
E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 22, June 2022
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2201

Received on 09-08-2021, Revised on 18-10-2021, Accepted on 30-10-2021.

A Scheme for Verifying Integrity of SQL Query
Processing on Encrypted Databases

K. Srinivasa Reddy1 and K. Pranitha Kumari2
1Assoc. Professor, CVR College of Engineering/CSE Department, Hyderabad, India

Email: k.srinivasareddy@cvr.ac.in
2Assoc. Professor, CVR College of Engineering/CSE Department, Hyderabad, India

Email: k.pranithakumari@ cvr.ac.in

Abstract: In the database-as-a-service model, a service
provider hosts the clients’ data and allows access to the data
through the Internet. Database-as-a-service model offers
considerable benefits to organizations with data management
needs by allowing them to outsource their data management
infrastructures. Yet, the model introduces many significant
challenges, that of data privacy and security. Ensuring the
integrity of the database, which is hosted by a service provider,
is a critical and challenging problem in this context. We
propose a novel Query Result Integrity Guarantee (QRIG)
scheme over encrypted databases, which allow a database
enquirer to verify that their queries were faithfully executed by
the server. The experimental results obtained in this paper
show the performance of proposed scheme.

Index Terms: data integrity, query result, database,
encryption, security

I. INTRODUCTION

Nowadays outsourced IT services have become very
popular. Users no longer need to be concerned about
providing infrastructure or scaling up software for their
computation. With the advent of outsourced IT services like
cloud computing any required infrastructure, software or
services can be provided to users by third persons. Users can
speed up their computation based on the load by boosting
the software without the rise in cost, because using 1000
hours of a server does not cost more than using 1000 servers
for an hour [1]. Mobility is the other advantage of cloud
computing. Users can run their computation by logging into
their account in cloud via their cell phones on their way to
work. Cloud computing also reduces cost for users. Users
will pay for the services that they receive during the service
time. The other costs like software (in our case database
licensing costs), hardware and maintenance are associated
with service providers which makes cloud computing more
attractive for users [2]. Although outsourced IT services and
cloud computing are desirable for users but there is a
concern that prevents most of users from using these
services. Security is the main concern that stops users to
delegate their computation to the cloud. Users want to
ensure that services provided by third party are secure and
trusted. Recent study on 500 IT administrators and IT
managers in 17 countries revealed that 80% of them tend to
use existing internal systems rather than using cloud
infrastructures. The fear of losing control over protecting
data was the main reason for them to stay with existing
internal systems [3].

In this paper we focus on providing security for the
outsourced database. Outsourced database security has two
aspects: privacy and data integrity. Privacy in databases
were studied in many research works and different
approaches have been presented [4][5]. Data integrity
recently became an interesting challenge for researchers.
Data integrity can be provided at different levels of
granularity. In principle, integrity checks can be at the level
of a table, a column, a row (a record or a tuple of the table),
or an individual attribute value. Providing integrity checks at
the table (or column) level implies that the entire data
pertaining to that table (or column) should be returned in the
query reply for the client to verify the integrity of the query
response. This is clearly impractical as it requires
transferring large amounts of data to the client. Hence, we
do not consider this to be a viable approach. On the other
hand, computing integrity checks at the level of individual
attribute values yields a very large number of signatures
which is very expensive for the signer (owner) in terms of
computation as well as for the server in terms of storage.

Therefore, the optimal choice is to provide integrity at the
record level. This enables the server to return in response to
a query any set of matching records along with their
respective integrity checks. Of course, computing integrity
checks over the entire record, as opposed to individual
attributes, inferred that the smallest unit of data returned as a
query reply is an entire record, even when the querying
client is only interested in a single field.

Query result integrity has three aspects: Correctness,
Completeness and Freshness. Correctness means that the
results returned by server must be genuine records. Genuine
records are those records that exist in original database and
have not been modified by server. Completeness means that
returned records are the results of executing the query over
the entire database and all the possible records that satisfy
the query are included. Freshness means that query result
contains the records based on executing the query over the
most updated database. In this paper, we propose a novel
Query Result Integrity Guarantee (QRIG) scheme for
verifying integrity of query processing over encrypted
databases and to satisfy the three aspects of query result
integrity: correctness, completeness, and freshness.

In this paper, we consider insert, delete, and update
queries and the standard SQL queries involving SELECT
clauses such as equality, range, join and aggregate queries.
This paper focuses on providing correctness and freshness
of query replies returned by the server. A related, and

1

E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 22, June 2022
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2201

equally important, issue is the completeness of query replies.
Although we consider it debatable whether completeness is a
security concern, we acknowledge that it poses a challenge
which needs to be addressed in the outsourced databases.
However, we consider completeness of query only with
respect to SCOPE scheme [32], in which any sensitive
column is encrypted and stored at trusted proxy.

The remaining part of this paper is structured as
following. Section II describes the related work. Section
I I I describes the proposed system model. Section I V
describes the proposed scheme in detail. In Section V the
results of experiments are summarized, and our conclusions
are presented in Section VI.

