figure2 is a graphical representation of the relationship
of the software development life cycle to the
system/hardware development life cycle. The model is
representative of the “Waterfall,” or “Grand Design” life
cycle. While this model is still being used in numerous
projects, other models are more representative of the
current software development schemes currently being
followed, such as the “Spiral” and “Modified V” software
development life cycles. It is important to recognize that
the software development life cycle does not correlate
exactly with the hardware (system) development life
cycle. It “lags” behind the hardware development at the
beginning but finishes before the hardware development
is completed. It is also important to realize that specific
design reviews for hardware usually lag behind those
required for software.

Figure 2. Relation between Software and Hardware

Development Life Cycle

A. Grand Design, Waterfall Life Cycle Model

The Waterfall software acquisition and development
life cycle model is the oldest in terms of use by software
developers. Grand Design places emphasis on up-front
documentation during early development phases, but does
not support modern development practices such as
prototyping and automatic code generation. Another
limitation to the model is that after a single pass through
the model, the system is complete. Therefore, many
integration problems are identified much too late in the
development process to be corrected without significant
cost and schedule impacts. In terms of software safety,
interface issues must be identified and rectified as early
as possible in the development life cycle to be adequately
corrected and verified. Figure 3 is a representation of the
Grand Design, or Waterfall, life cycle model. The
Waterfall model is not recommended for large, software-
intensive, systems. This is due to the limitations stated
above and the inability to effectively manage program
risks, including safety risk during the software
development process. The Grand Design does, however,
provide a structured and well-disciplined method for
software development.

CVR College of Engineering 51

CVR Journal of Science & Technology, Volume. 1, October 2011

Figure 3. Grand Design, Waterfall LIFE Cycle Model

B. Modified V Life Cycle Model

The Modified V software acquisition life cycle model
is another example of a defined method for software
development. It is depicted in Figure 4. This model is
heavily weighted in the ability to design, code, prototype,
and test in increments of design maturity. The left side of
the figure identifies the specification, design, and coding
activities for developing software. It also indicates when
the test specification and test design activities can start.
For example, the system/acceptance tests can be specified
and designed as soon as software requirements are
known. The integration tests can be specified and
designed as soon as the software design structures are
known. And, the unit tests can be specified and designed
as soon as the code units are prepared. The right side of
the figure identifies when the evaluation activities occur
that are involved with the execution and testing of the
code at its various stages of evolution.

Figure 4. V Life Cycle Model

C. Spiral Life cycle Model

The Spiral acquisition life cycle model provides a risk-
reduction approach to the software development process.
In the Spiral model, Figure 5, the radial distance is a
measure of effort expended, while the angular distance
represents progress made. It combines features of the
Waterfall and the incremental prototype approaches to

software development. Spiral development emphasizes
evaluation of alternatives and risk assessment. These are
addressed more thoroughly than with other strategies. A
review at the end of each phase ensures commitment to
the next phase or identifies the need to rework a phase if
necessary. The advantages of Spiral development are its
emphasis on procedures, such as risk analysis, and its
adaptability to different development approaches.

This model represents a “demonstration based” process
that employs a top-down incremental approach that
results in an early and continuous design and
implementation validation. Advantages of this approach
are that it is built from the top down, it supports partial
implementation; the structure is automated, real and
evolved; and that each level of development can be
demonstrated. Each build and subsequent demonstration
validates the process and the structure to the previous
build. Hence, Spiral Life-cycle model is more appropriate
for safety-critical systems design.

Figure 5. Spiral Life Cycle Model

V. INTEGRATION

The life cycle process of system development was
instituted so managers would not be forced to make snap
decisions. A structured life cycle, complete with controls,
audits, reviews, and key decision points, provides a basis
for sound decision making based on knowledge,
experience, and training. It is a logical flow of events
representing an orderly progression from a “user need” to
finalize activation, deployment, and support.

The elements contributing to a credible and successful
software safety engineering program will include the
following:
� A defined and established system safety engineering

process,
� A structured and disciplined software development

process,
� An established hardware and software systems

engineering process,
� An established hardware/software configuration

control process, and
� An integrated SSS Team responsible for the

identification, implementation, and verification of

CVR College of Engineering 52

CVR Journal of Science & Technology, Volume. 1, October 2011

safety-specific requirements in the design and code
of the software.

