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Abstract: Machine Learning (ML) is the fundamental 
learning paradigm in the scientific community having a wide 
range of applications in vivid domains. The 
hidden underlying patterns in data can be easily identified with 
use of popular ML algorithms. The meaningful pattern 
provides insight information extracted from the data. In so 
doing, human incapability hinders the process of recognising 
meaningful patterns in the given data sets. Such fine exemplary 
thoughts are given to machines with suitable algorithms and it 
can detect not only the finer patterns, but also provides
meaningfulness of data spread in the domain. The area of ML 
is a blend of mathematics, probability, statistics and allied 
sciences in an articulated way and thus endows the ability to 

and adapt”. A generalized Gradient Descent (GD) based 
model is proposed which can be implemented on any dataset. 
The model is tested to forecast a student admission on his 
(her) GRE score. Proposed model reflects good accuracy and 
the Pearson Correlation coefficient suggests the pertinent 
relationship among different attributes. The model also focuses 
the underlying mathematical derivation to a minimum to 
comprehend.

Index Terms: Linear Regression, Gradient Descent, RMS 
Error, MSE, ERM, Pearson Correlation 

I. INTRODUCTION

Linear regression finds a relationship between a dependent 
variable for a given set of independent variables also 
known as a relationship involving explanatory variables and 
some real estimated outcome. The traditional straight-line
equation y = m x + b ; is y

with bias matrix and the domain X consists d

and the label set y Y is the set of real numbers for a given  
d [1]. A linear function h : d that suitably estimates
the relationship between given variables for instance, 
predicting probability of getting the admission as a function 
of GRE score. [2] This, when combined with standard GD
mechanism, can provide a fairly good idea how the blending 
works in ML for a given application domain and the 
generalized model is shown in Figure 1.  

Figure 1.  A Generic ML GD model framework

A. Linear Regression
A linear regressor is basically the set of linear functions

[2]:

{ , : ,d
reg dH L x w x b w R b R,,,,,         (1)

Here Hreg is a regression function; x is input space, and b
as bias. Intuitively, to lessen the difference between actual 
and expected values, [3] we define a loss function 
calculating the discrepancy of values while using a
regressor, in Figure 2. The most generally used squared-loss 
function is given by:

    l (h, (x, y)) = (h(x) - y) 2                                                                      (2)

             Figure 2. Linear regression showing variables.
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For the observed values, the loss is usually calculated as 
Mean Squared Error (MSE):

2           (3)

[4] where the meaning of all the symbols used are intuitive. 
Such an algorithm solves the expected risk minimization 
(ERM) problem for linear regression predictors.

[5] The solution to this equation is to find the derivative,
i.e., gradient of the objective function and compare it to 
zero:

II. GRADIENT

          [6] A gradient is a vector generalization of the derivative 
and we need to calculate its minimum value and moreover, a 
derivative is a scalar valued. . To be precise, a derivative is 
defined for functions having a single variable; on the other 
hand, a function with a number of variables, the gradient 
definition is a better and intuitive option, as depicted in 
Figure 3.   

[7] More formally, for a given training set S and using 
homogenous description for  Ld the class of problem 
towards ERM calculations is to find 

argminLs (hw) = i) - yi)2

This can be simplified in matrix notation form as 

             Aw = b where

In other words, in the matrix notation form as:

The solution to the ERM problem is w = A -1 b when A is 
invertible.

                           

[8] The slope represents the gradient of a graph and directs 
towards increase or decrease in that direction. To optimize 
for minimum value, the first-order derivative helps us 
achieve these using iterations. In order to locate a local 
minimum using GD optimization, we step proportionally
towards negative of the gradient of the function at the 
current point. [9] On the other hand, when we undertake the 
steps that are proportional to the estimated gradient, it is 
termed as gradient ascent [10]. These prevailing methods are 
robust in use and have found many applications in various 
domains as the next section highlights those aspects. 

III. GRADIENT DESCENT MODEL

The gradient based method has always been attractive due 
to its simplicity and robustness in optimization scenarios [1]. 
For a given machine learning algorithm, a MSE cost (loss) 
function can evaluate the parameters of the learning model 
with weights updates. The main focus is to find the set of 
parameters, i.e., weights which minimize the loss function.  
[11] This can provide a clue towards reaching local optima.
We repeat this process (known as an epoch) until we reach 
near a valley point, as depicted in Figure 4 where J(w) is a 
loss unction for the For more on this, one 
can refer to [1].

Figure 4. Cost (Loss) function

Figure 3.   A Gradient vector 
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IV. PEARSON CORRELATION COEFFICIENT (PCC)1

In order to find the relationship between the variables, we 
use the metric of measure as Pearson coefficient which 

strong
or weak or none we can infer relationships depending 
upon the value as depicted in Figure 5.