II. RELATED WORK

The problem of assuring query integrity in the context of
outsourced data was fundamentally related to the concept of
certified data structures [27], which presents some results
that are conceptually important but not efficient. The state-
of-the-art solutions to query integrity are due to [13][23],
which are the only solutions that support selection,
projection and join queries simultaneously. These two
solutions follow two respective approaches to the query
integrity problem.

The tree-based approach: Basically, this approach uses
the Merkle hash tree [15] or its variants to index search keys
[11][17][13][7][16][31][20][21]. As a result, this approach
leads to logarithmic complexity in terms of both
communication and verification, possibly with some further
tricks (e.g., using the Merkle hash tree to maintain
signatures at multiple hash tree levels [11]). The best
solution in this approach is due to [13], which uses the
Merkle B-tree and the Embedded Merkle B-tree to reduce
I/O operations.

The signature-based approach: Basically, this approach
uses the signature aggregation technique [5][18] to
aggregate the validity of query answers [18][19][23][22]. As
a result, this approach can lead to low (even constant)
communication complexity but may require special
treatment for handling more powerful (e.g., projection)
queries and often leads to large storage and computational
complexities. The best solution in this approach is due to
[23], which uses aggregate signatures to sign each attribute
and returns a single signature as the validity proof for
projection queries. This solution uses a chaining signing
technique to build the index for the search key to facilitate
range queries and publishes a certified bitmap corresponding
to every update to facilitate dynamic updates. These cause a
large storage and communication overhead while including
many enfolding and pairing operations.

There are studies that are somewhat related to the theme
of the present paper as well [33][34][35]. These include
authenticating the answers to set operations using
accumulator [25], authenticating the answers to aggregate
queries using authenticated prefix-sums trees [14],
authenticating the answers to join queries [30],
authenticating count queries with respect to multi-
dimensional data while preserving privacy [29], and
assuring probabilistic integrity in selection and join

operations [28]. Query integrity is also somewhat related to
outsourced verifiable computation [1][6][10].

III. SYSTEM MODEL

The proposed system model is shown in Fig. 1 in which
the trusted proxy hosts the creation and management of the
encrypted database. All tenant database users can submit SQL
queries directly to the encrypted cloud database. The whole
tenant organization data is stored in an encrypted form in
the cloud database. By using SQL-aware encryption
schemes, the cloud database server can process user’s
SQL queries on encrypted data without decryption. The key
management module at proxy handles generation, derivation, and
revocation of cryptographic keys.

The trusted proxy has four significant responsibilities:
1. Key Management: The trusted proxy generates and

manages the keys required to decrypt the data.
2. Query Rewrite: The queries written by the user contain

plain text. Therefore, the plain text in the query has to be
encrypted by the trusted proxy. Moreover, depending on
the encryption scheme used to encrypt the data in the
cloud, the queries written by the user might need to be
restructured using metadata information.

3. Decryption and Post-Processing: Depending on the
encryption scheme, the trusted proxy needs to decrypt and
possibly post-process the encrypted query results.

4. Verify query result integrity: Proxy authenticates the
origin and verifies the integrity of data returned by the
service provider in response to a posed query.
The system model works as follows: The Trusted Proxy

(TP) translates the tenant organization’s access control policies
into an access control matrix. TP distributes unique secret
keys to the users at the creation of their accounts according
to the access control matrix. These keys enable the users to
access all and only the subsets of encrypted tenant data on
which the users have legitimate access. When a user enters
his credentials, TP validates the user’s credentials. The TP
takes as its input the original plaintext database and
generates the tuple integrity code and produces the

Figure 1. System model

E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 22, June 2022
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2201

encrypted tenant data. Each user can execute SQL
operations through the TP. The TP takes as its inputs the
user credentials and the encrypted metadata and translates
plaintext SQL queries into encrypted SQL queries that can
be executed on encrypted data at server. The TP decrypts the
encrypted results returned by the server and verifies the
integrity of the results. Finally, the verified plain results are
returned to the user.

A. Generic Assumptions
Various assumptions that are made in this paper are as

follows:
1. Server is not trusted. Hence proxy does not share its

secret encryption keys with server.
2. Proxy is fully trusted and won't be compromised. If we

remove this assumption, then security can never be
guaranteed since adversary can compromise proxy and
see all the data.

3. The communication channel between client, proxy and
server is secure. This can be ensured by using various
techniques such as TLS (Transport Layer Security) and
SSL (Secure Sockets Layer).
All the encryption schemes used here are individually

secure.

B. Adversary Model
The model used in this work is “malicious” adversary

model. The assumption of this model is that the server can
misbehave in any way, such as returning incorrect answers
to the user query.

The assumptions made here allow our scheme to protect
the data against:
1. An adversary that eavesdrops network traffic cannot

access any plaintext information because SQL operations
issued to the cloud database are protected by using
standard encryption protocols (e.g., SSL).

