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Abstract—Wireless Senor Networks (WSN) are coming of in 
age and are being installed in many applications. Some of 
the common monitoring applications are seismic, volcano 
eruption, tsunami, structural, intruder detection, health, 
habitat etc. Most of these applications of WSN are event 
driven wherein the system should be able to sense an 
occurrence of an event at an unknown future instant of time 
when it occurs. If the WSN system fails to detect the event at 
the time of occurrence the entire deployment of WSN fails 
to achieve its purpose. WSN has a specified life time and 
therefore in order to continue the operation of monitoring; 
it is essential to know the operational life period of WSN 
system. Knowledge of this will help in scheduling and 
planning the required redeployment. WSNs are highly 
resource constrained systems and most of the research in 
the WSN has been carried out to improve the performance 
under high resource constraints. The estimation of useful 
life of Wireless Sensor Network can be carried out by 
preparing a fault model of the WSN system. The system 
fault model can be used to predict the system survivability. 
The paper discuses the WSN fault model.  
 
Index Terms—Wireless Sensor Networks, Quality of Service, 
Fault model  

I.  INTRODUCTION 

As the Internet has revolutionized our life via the 
exchange of diverse forms of information readily among 
a large number of users, Wireless Sensor Networks 
(WSNs) is expected to revolutionize to provide “ambient 
intelligence” where many different devices will gather 
and process information from many different sources to 
both control physical processes and to interact with 
human users. WSNs will also be equally significant by 
providing information regarding the physical phenomena 
of interest and ultimately being able to detect and control 
them or enable us to construct more accurate models of 
the physical world. With the recent advances in the Micro 
electromechanical Systems (MEMS) Technology, sensors 
are becoming smaller and affordable. More and more 
applications are being introduced using WSNs to monitor 
environment, industrial process, battlefield, seismic, 
health, habitat etc.  

While a lot of research has been done on some 
important aspects of WSNs such as architecture and 
protocol design, energy conservation, routing, 
localization etc.; not much work has been carried out to 
generate a system model for WSN and thus estimate the 
survivability of the WSN system. This is mainly because 
WSNs are very different from traditional networks. In the 
Internet, the network and transport layer protocols 
ensures end-to-end reliability where as in the case of 

WSNs this will not be optimal because of the unique 
constraints like energy, memory, computational power 
etc. Further sensor networks as a whole has a specific 
task to be carried out depending upon the application and 
therefore the WSN system models will be application 
specific. These models then can be utilized to carry out 
various performance evaluations.  

 

 

 

 

 

 

 

 

 
Figure 1 shows a classification of remarkable papers 

on WSNs, published on several leading IEEE and ACM 
journals and conference proceedings [1]. As one could 
expect, our study evidences that the 67% of the research 
efforts have been carried into routing protocols (29%), 
MAC protocols (14%), localization strategies (13%), and 
energy efficiency (11%). Only the 5% of the considered 
literature is related to WSNs reliability issues, and none 
of them explicitly addresses fault forecasting issues. The 
reliability of wireless networks has been addressed 
primarily in the context of quality of service (QoS). The 
main considerations have been routing and the overhead 
taking care of energy consumption and broken 
communication paths. However, a survey of literature 
shows that hardly any attempt has been made to estimate 
whether the WSN, as a system will be able to detect an 
event if it occurs within a specified period of time, if so 
with what confidence level. 

In order to study and address Quality of Service (QoS) 
issues in service-oriented systems, we need a model of 
the system in question. Such a system-model allows us to 
study important properties of the system. Systems can be 
modelled at various levels of abstraction, ranging from 
abstract mathematical frameworks such as stochastic 
processes or queuing networks to system testbeds, i.e. 
physical systems equipped with measurement and 
experimentation infrastructure. 

 
Figure 1. Classification of areas of research in WSN 
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Ideally, models at different abstraction levels should 
be used, as different models can often complement each 
other. A queuing-network model of a system, for 
instance, may be used to efficiently study a large space of 
parameters, and thereby arrive at general conclusions. A 
testbed-model of the same system, in contrast, enables 
measurements under realistic conditions, which serve to 
validate the more abstract model, and to improve the 
quality of the conclusions by providing realistic model 
parameters. 

Irrespective of their abstraction level, all system-
models allow us to study properties of the system. When 
studying QoS issues we are particularly interested in the 
behaviour of the system under various common faults or 
disturbances. For instance, in a queuing-network model 
we may compute job completion times, while in a testbed 
we may measure response-times. Fault-models are 
considered as parameters to a system model that 
influence the modelled system’s QoS. 

