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Abstract—This paper studies and suggests few of the famous 
techniques employed in various applications in different 
domains, and generalise the guidelines for designing and 
developing Real Time Systems in safety critical applications. 

I.  INTRODUCTION   

Today’s electronic systems infiltrate more and more 
our daily life. We put our lives in the hand of complex 
electronic systems. For instance, during a flight with a 
modern aeroplane, where a severe failure of the electronic 
flight control system may lead to a catastrophe, we 
completely rely on the proper functioning of the 
electronic system. 

In the industry, it is an upward trend to replace 
mechanical and hydraulic control systems by electronic 
control systems. An example of the automotive industry: 
in the model year 2001, electronics were accounted for 
19% of a mid-sized automobile’s costs. It is estimated 
that in the year 2005, 25% of the total costs of a mid-
sized automobile will be accounted for electronic parts, 
and possibly 50% for luxury models. This includes costs 
for so-called ‘by-wire systems’, which will replace 
traditional mechanical and hydraulic braking and steering 
systems in cars of the near future (model years 2005–
2007). 

In a by-wire system, braking or steering relies on the 
correct behavior of the electronic system. A failure of the 
electronic system may cause a severe hazard that will 
endanger human life or the environment. The design, 
development, production, and maintenance of such a by-
wire system is a complex and difficult undertaking, and 
system failures during operational use have to be 
prevented by all possible technical means. The 
difficulties are mainly caused by the complexity of these 
electronic systems, mass production, and stringent 
dependability (e.g., safety) requirements imposed by 
authorities. Among others, a validation of the system’s 
behavior in all stages of the system’s life-cycle is a 
necessary and important technical mean to have 
confidence that the system under consideration behaves 
safe in its environment. 

A. Real-time system:  

A real-time system has to interact with its environment 
in real-time. The correctness of a real-time system 
depends not only on the logical result of the computation 
but also on the time at which the results are produced [1] 
(see also [2, p. 18–19]). The point in time by which the 

result must be produced for the temporal behavior of the 
response to be correct is called deadline. 

The paucity of material on safety critical systems has 
lead to widespread misunderstanding of the various terms 
used to discuss safety. The most basic term is safety. 
Safety is defined to be freedom from accidents or losses. 
An accident is an event in time in which an undesirable 
consequence occurs, such as death, injury, equipment 
damage, or financial loss. 

A safety-critical system in a system, which may 
contain electronic, mechanical, and software aspects, that 
presents an opportunity for accidents to occur. For many 
people, safety-critical systems are only those that present 
the opportunity for injury or loss of life, but this omits 
from consideration other systems which might benefit 
from the techniques and approaches common in safety 
analysis. Therefore, it is better to designate a safety 
critical system to be any system in which the cost of use 
of a system due to an accident is potentially high. Hazard 
is the effect of safety failure. 

For example, the FDA[2] uses major (irreversible 
injury or death), moderate (injury), and minor (no injury) 
levels of concern for device safety. The German standard 
DIN 19250 identifies 8 categories, along with required 
safety measures for each category while the more recent 
IEC 61508 [3] identifies 4 safety integrity levels (SILs): 
catastrophic, critical, marginal, and negligible, although 
the text notes that the severity of system-presented 
hazards is actually a continuum. 

The risk of a hazard is defined to be the product of the 
probability of the occurrence of the hazard and its 
severity:s. 

Riskhazard = probabilityhazard x severityhazard 
Being shocked by your car battery is relatively high 

but when combined with the low severity, the overall risk 
is low. Similarly, while the consequences of an abrupt 
release of the kinetic energy of a commercial aircraft are 
quite severe, its probability is low " again resulting in a 
low risk. The various standards also identify different risk 
levels based on both the severity of the hazard and its 
likelihood of occurrence. 

In the process of system design, hazards must be 
identified and safety measures must be put in place to 
reduce the risk. 

II. SYSTEMS APPROACH 

System safety engineering has historically 
demonstrated the benefits of a “systems” approach to 
safety risk analysis and mitigation. When a hazard 
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analysis is conducted on a hardware subsystem as a 
separate entity, it will produce a set of unique hazards 
applicable only to that subsystem. However, when that 
same subsystem is analyzed in the context of its physical, 
functional, and zonal interfaces with the rest of the 
“system components,” the analysis will likely produce 
numerous other hazards which were not discovered by 
the original analysis. Conversely, the results of a system 
analysis may demonstrate that hazards identified in the 
subsystem analysis were either reduced or eliminated by 
other components of the system. Regardless, the 
identification of critical subsystem interfaces (such as 
software) with their associated hazards is a vital aspect of 
safety risk minimization for the total system. When 
analyzing software that performs, and/or controls, safety-
critical functions within a system, a “systems approach” 
is also required. The success of a software safety program 
is predicated on it. Today’s software is a very critical 
component of the safety risk potential of systems being 
developed and fielded. Not only are the internal interfaces 
of the system important to safety, but so are the external 
interfaces.  

