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Abstract: In the database-as-a-service model, a service 
provider hosts the clients’ data and allows access to the data 
through the Internet. Database-as-a-service model offers 
considerable benefits to organizations with data management 
needs by allowing them to outsource their data management 
infrastructures. Yet, the model introduces many significant 
challenges, that of data privacy and security. Ensuring the 
integrity of the database, which is hosted by a service provider, 
is a critical and challenging problem in this context. We 
propose a novel Query Result Integrity Guarantee (QRIG) 
scheme over encrypted databases, which allow a database 
enquirer to verify that their queries were faithfully executed by 
the server. The experimental results obtained in this paper 
show the performance of proposed scheme. 

Index Terms: data integrity, query result, database, 
encryption, security 

I. INTRODUCTION  

Nowadays outsourced IT services have become very 
popular. Users no longer need to be concerned about 
providing infrastructure or scaling up software for their 
computation. With the advent of outsourced IT services like 
cloud computing any required infrastructure, software or 
services can be provided to users by third persons. Users can 
speed up their computation based on the load by boosting 
the software without the rise in cost, because using 1000 
hours of a server does not cost more than using 1000 servers 
for an hour [1]. Mobility is the other advantage of cloud 
computing. Users can run their computation by logging into 
their account in cloud via their cell phones on their way to 
work. Cloud computing also reduces cost for users. Users 
will pay for the services that they receive during the service 
time. The other costs like software (in our case database 
licensing costs), hardware and maintenance are associated 
with service providers which makes cloud computing more 
attractive for users [2]. Although outsourced IT services and 
cloud computing are desirable for users but there is a 
concern that prevents most of users from using these 
services. Security is the main concern that stops users to 
delegate their computation to the cloud. Users want to 
ensure that services provided by third party are secure and 
trusted. Recent study on 500 IT administrators and IT 
managers in 17 countries revealed that 80% of them tend to 
use existing internal systems rather than using cloud 
infrastructures. The fear of losing control over protecting 
data was the main reason for them to stay with existing 
internal systems [3].  

In this paper we focus on providing security for the 
outsourced database. Outsourced database security has two 
aspects: privacy and data integrity. Privacy in databases 
were studied in many research works and different 
approaches have been presented [4][5]. Data integrity 
recently became an interesting challenge for researchers. 
Data integrity can be provided at different levels of 
granularity. In principle, integrity checks can be at the level 
of a table, a column, a row (a record or a tuple of the table), 
or an individual attribute value. Providing integrity checks at 
the table (or column) level implies that the entire data 
pertaining to that table (or column) should be returned in the 
query reply for the client to verify the integrity of the query 
response. This is clearly impractical as it requires 
transferring large amounts of data to the client. Hence, we 
do not consider this to be a viable approach. On the other 
hand, computing integrity checks at the level of individual 
attribute values yields a very large number of signatures 
which is very expensive for the signer (owner) in terms of 
computation as well as for the server in terms of storage.  

Therefore, the optimal choice is to provide integrity at the 
record level. This enables the server to return in response to 
a query any set of matching records along with their 
respective integrity checks. Of course, computing integrity 
checks over the entire record, as opposed to individual 
attributes, inferred that the smallest unit of data returned as a 
query reply is an entire record, even when the querying 
client is only interested in a single field. 

Query result integrity has three aspects: Correctness, 
Completeness and Freshness. Correctness means that the 
results returned by server must be genuine records. Genuine 
records are those records that exist in original database and 
have not been modified by server. Completeness means that 
returned records are the results of executing the query over 
the entire database and all the possible records that satisfy 
the query are included. Freshness means that query result 
contains the records based on executing the query over the 
most updated database. In this paper, we propose a novel 
Query Result Integrity Guarantee (QRIG) scheme for 
verifying integrity of query processing over encrypted 
databases and to satisfy the three aspects of query result 
integrity: correctness, completeness, and freshness. 