In order to use a system-model to study the effect of 
faults on a system, we must be able to introduce models 
for these faults into the system-model. Since with some 
model classes the system-model may change significantly 
when a model for a fault is introduced into it; we required 
to obtain the same measures with the same interpretation 
from the system-model, regardless of the employed fault-
model. That is, using the terminology of functional and 
non functional behaviour, we require that the system-
model maintains the same functional behaviour and the 
same system structure when we change the fault-model. 
This clear distinction between the fault-model and the 
system-model is common in fault-injection experiments 
for dependability benchmarking, where one explicitly 
describes a fault-load that the system is subjected to.   

Fault Models: Many different types of faults have been 
defined, some having orthogonal properties [2]. For 
example, failstop behavior implies that the faulty system 
ceases operation and alerts other processors of this fault. 
Crash faults, on the other hand, assume that the system 
fails and looses all of its internal state, e.g. the processor 
is simply down. One speaks of omission faults when 
values are not delivered or sent, e.g., due to a 
communication problem. If outputs are produced in an 
untimely fashion, then one speaks of a timing fault. 
Transient faults imply temporary faults, e.g. glitches, 
with fault free behavior thereafter. If transient faults 
occur frequently, one speaks of intermittent faults. This 
set of fault types is by no means complete and serves 
only as a basic introduction. The definition of faults 
seems to change with the application domain. For 
instance, fault models suitable for computer 
dependability may not necessarily match the behavior of 
network and computer security applications.  

The behavior of the faults with respect to other 
processors can be described in simpler models which 
have been used with in replication and agreement 
algorithms. Specifically, fault models have been 
considered whose main behavior types are benign, i.e., 
globally diagnosable, symmetric (faulty values are seen 
equal by all non-fault processes) and asymmetric or 

malicious, i.e., there are no assumptions on the fault 
behavior [3].  

The faults are generally divided into following three 
types: 

Bernoulli Trials: Fault is described as a Bernoulli-
distributed random variable. That is, the occurrence of the 
fault is defined by a probability p. The typical examples 
for this type are fault-models that reflect service 
availability/unavailability,  

General Random Variables: Fault occurrence in this 
case is described by a random variable with a distribution 
that is more general than Bernoulli. The distribution is 
described by a distribution function (cumulative 
distribution function, CDF), a complementary CDF 
(CCDF) or a probability density function (PDF). 

Stochastic Processes: A stochastic fault is a fault 
whose occurrence or non-occurrence is predicted by one 
or more random variables. It is not possible to show the 
occurrence or non-occurrence of a stochastic fault by a 
logical argument based on the design of the component. 
That is, we cannot apply fault prevention. What we can 
do with a stochastic fault is apply the laws of 
mathematical probability to predict its likelihood.  

II.  FAILURES IN WIRELESS SENOR NETWORKS 

Wireless sensors Network may have many nodes 
deployed with each node having different sensors. Each 
service running on node is expected to periodically send 
the measurements of its sensors to an access point. If the 
camera in one of the sensor node stops scanning and if 
the node has not been designed to detect it and overcome 
the situation; it has reached an erroneous state.  The 
sensor node thus not able to send the accurate data to the 
access point causing a failure at the node as observed 
from the access point. Here the defect in the camera is a 
fault, the nonavailability of scanning is the incorrect state 
and Access point observing the stationary camera is the 
failure.  

Sources of Faults in WSNs: Data delivery in sensor 
networks is inherently faulty and unpredictable. Failures 
in wireless sensor networks can occur for various reasons 
[4].  
1. Sensor nodes are fragile, and they may fail due to 

depletion of batteries or destruction by an external 
event. In addition, nodes may capture and 
communicate incorrect readings because of 
environmental influence on their sensing 
components.  

2. As in any ad hoc wireless networks, links are failure-
prone, causing network partitions and dynamic 
changes in network topology. Links may fail when 
permanently or temporarily blocked by an external 
object or environmental condition. Packets may be 
corrupted due to the erroneous nature of 
communication. In addition, when nodes are 
embedded or carried by mobile objects, nodes can be 
taken out of the range of communication.  

3. Congestion may lead to packet loss. Congestion may 
occur due to a large number of nodes’ simultaneous 
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transition from a power-saving state to an active 
transmission state in response to an event-of-interest. 

4. Faults also occur because of the multihop nature and 
mobility of the nodes which can cause link failures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Faults in Wireless Sensor Networks can occur at 
several protocol layers of the system. Effect of the fault 
in a particular layer can propagate to other layers in the 
system. Faults normally propagate from the nodes 
through the network to the sink. The figure 2 shows how 
the fault propagates through various protocol layers and 
components. It can be seen that in a sensor node; the 
sensors, processor (CPU), memory,  Network interface, 
battery, enclosure for the node all of them can initiate a 
fault. Another source of faults in sensor node is software 
programmes that carry out routing, data acquisition, 
Medium Access Control etc. In the network layer the 
faults can be due to parameter variations in link, path, 
environment, location, etc.   