III.  THE HARDWARE DEVELOPMENT LIFE CYCLE 

A.  Figures and Tables 

The typical hardware development life cycle has been 
in existence for many years. It is a proven acquisition 
model which has produced, in most instances, the desired 
engineering results in the design, development, 
manufacturing, fabrication, and test activities. It consists 
of five phases. These are identified as the concept 
exploration and definition, demonstration and validation, 
engineering and manufacturing development, production 
and deployment, and operations and support phases. Each 
phase of the life cycle ends, and the next phase begins, 
with a milestone decision point (0, I, II, III, and IV). An 
assessment of the system design and program status is 
made at each milestone decision point, and plans are 
made or reviewed for subsequent phases of the life cycle.  

 
Figure 1. Hardware Development Life Cycle 

 
The one shown in Figure identifies and establishes 

defined phases for the development life cycle of a system 
and can be overlaid on a proposed timetable to establish a 
milestone schedule.  

IV.  THE SOFTWARE DEVELOPMENT LIFE CYCLE 

The system safety is critically depend on the software 
life cycle being used by the development activity. In the 
past several years, numerous life cycle models have been 
identified, modified, and used in some capacity on a 
variety of software development programs. The important 

issue here is to recognize which ever model is being used, 
but decide how to correlate and integrate safety activities 
with the chosen software development model to achieve 
the desired outcomes and safety goals. Several different 
models will be presented to introduce examples of the 
various models. 

Figure2 is a graphical representation of the relationship 
of the software development life cycle to the 
system/hardware development life cycle. The model is 
representative of the “Waterfall,” or “Grand Design” life 
cycle. While this model is still being used in numerous 
projects, other models are more representative of the 
current software development schemes currently being 
followed, such as the “Spiral” and “Modified V” software 
development life cycles. It is important to recognize that 
the software development life cycle does not correlate 
exactly with the hardware (system) development life 
cycle. It “lags” behind the hardware development at the 
beginning but finishes before the hardware development 
is completed. It is also important to realize that specific 
design reviews for hardware usually lag behind those 
required for software.  

 

 
Figure 2. Relation between Software and Hardware 

Development Life Cycle 

A.  Grand Design, Waterfall Life Cycle Model 

The Waterfall software acquisition and development 
life cycle model is the oldest in terms of use by software 
developers. Grand Design places emphasis on up-front 
documentation during early development phases, but does 
not support modern development practices such as 
prototyping and automatic code generation. Another 
limitation to the model is that after a single pass through 
the model, the system is complete. Therefore, many 
integration problems are identified much too late in the 
development process to be corrected without significant 
cost and schedule impacts. In terms of software safety, 
interface issues must be identified and rectified as early 
as possible in the development life cycle to be adequately 
corrected and verified. Figure 3 is a representation of the 
Grand Design, or Waterfall, life cycle model. The 
Waterfall model is not recommended for large, software-
intensive, systems. This is due to the limitations stated 
above and the inability to effectively manage program 
risks, including safety risk during the software 
development process. The Grand Design does, however, 
provide a structured and well-disciplined method for 
software development. 
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Figure 3. Grand Design, Waterfall LIFE Cycle Model 

B.  Modified V Life Cycle Model 

The Modified V software acquisition life cycle model 
is another example of a defined method for software 
development. It is depicted in Figure 4. This model is 
heavily weighted in the ability to design, code, prototype, 
and test in increments of design maturity. The left side of 
the figure identifies the specification, design, and coding 
activities for developing software. It also indicates when 
the test specification and test design activities can start. 
For example, the system/acceptance tests can be specified 
and designed as soon as software requirements are 
known. The integration tests can be specified and 
designed as soon as the software design structures are 
known. And, the unit tests can be specified and designed 
as soon as the code units are prepared. The right side of 
the figure identifies when the evaluation activities occur 
that are involved with the execution and testing of the 
code at its various stages of evolution. 

Figure 4. V Life Cycle Model 

C.  Spiral Life cycle Model 

The Spiral acquisition life cycle model provides a risk-
reduction approach to the software development process. 
In the Spiral model, Figure 5, the radial distance is a 
measure of effort expended, while the angular distance 
represents progress made. It combines features of the 
Waterfall and the incremental prototype approaches to 

software development. Spiral development emphasizes 
evaluation of alternatives and risk assessment. These are 
addressed more thoroughly than with other strategies. A 
review at the end of each phase ensures commitment to 
the next phase or identifies the need to rework a phase if 
necessary. The advantages of Spiral development are its 
emphasis on procedures, such as risk analysis, and its 
adaptability to different development approaches.  

This model represents a “demonstration based” process 
that employs a top-down incremental approach that 
results in an early and continuous design and 
implementation validation. Advantages of this approach 
are that it is built from the top down, it supports partial 
implementation; the structure is automated, real and 
evolved; and that each level of development can be 
demonstrated. Each build and subsequent demonstration 
validates the process and the structure to the previous 
build. Hence, Spiral Life-cycle model is more appropriate 
for safety-critical systems design. 