In this paper, we consider insert, delete, and update 
queries and the standard SQL queries involving SELECT 
clauses such as equality, range, join and aggregate queries. 
This paper focuses on providing correctness and freshness 
of query replies returned by the server. A related, and 

1



E-ISSN 2581 – 7957        CVR Journal of Science and Technology, Volume 22, June 2022 
    P-ISSN 2277 – 3916               DOI: 10.32377/cvrjst2201 

equally important, issue is the completeness of query replies. 
Although we consider it debatable whether completeness is a 
security concern, we acknowledge that it poses a challenge 
which needs to be addressed in the outsourced databases. 
However, we consider completeness of query only with 
respect to SCOPE scheme [32], in which any sensitive 
column is encrypted and stored at trusted proxy. 

The remaining part of this paper is structured as 
following. Section II describes the related work. Section 
I I I  describes the proposed system model. Section I V  
describes the proposed scheme in detail. In Section V the 
results of experiments are summarized, and our conclusions 
are presented in Section VI. 

II. RELATED WORK

The problem of assuring query integrity in the context of 
outsourced data was fundamentally related to the concept of 
certified data structures [27], which presents some results 
that are conceptually important but not efficient. The state-
of-the-art solutions to query integrity are due to [13][23], 
which are the only solutions that support selection, 
projection and join queries simultaneously. These two 
solutions follow two respective approaches to the query 
integrity problem. 

The tree-based approach: Basically, this approach uses 
the Merkle hash tree [15] or its variants to index search keys 
[11][17][13][7][16][31][20][21]. As a result, this approach 
leads to logarithmic complexity in terms of both 
communication and verification, possibly with some further 
tricks (e.g., using the Merkle hash tree to maintain 
signatures at multiple hash tree levels [11]). The best 
solution in this approach is due to [13], which uses the 
Merkle B-tree and the Embedded Merkle B-tree to reduce 
I/O operations. 

The signature-based approach: Basically, this approach 
uses the signature aggregation technique [5][18] to 
aggregate the validity of query answers [18][19][23][22]. As 
a result, this approach can lead to low (even constant) 
communication complexity but may require special 
treatment for handling more powerful (e.g., projection) 
queries and often leads to large storage and computational 
complexities. The best solution in this approach is due to 
[23], which uses aggregate signatures to sign each attribute 
and returns a single signature as the validity proof for 
projection queries. This solution uses a chaining signing 
technique to build the index for the search key to facilitate 
range queries and publishes a certified bitmap corresponding 
to every update to facilitate dynamic updates. These cause a 
large storage and communication overhead while including 
many enfolding and pairing operations. 

There are studies that are somewhat related to the theme 
of the present paper as well [33][34][35]. These include 
authenticating the answers to set operations using 
accumulator [25], authenticating the answers to aggregate 
queries using authenticated prefix-sums trees [14], 
authenticating the answers to join queries [30], 
authenticating count queries with respect to multi-
dimensional data while preserving privacy [29], and 
assuring probabilistic integrity in selection and join 

operations [28]. Query integrity is also somewhat related to 
outsourced verifiable computation [1][6][10].   

III. SYSTEM MODEL

The proposed system model is shown in Fig. 1 in which 
the trusted proxy hosts the creation and management of the 
encrypted database. All tenant database users can submit SQL 
queries directly to the encrypted cloud database. The whole 
tenant organization data is stored in an encrypted form in 
the cloud database. By using SQL-aware encryption 
schemes, the cloud database server can process user’s 
SQL queries on encrypted data without decryption. The key 
management module at proxy handles generation, derivation, and 
revocation of cryptographic keys. 

The trusted proxy has four significant responsibilities: 
1. Key Management: The trusted proxy generates and

manages the keys required to decrypt the data.
2. Query Rewrite: The queries written by the user contain

plain text. Therefore, the plain text in the query has to be
encrypted by the trusted proxy. Moreover, depending on
the encryption scheme used to encrypt the data in the
cloud, the queries written by the user might need to be
restructured using metadata information.

3. Decryption and Post-Processing: Depending on the
encryption scheme, the trusted proxy needs to decrypt and
possibly post-process the encrypted query results.