Power management in wireless networks is an 
essential factor for their smooth function. Wireless nodes, 
especially sensors, use small batteries for energy supplies 
that in many cases cannot be replaced. Therefore, energy 
conservation is a vital factor in a sustained network 
lifetime. 

The battery: lifetime determines how long one can use 
a device. Battery modeling can help to predict, and 
possibly extend this lifetime. Battery models are 
combined with a workload model to create a more 
powerful battery model. WSN devices rely on battery 
energy to work. The energy stored in these batteries is 
limited. So, it is important to use this energy as efficiently 
as possible, to extend the battery lifetime. The lifetime of 
the battery as the time one can use the battery before it is 
empty. Note that, for rechargeable batteries, this is not the 
same as the time one can use the battery before it stops 
working properly. 

The battery lifetime mainly depends on the rate of 
energy consumption of the device. However, lowering 
the average consumption rate is not the only way to 

increase battery lifetime. Due to nonlinear physical 
effects in the battery, the lifetime also depends on the 
usage pattern. During periods of high energy 
consumption the effective battery capacity degrades, and 
therefore the lifetime will be shortened. However, during 
periods without energy consumption the battery can 
recover some of its lost capacity, and the lifetime will be 
lengthened. 

Energy consumption of wireless devices has been 
studied using performance models. These models 
describe the various states a device can be in, and the 
energy consumption rate in these states. However, 
typically these models only take the energy consumption 
into account and do not deal with the effects of the usage 
pattern on the battery lifetime. To be able to do this we 
have to extend the model, by combining it with a battery 
model. 

In stochastic models of the battery it is described in an 
abstract manner where the discharging and the recovery 
effect are described as stochastic processes. 

III.  FAULT SCENARIOS IN WIRELESS SENOR NETWORKS 

The node faults can be classified into two types: 
permanent and potential. The permanent fault completely 
disconnects the sensor node from other nodes and brings 
eternal impact on the network performance like in the 
case of hardware faults within a component of a sensor 
node. A permanent fault once activated remains effective 
until it is detected and handled. The impact of this failure 
is usually measured when assessing the network 
performance. On the other hand, a potential fault usually 
results from the depletion of node hardware resource, i.e. 
battery energy. Such fault might cause the node sudden 
death, and eventually threaten the network life time. 
When the battery depleted, a node is useless and cannot 
share in sensing or data dissemination. Potential failure 
can be detected and treated before it causes the sudden 
death of a node e.g. sensor node with low residual energy 
can be send to sleep mode before it completely shuts 
down and disrupt network operation. Faults can be 
further classified into: node level fault and network level 
fault. Node level fault represents the potential and 
permanent failure of a node while “network level” 
describes the network faults caused by either potential or 
permanent failure of one or a set of sensor nodes. These 
are shown in figure 3. 

Individual node level fault usually results from: 
application software misbehaviour, hardware failure and 
external impact of harsh environmental conditions (direct 
contact with water causing short circuit, node crash by a 
falling tree etc). The network level faults are as a result of 
either the potential or permanent failure, and are usually 
related to the network connectivity, and sensor coverage 
rate.

 
 

 
 

 

 

Figure 2. Fault propagation in WSN 
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Figure 3. WSN Fault scenario 
 

Nodes measure some physical quantities close-by them 
and transmit the information to the base station. Nodes 
can both transmit and receive information. The final 
target of the information transmitted by nodes is the base 
station.  

IV.  MODELLING TOOLS 

Performance and dependability modeling is an integral 
part of the design process of many computer and 
communication systems. A variety of techniques have 
been developed to address different issues of modeling. 
For example, combinatorial models were developed to 
assess reliability and availability under strong 
independence assumptions; queuing networks were 
developed to assess system performance; and Markov 
process-based approaches have become popular for 
evaluating performance with synchronization or 
dependability without independence assumptions. 
Finally, simulation has been used extensively when other 
methods fail. 

In order to harness full strength of any software 
modeling tool to solve for measures of interest of 
stochastic discrete event one must first understand what 
the modeling process is. That is once specification of the 
real system is known; one must know how to specify the 
model in a particular formalism. That requires knowledge 
of both the system to be modeled and also the formalism 
in which the system is to be specified. Petri nets are 
widely used to model and analyze the system behavior 
which provides graphical representation of the system 
state changes. The modeling requires knowledge of  
probability measure, conditional probability, continuous 
random variables, discrete random variables, PDF 
(probability density function), CDF (cumulative density 
function), Stochastic processes, including Markov 
processes, continuous time Markov chains (CTMC), 
discrete time Markov chains (DTMC), state transition 
rate matrices, generator matrices etc.  