Figure 6. Software Safety Engineering Program

VI. REDUNDANCY FOR FAULT-TOLERANT DESIGN

Fault tolerant design, also known as fail-safe design, is
a design that enables a system to continue operation,
possibly at a reduced level (also known as graceful
degradation), rather than failing completely, when some
part of the system fails. The term is most commonly used
to describe computer-based systems designed to continue
more or less fully operational with, perhaps, a reduction
in throughput or an increase in response time in the event
of some partial failure. That is, the system as a whole is
not stopped due to problems either in the hardware or the
software.

Redundancy is the duplication of critical components
of a system with the intention of increasing reliability of
the system, usually in the case of a backup or fail-safe.

Figure 7. Redundancy in System

A. Replication

Replication is the process of sharing information so as
to ensure consistency between redundant resources, such
as software or hardware components, to improve
reliability, fault-tolerance, or accessibility [4]. It could be
data replication if the same data is stored on multiple
storage devices, or computation replication if the same
computing task is executed many times. A computational
task is typically replicated in space, i.e. executed on
separate devices, or it could be replicated in time, if it is
executed repeatedly on a single device.

A lockstep fault-tolerant machine uses replicated
elements operating in parallel. At any time, all the
replications of each element should be in the same state.
The same inputs are provided to each replication, and the
same outputs are expected. The outputs of the replications
are compared using a voting circuit. A machine with two
replications of each element is termed dual modular
redundant (DMR). The voting circuit can then only detect
a mismatch and recovery relies on other methods.

In many safety-critical systems, some parts of the
control system are triplicated, which is formally termed
triple modular redundancy (TMR). A machine with three
replications of each element is termed triple modular
redundant (TMR). The voting circuit can determine
which replication is in error when a two-to-one vote is
observed. In this case, the voting circuit can output the
correct result, and discard the erroneous version. After
this, the internal state of the erroneous replication is
assumed to be different from that of the other two, and
the voting circuit can switch to a DMR mode. This model
can be applied to any larger number of replications.

VII. TESTING, VERIFICATION AND VALIDATION

Systems are called safety-critical if their malfunction
represents a severe threat to human lives or to the
environment. Following Laprie’s terminology[3],
dependability is the capability of a system to deliver the
specified application services during its period of
operation. Laprie identified four attributes which
characterise the dependability of a system:
(1) A safe system cannot assume states that are regarded

as “catastrophic” from the point of view of the
application. This means that the system will only
perform transitions into states satisfying the specified
invariants, perform calculations that are correct with
respect to the specification and output data fulfilling
the desired integrity constraints. Safety does not
guarantee that a desired calculation and the
corresponding output will always be produced. This
aspect is covered by the following two attributes:

(2) Reliability is a characteristic specifying the
probability that a system will deliver its service for a
given period of time.

(3) Availability is a measure reflecting the probability
that the system will be available at a certain point in
time.

(4) Finally, Security reflects the capability of the system
to protect the application against damage arising
from accidental or malicious human interaction.

Design, execution and evaluation of tests for safety-
critical systems require considerable effort and skill and
consume a large part of today’s development costs. Due
to the growing complexity of control systems it has to be
expected that their trustworthy test will become
unmanageable in the future if only conventional
techniques requiring a high degree of human interaction
during the test process are applied. For these reasons
methods and tools helping to automate the test process
gather wide interest both in industry and research
communities.

CVR College of Engineering 53

CVR Journal of Science & Technology, Volume. 1, October 2011

CONCLUSIONS

This paper tried to touch the fundamental points to be
taken care while designing a safety-critical real time system.
With the advent growth in technology and tools in future
the designers can eliminate most of the hazards at design
stage itself, and improve the system reliability and safety, if
understand these concepts.

REFERENCES

[1] John A. Stankovic. Misconceptions About Real-time
Computing: A Serious Problem for Next Generation Systems.
IEEE Computer, 21(10):10–19, October 1988.

[2] Jerey J. P. Tsai, Yaodong Bi, Steve J. H. Yang, and Ross A.
W.Smith. Distributed Real-Time Systems: Monitoring,
Visualiza-tion, Debugging, and Analysis. John Wiley & Sons,
New York et al., 1996.

[3] J. C. Laprie et al. Dependability: Basic Concepts and
Terminology. Springer-Verlag, 1992. and H. Suhl, Eds. New
York: Academic, 1963, pp. 271–350.

[4] David Alberico et al., Joint Software System Safety
Committee - SOFTWARE SYSTEM SAFETY
HANDBOOK, Joint Services Computer Resources
Management Group, December 1999.

CVR College of Engineering 54