4. Verify query result integrity: Proxy authenticates the
origin and verifies the integrity of data returned by the
service provider in response to a posed query.
The system model works as follows: The Trusted Proxy

(TP) translates the tenant organization’s access control policies 
into an access control matrix. TP distributes unique secret 
keys to the users at the creation of their accounts according 
to the access control matrix. These keys enable the users to 
access all and only the subsets of encrypted tenant data on 
which the users have legitimate access. When a user enters 
his credentials, TP validates the user’s credentials. The TP  
takes as its input the original plaintext database and 
generates the tuple integrity code and produces the 

Figure 1.  System model 



E-ISSN 2581 – 7957        CVR Journal of Science and Technology, Volume 22, June 2022 
    P-ISSN 2277 – 3916               DOI: 10.32377/cvrjst2201 

encrypted tenant data.  Each user can execute SQL 
operations through the TP. The TP takes as its inputs the 
user credentials and the encrypted metadata and translates 
plaintext SQL queries into encrypted SQL queries that can 
be executed on encrypted data at server. The TP decrypts the 
encrypted results returned by the server and verifies the 
integrity of the results. Finally, the verified plain results are 
returned to the user. 

A.  Generic Assumptions 
Various assumptions that are made in this paper are as 

follows: 
1. Server is not trusted. Hence proxy does not share its

secret encryption keys with server. 
2. Proxy is fully trusted and won't be compromised. If we

remove this assumption, then security can never be 
guaranteed since adversary can compromise proxy and 
see all the data. 

3. The communication channel between client, proxy and
server is secure. This can be ensured by using various 
techniques such as TLS (Transport Layer Security) and 
SSL (Secure Sockets Layer). 
All the encryption schemes used here are individually 

secure. 

B.  Adversary Model 
The model used in this work is “malicious” adversary 

model. The assumption of this model is that the server can 
misbehave in any way, such as returning incorrect answers 
to the user query. 

The assumptions made here allow our scheme to protect 
the data against: 
1. An adversary that eavesdrops network traffic cannot

access any plaintext information because SQL operations 
issued to the cloud database are protected by using 
standard encryption protocols (e.g., SSL). 

2. An adversary that has breached the cloud database cannot
access confidential information, because our scheme 
encrypts client data with semantically secure algorithms 
and the cloud provider never obtains the decryption keys. 

IV. QUERY RESULT INTEGRITY GUARANTEE SCHEME

The proposed QRIG scheme works in two phases, the 
first phase is called the Tuple Integrity Code generation and 
the second phase is called Query Result Integrity 
Verification. 

A.  Tuple Integrity Code Generation 
The tuple-level integrity represents that the content of a 

record has not been manipulated in an unauthorized manner. 
Although it may not be apparent, data encryption does not 
provide data integrity automatically. The owner of the 
decryption key can decrypt the encrypted messages, which 
were encrypted with the same key. But this does not 
guarantee that the encrypted message has not been 
manipulated by the adversary. The discussion of how 
encrypted messages can be manipulated undetectably can be 
found in [12]. This motivates the need for data integrity 
measures over encrypted data. 

To provide tuple-level integrity we propose a scheme 
based on Tuple Integrity Codes (TICs). TICs are specially 

computed representative images for each record with certain 
security and uniqueness measures. Fig. 2 shows the 
procedure that provides tuple-level data integrity. The data 
owner/user has a record r that will be inserted into the 
database, which is maintained by the server. The trusted 
proxy first computes the hash code of the record H=h(r) by 
using a TIC algorithm [8], which produces Tuple Integrity 
Code (TIC). After this step, the trusted proxy integrates the 

hash code H with the original record text r and encrypts 
them together by using any deterministic encryption 
algorithm E [9] with secret key k i.e., the trusted proxy 
computes ciphertext C= Ek (r||h(r)) where || represents 
concatenation. The trusted proxy inserts ciphertext C as an 
encTuple into the database. 