                                                 

Figure 5(a) r = -1; A perfect negative relationship

           Figure 5 (b). r= 0                           Figure 5 (c) .    r = +1
           No coorelation                           A perfect positive relashion

The scatter plots 
relationships meaning that in a negative correlation as one 
variable increases, the other variable decreases; and on other 
hand, a positive correlation shows that both the variables
increase or decrease together.

V. FRAMEWORK

The gradient descent method offers some interesting 
challenges with good convergence speed, as:

(i) Selecting an optimal value of learning rate is many 
times not obvious a smaller value leads to slower 
convergence whereas a bigger value hinders convergence 
and causes the loss function to fluctuate around the 
minimum or even tends to diverge.

(ii) Following the Occam Razor principle in the proposed 
method, simply start from a lower value and keep judging 
the accuracy trend and a suggested way would be to keep 

trying with a learning rate schedule, so that reproducibility 
of the algorithm is guaranteed.  The schedules are to be 
defined in advance and are sometimes unable to adapt to a 
dataset's characteristics. This is the preferred way 
implemented in the work. 

(iii) Further, the same learning rate applies to all parameter 
updates. If the data is sparse with features having different 
frequencies, it would be wise not to update all of them to the 
same extent but perform a larger update for rarely occurring 
features. This adaptivity works well with sparsity of data.
(iv) Most challenging task is to avoid non-convex error 

functions getting trapped into their numerous local minima 
sub-optimally as this difficulty arises not from local 
minima but from saddle points where one dimension slopes 

makes the algorithm hard to escape as the gradient is 
becoming close to zero in all dimensions.

                 VI. IMPLEMENTATION 

The test case implements GD in order to minimize a cost 
function J (w) parameterized by a model parameter. The 
gradient (derivative) shows the incline or slope of the cost 
function. Hence, to minimize the cost function, we move in 
the direction opposite to the gradient [12].

For a given dataset from Kaggle web site, predicting 
graduate admission process using GD technique.

The dataset contains several parameters which are 
considered important during the application for Masters 
Programs.

The parameters included are:

GRE Scores (out of 340)
TOEFL Scores (out of 120)
University Rating (out of 5)
Statement of Purpose and Letter of 
Recommendation Strength (out of 5)
Undergraduate GPA (out of 10)
Research Experience (either 0 or 1)
Chance of Admit (ranging from 0 to 1)

STEPS:
Import the csv file from Kaggle 
((https://www.kaggle.com/datasets/mohansacharya/
graduate-
admissions?select=Admission_Predict_Ver1.1.csv)
Pre-process data and remove missing or null 

values.
Apply gradient descent algorithm.
Analyse algorithm performance using metrics.

The data set file used is available from Kaggle website and 
read into the Python environment and using appropriate 
commands, it shows all the columns under the heading.  The 
corresponding box plot depicts the minimum, average and 
maximum GRE Score for the admission criterion along with 
a chance of admission.

Independent variable 
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Pseudo code for Gradient Descent Model

Towards this process, the Pearson coefficient method is 
being applied to know about those attributes having strong 
and weak relationship, thus profiling the user about the 
anticipated chances. 

Finally, a min-max scaling is applied on the data to 
reveal the chances of admission. 
This implementation is an extension of the standard 
gradient method making it quite obvious about the results 

to interpret and thus augmenting the process of knowing 
the chances.  For instance, doing research and making a 
publication with a professor stands a higher chance, and 
so are the other factors too. The following screenshots 
depict various plots. The curve fitted emphasizing the 
admission process.  The relationship plot shows various 
intriguing parameters and their relative values. 

Steps:

Initialize weights w at random

compute gradients G =
w

J(w) of loss function wrt parameters, i.e., G
i
= i

Update weights proportional to G, i.e.

w = w G

until J(w) stops reducing or other pre-defined termination criteria is met.
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OUTPUT
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VII. CONCLUSIONS

The GD model has been implemented in the work on the 
principle of Occam Razor: simplest things which work first,
are better The model takes gradient based approach to fit 
the regressor on Kaggle2 dataset and it can be best suited on 
any linearly predictable scenario.  It captures the parameters 
which play the critical role for a chances for 
admission process as it reveals the internal relationship 
amongst parameters. Further, the model is able to predict the 
outcome as a percentage of the chance of a GRE score. The 

underlying parameters- as it is evident from the program run 
and various plots. As the linear regressor is one of the most 
suitable models fit for such type of data, there are 
improvements also possible-like using Stochastic GD for 
better performance and efficiency with a niche fit. Moreover, 
the model can further be extended to undertake features of 
multiple dependencies as well by way of looking at the 
extracted features of the data set and fitting it intuitively.
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