 
Figure 5. Spiral Life Cycle Model 

V.  INTEGRATION 

The life cycle process of system development was 
instituted so managers would not be forced to make snap 
decisions. A structured life cycle, complete with controls, 
audits, reviews, and key decision points, provides a basis 
for sound decision making based on knowledge, 
experience, and training. It is a logical flow of events 
representing an orderly progression from a “user need” to 
finalize activation, deployment, and support. 

The elements contributing to a credible and successful 
software safety engineering program will include the 
following: 
� A defined and established system safety engineering 

process, 
� A structured and disciplined software development 

process, 
� An established hardware and software systems 

engineering process, 
� An established hardware/software configuration 

control process, and 
� An integrated SSS Team responsible for the 

identification, implementation, and verification of 
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safety-specific requirements in the design and code 
of the software. 

 

 

 

 

 

 

 

 

Figure 6. Software Safety Engineering Program 

VI. REDUNDANCY FOR FAULT-TOLERANT DESIGN 

Fault tolerant design, also known as fail-safe design, is 
a design that enables a system to continue operation, 
possibly at a reduced level (also known as graceful 
degradation), rather than failing completely, when some 
part of the system fails. The term is most commonly used 
to describe computer-based systems designed to continue 
more or less fully operational with, perhaps, a reduction 
in throughput or an increase in response time in the event 
of some partial failure. That is, the system as a whole is 
not stopped due to problems either in the hardware or the 
software. 

Redundancy is the duplication of critical components 
of a system with the intention of increasing reliability of 
the system, usually in the case of a backup or fail-safe. 

 

Figure 7. Redundancy in System 

A. Replication 

Replication is the process of sharing information so as 
to ensure consistency between redundant resources, such 
as software or hardware components, to improve 
reliability, fault-tolerance, or accessibility [4]. It could be 
data replication if the same data is stored on multiple 
storage devices, or computation replication if the same 
computing task is executed many times. A computational 
task is typically replicated in space, i.e. executed on 
separate devices, or it could be replicated in time, if it is 
executed repeatedly on a single device. 

A lockstep fault-tolerant machine uses replicated 
elements operating in parallel. At any time, all the 
replications of each element should be in the same state. 
The same inputs are provided to each replication, and the 
same outputs are expected. The outputs of the replications 
are compared using a voting circuit. A machine with two 
replications of each element is termed dual modular 
redundant (DMR). The voting circuit can then only detect 
a mismatch and recovery relies on other methods. 

In many safety-critical systems, some parts of the 
control system are triplicated, which is formally termed 
triple modular redundancy (TMR). A machine with three 
replications of each element is termed triple modular 
redundant (TMR). The voting circuit can determine 
which replication is in error when a two-to-one vote is 
observed. In this case, the voting circuit can output the 
correct result, and discard the erroneous version. After 
this, the internal state of the erroneous replication is 
assumed to be different from that of the other two, and 
the voting circuit can switch to a DMR mode. This model 
can be applied to any larger number of replications.  

VII. TESTING, VERIFICATION AND VALIDATION 

Systems are called safety-critical if their malfunction 
represents a severe threat to human lives or to the 
environment. Following Laprie’s terminology[3], 
dependability is the capability of a system to deliver the 
specified application services during its period of 
operation. Laprie identified four attributes which 
characterise the dependability of a system:  
(1) A safe system cannot assume states that are regarded 

as “catastrophic” from the point of view of the 
application. This means that the system will only 
perform transitions into states satisfying the specified 
invariants, perform calculations that are correct with 
respect to the specification and output data fulfilling 
the desired integrity constraints. Safety does not 
guarantee that a desired calculation and the 
corresponding output will always be produced. This 
aspect is covered by the following two attributes: 

(2) Reliability is a characteristic specifying the 
probability that a system will deliver its service for a 
given period of time.  

(3) Availability is a measure reflecting the probability 
that the system will be available at a certain point in 
time.  

(4) Finally, Security reflects the capability of the system 
to protect the application against damage arising 
from accidental or malicious human interaction.  

Design, execution and evaluation of tests for safety-
critical systems require considerable effort and skill and 
consume a large part of today’s development costs. Due 
to the growing complexity of control systems it has to be 
expected that their trustworthy test will become 
unmanageable in the future if only conventional 
techniques requiring a high degree of human interaction 
during the test process are applied. For these reasons 
methods and tools helping to automate the test process 
gather wide interest both in industry and research 
communities.
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CONCLUSIONS

This paper tried to touch the fundamental points to be 
taken care while designing a safety-critical real time system. 
With the advent growth in technology and tools in future 
the designers can eliminate most of the hazards at design 
stage itself, and improve the system reliability and safety, if 
understand these concepts. 
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