B.  Query Result Integrity Verification 
Whenever the user requests a record, the server sends 

back the corresponding encTuple in encrypted form to 
trusted proxy. To verify the integrity of the record, the 
trusted proxy first decrypts the encTuple recovering r′ and 
H′, which is the TIC, parts. Since only the trusted proxy has 
the secret key k for encryption algorithm no one else can 
decrypt. Then the trusted proxy independently computes h 
(r′) of received record r′ and compares that with the hash 
code H′. If they are equivalent, this verifies that the received 
record is authentic and has data integrity, i.e., has not been 
manipulated in an unauthorized manner. The query result 
integrity verification process is depicted in Fig. 3. 

C.  Query Processing 
Here, we discuss how a trusted proxy uses the QRIG scheme 

and verifies the integrity of query results returned by the server 
when a user executes various SQL queries over an encrypted 
database. For example, consider an employee table in a 
database consisting of name and salary columns as given in 
Table I. The employee table is mapped to a corresponding 
encrypted table, shown in Table II, at the server. TID 
represents tuple identifier, the second column encTuple 
contains the string corresponding to the encrypted tuples in 
employee table. 

For instance, the first tuple is encrypted to Enc (John, 
32,000 || TIC), where Enc is a deterministic encryption 
algorithm [24] with key k. The third column corresponds to 

Figure 2.  Tuple integrity code generation 

Figure 3.  Query result integrity verification 
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the eName which is encrypted with deterministic encryption 
algorithm such as AES [26]. The fourth column represents 
the eSalary which is encrypted with SCOPE scheme [32], 
since order operations are usually applied on it. 

SELECT Query 
Suppose the user sends the select query Q = “select * 

from employee where salary ≥ x and salary ≤ y” to server. 
We consider correctness, completeness and freshness of Q 
while verifying the query result integrity. 

The QRIG scheme for verifying the correctness of Q 
results works as follows: 
1. The trusted proxy rewrites the Q using SCOPE scheme

[32], to an encrypted query QE and sends it to server. 
2. The server processes QE   and returns the encrypted tuples

result to the trusted proxy. 
3. The trusted proxy applies the query result integrity

verification process given in    Section 4.2. 
4. The trusted proxy returns the plaintext results to the user.

The QRIG scheme for verifying the completeness of Q 
results works as follows: 
1. The trusted proxy temporarily stores the count of the data

items that satisfies the condition in Q while rewriting the 
Q using SCOPE scheme. In SCOPE scheme, the trusted 
proxy stores the sensitive column (i.e., salary) in 
encrypted form. 

2. The trusted proxy rewrites Q to an encrypted query QE 
and sends it to server. 

3. The server processes QE   and returns the encrypted tuples
result to the trusted proxy. 

4. The trusted proxy computes the count of the encrypted
tuples returned by the server and compares it with the 
count value stored with it. If both count values are same 
then it accepts the result, otherwise it rejects the result. 

5. The trusted proxy returns the plaintext results to the user.
If the SELECT query result satisfies correctness and 

completeness, then it automatically satisfies the freshness. 
The SELECT query includes equality, range, join and 
aggregate queries. Therefore, the QRIG scheme is 

applicable for verifying correctness, completeness, and 
freshness of all SELECT queries. 

The example given in Fig. 4 shows how the QRIG 
scheme is applicable for verifying correctness, 
completeness, and freshness of equality query result. 

The trusted proxy temporarily stores the count of the data 
items that satisfies the condition in the equality query EQ 
(count=1). The trusted proxy rewrites EQ to an encrypted 
query EQE and sends it to server. The server processes EQE 
and returns the encrypted tuples result to the trusted proxy. 
The trusted proxy applies the query result integrity 
verification process given in Section 4.2 for correctness and 
computes the count of the encrypted tuples returned by the 
server and compares it with the count value stored with it for 
completeness and returns the plaintext results to the user. 
Since the equality query result satisfies correctness and 
completeness then it automatically satisfies the freshness. 

UPDATE Query 
The trusted proxy interacts with the server to update the 

stored table with the update information. The following are 
the different cases of update operation: 
1. Insertion: Suppose update is “insert the tuple r into table”.