As solving models became more and more complex; 
different formalisms (or formal languages for expressing 
models) were also developed. Each of this formalism has 
its own merits. Some formalisms afford very efficient 
solution methods; like BCMP [5] queuing networks 
admit product-form solutions, Other formalisms, such as 
Stochastic Petri Networks (SPN) were developed provide 

a simple elegance in their modeling primitives, while 
superposed generalized stochastic Petri nets (SGSPNs) 
and colored GSPNs (CGSPNs) [6] yield state-space 
reductions. A number of extensions, such as stochastic 
activity networks (SANs) [7], were developed for 
compactly expressing complex behaviors.  

Along with formalisms, modeling tools also have been 
developed. A tool is generally built around a single 
formalism and one or more solution techniques, with 
simulation sometimes available as a second solution 
method. Some of the tools developed are DyQN-Tool+  
which uses dynamic queuing networks as its high-level 
formalism; GreatSPN which is based on GSPNs, 
UltraSAN, which is based on SANs, TANGRAM-II, 
which is an object- and message-based formalism for 
evaluating computer and communication systems. While 
all of these tools are useful within the domains for which 
they were intended, they are limited in that all parts of a 
model must be built in the single formalism that is 
supported by the tool. Thus, it is difficult to model 
systems that cross different domains and would benefit 
from multiple modeling techniques [8]. 

Performance and dependability modeling software 
tools have become increasingly powerful in recent years. 
Engineers have the ability to model increasingly complex 
systems using only a moderate amount of computing 
resources. However, despite the technological advances 
in system modeling, there remain several obstacles 
hindering the prediction of system behavior. Two facts 
contribute to these obstacles: the fact that system models 
have grown in both scale and intricacy of detail, and the 
fact that modeling software tools do not provide the 
appropriate feedback to the engineer during the design 
process.  

As system models become more elaborate, the number 
of variables that can be parameterized increases rapidly. 
Difficulties arise from having such a large number of 
model parameters. The main problem with modeling 
large systems is in deciding how to make the best use of 
the computing resources available. The first step in 
optimizing use of available resources is reducing the 
number of model parameters to vary. Varying model 
parameters that do not contribute to the reward variables 
being measured wastes experimentation time.  Selection 
of the parameters to vary requires detailed knowledge of 
the underlying model, and often relies on the designer’s 
intuition and experience with similar systems. Another 
way to optimize use of computing resources is to reduce 
the number of values assigned to the model parameters. 
Increasing the number of values for a particular model 
parameter requires more experiments if all values are to 
be tested. If there are several parameters being varied, 
then the number of experiments needed to test each 
combination can grow to an unmanageable number. The 
engineer should focus on a range of parameter values 
over which the reward variables are expected to change 
significantly. Again, the art of modeling requires detailed 
knowledge of the model, which is best gained from 
previous experience. Unfortunately, software tools cannot 
automatically grant an engineer intuition, but they can 
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provide valuable information that, over time, can be used 
to develop a knowledge base useful for solving future 
problems. 

The second problem contributing to the engineer’s 
difficulty with efficiently predicting system behavior is 
the fact that today’s modeling tools do not provide the 
engineer with the necessary feedback during the design 
process. The design space consists of all possible system 
configurations. Each configuration consists of unique 
values assigned to each system parameter. The 
experimentation process is often iterative, consisting of 
several sets of experimental runs, each producing results 
requiring analysis. This process ends when the desired 
system configuration is obtained.  

In general, it is desirable to minimize the amount of 
experimentation time needed to determine the desired 
configuration. After running a set of experiments, the 
engineer may find that the results do not meet the desired 
specification. Further experimentation is necessary to 
find which model parameter values are acceptable. It 
would be useful if the modeling software could analyze 
the results and provide information suggesting which 
parameter values to choose for future runs. This iterative 
feedback would help the engineer to efficiently arrive at a 
desired model configuration. Without such feedback, the 
engineer may incorrectly guess which values cause the 
model to converge to the desired specification, resulting 
in a waste of experimentation time. The feedback 
obtained during this efficient navigation of the design 
space can also be used to reveal less expensive model 
configurations that meet the specifications, rather than 
exceed them. 

CONCLUSIONS 

  The paper has brought out various issues concerned 
with the system modeling with special reference to 
wireless sensor networks. The system modeling is 
essentially required for the estimation of the survivability 
of mission critical applications. It can be seen that a 
modeling engineer not only need to have in depth 
knowledge of the system under consideration but also 
very good understanding of statistical and probability 
measures. The modeling normally uses stochastic 
processes, including Markov processes, continuous time 
Markov chains (CTMC), discrete time Markov chains 
(DTMC), state transition rate matrices, generator matrices 
etc. Once a satisfactory model of the system is arrived at 
it is to be verified with test bed or other statistical data 
and accordingly the system model is modified till a final 
system model is arrived at.   
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