The trusted proxy applies the tuple integrity code 
generation process given in Section 4.1. The trusted proxy 
delivers update information to the server and the server 
inserts r into table. The trusted proxy maintains the count 
c of the existing tuples in the table. The trusted proxy 
updates c whenever new tuples t is inserted into the table 
(i.e., c = c + t). Therefore, the trusted proxy can verify the 
completeness and freshness of tuples by getting the count 
c′ of the total tuples from the server and comparing c′ 
with c. 

2. Deletion: Suppose update is “delete the tuple r from
table”. The trusted proxy delivers update information to 
the server and the server deletes r from table. The trusted 
proxy gets the count d of the tuples that are deleted from 
the table. The trusted proxy maintains the count c of the 
existing tuples in the table. The trusted proxy updates c 
whenever new tuples t is deleted from the table (i.e. c = c 
- t). Therefore, the trusted proxy can verify the 
completeness and freshness of tuples by getting the count 
c′ of the tuples from the server and comparing c′ with c. 

3. Modify: Suppose update is “update the tuple r with r′ ”.
The trusted proxy applies the tuple integrity code 
generation process given in Section 4.1 for r′. The trusted 
proxy delivers update information to the server and the 
server updates r to r′. The trusted proxy maintains the 
count c of the existing tuples in the table. Therefore, the 
trusted proxy can verify the completeness and freshness 
of tuples by getting the count c′ of the tuples from the 
server and comparing c′ with c. 
The correctness of the tuples present in the table is 

verified during the data retrieval process which is described 
in Section 4.2. 

V. EXPERIMENTAL EVALUATION 

In this section we evaluate the performance of QRIG 
scheme on an encrypted database. QRIG is implemented in 
Java over MySQL database server. We measured the 
performance of QRIG on a machine with a 2.27 GHz Intel 
Core i5 processor running with Windows 7 with only a 
single core enabled for consistency, running both the client 
and the server on the same machine and with 2GB of 
memory.  

Figure 4.  Equality query result integrity verification 
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In the experiments, we consider employee database 
consisting of one table with two columns. Here the table 
columns are encrypted with AES and SCOPE to support 
equality and ordering operations over encrypted data 
respectively. The database columns not requiring any 
computation can be encrypted through standard algorithms 
such as AES with random initialization vectors. 

QRIG scheme performances are examined by considering 
insert and retrieve operations on encrypted employee 
database. In our experiments, we varied the total database 
size between one hundred and one lakh entries. We were 
able to run experiments up to one lakh entries, limited only 
by the RAM size available on our workstation. The 
efficiency of QRIG is measured in terms of the time taken to 
generate tuple integrity codes during insert operations. 
During the retrieval operation, the efficiency of QRIG is 
measured in terms of the time taken for verifying query 
result integrity by applying a set of retrieval queries on 
encrypted employee database. 

A.  Database Insert And Retrieve 
During the experiment, an insert query is applied on 

employee table by inserting 102,103,104 and 105 records at a 
time using QRIG scheme and the corresponding user time, 
system time, and CPU time are calculated and is clearly 
depicted in Table III. Next, a set of M range queries where 
M=10, 20, 30…100 are applied on 1000 records present in 
an encrypted employee database and the corresponding user 
time, system time, and CPU time are calculated. The results 
are described in Table IV.   

Here, “user time” is the time spent running the application 
code, “system time” is the time spent running OS code on 
behalf of the application (such as for IO) and “CPU time” is 
user time plus system time. It is the total time spent using a 
CPU for your application. Here, the total insertion time 
(CPU time) = User time + System time. 

VI. CONCLUSIONS

We propose a novel Query Result Integrity Guarantee 
scheme over encrypted databases, which allow a database 
querier to verify that their queries were faithfully executed 
by the server. The proposed scheme provides the security of 
the stored data against the malicious attacks as well as the 
database integrity features, which ensure the correctness, 
completeness and freshness of the data stored at the server. 
Our approach is efficient, and it only introduces small 
storage overhead.  
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