2. An adversary that has breached the cloud database cannot
access confidential information, because our scheme
encrypts client data with semantically secure algorithms
and the cloud provider never obtains the decryption keys.

IV. QUERY RESULT INTEGRITY GUARANTEE SCHEME

The proposed QRIG scheme works in two phases, the
first phase is called the Tuple Integrity Code generation and
the second phase is called Query Result Integrity
Verification.

A. Tuple Integrity Code Generation
The tuple-level integrity represents that the content of a

record has not been manipulated in an unauthorized manner.
Although it may not be apparent, data encryption does not
provide data integrity automatically. The owner of the
decryption key can decrypt the encrypted messages, which
were encrypted with the same key. But this does not
guarantee that the encrypted message has not been
manipulated by the adversary. The discussion of how
encrypted messages can be manipulated undetectably can be
found in [12]. This motivates the need for data integrity
measures over encrypted data.

To provide tuple-level integrity we propose a scheme
based on Tuple Integrity Codes (TICs). TICs are specially

computed representative images for each record with certain
security and uniqueness measures. Fig. 2 shows the
procedure that provides tuple-level data integrity. The data
owner/user has a record r that will be inserted into the
database, which is maintained by the server. The trusted
proxy first computes the hash code of the record H=h(r) by
using a TIC algorithm [8], which produces Tuple Integrity
Code (TIC). After this step, the trusted proxy integrates the

hash code H with the original record text r and encrypts
them together by using any deterministic encryption
algorithm E [9] with secret key k i.e., the trusted proxy
computes ciphertext C= Ek (r||h(r)) where || represents
concatenation. The trusted proxy inserts ciphertext C as an
encTuple into the database.

B. Query Result Integrity Verification
Whenever the user requests a record, the server sends

back the corresponding encTuple in encrypted form to
trusted proxy. To verify the integrity of the record, the
trusted proxy first decrypts the encTuple recovering r′ and
H′, which is the TIC, parts. Since only the trusted proxy has
the secret key k for encryption algorithm no one else can
decrypt. Then the trusted proxy independently computes h
(r′) of received record r′ and compares that with the hash
code H′. If they are equivalent, this verifies that the received
record is authentic and has data integrity, i.e., has not been
manipulated in an unauthorized manner. The query result
integrity verification process is depicted in Fig. 3.

C. Query Processing
Here, we discuss how a trusted proxy uses the QRIG scheme

and verifies the integrity of query results returned by the server
when a user executes various SQL queries over an encrypted
database. For example, consider an employee table in a
database consisting of name and salary columns as given in
Table I. The employee table is mapped to a corresponding
encrypted table, shown in Table II, at the server. TID
represents tuple identifier, the second column encTuple
contains the string corresponding to the encrypted tuples in
employee table.

For instance, the first tuple is encrypted to Enc (John,
32,000 || TIC), where Enc is a deterministic encryption
algorithm [24] with key k. The third column corresponds to

Figure 2. Tuple integrity code generation

Figure 3. Query result integrity verification

3

E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 22, June 2022
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2201

the eName which is encrypted with deterministic encryption
algorithm such as AES [26]. The fourth column represents
the eSalary which is encrypted with SCOPE scheme [32],
since order operations are usually applied on it.

SELECT Query
Suppose the user sends the select query Q = “select *

from employee where salary ≥ x and salary ≤ y” to server.
We consider correctness, completeness and freshness of Q
while verifying the query result integrity.

The QRIG scheme for verifying the correctness of Q
results works as follows:
1. The trusted proxy rewrites the Q using SCOPE scheme

[32], to an encrypted query QE and sends it to server.
2. The server processes QE and returns the encrypted tuples

result to the trusted proxy.
3. The trusted proxy applies the query result integrity

verification process given in Section 4.2.
4. The trusted proxy returns the plaintext results to the user.

The QRIG scheme for verifying the completeness of Q
results works as follows:
1. The trusted proxy temporarily stores the count of the data

items that satisfies the condition in Q while rewriting the
Q using SCOPE scheme. In SCOPE scheme, the trusted
proxy stores the sensitive column (i.e., salary) in
encrypted form.

2. The trusted proxy rewrites Q to an encrypted query QE
and sends it to server.

3. The server processes QE and returns the encrypted tuples
result to the trusted proxy.

4. The trusted proxy computes the count of the encrypted
tuples returned by the server and compares it with the
count value stored with it. If both count values are same
then it accepts the result, otherwise it rejects the result.

5. The trusted proxy returns the plaintext results to the user.
If the SELECT query result satisfies correctness and

completeness, then it automatically satisfies the freshness.
The SELECT query includes equality, range, join and
aggregate queries. Therefore, the QRIG scheme is

applicable for verifying correctness, completeness, and
freshness of all SELECT queries.

The example given in Fig. 4 shows how the QRIG
scheme is applicable for verifying correctness,
completeness, and freshness of equality query result.

The trusted proxy temporarily stores the count of the data
items that satisfies the condition in the equality query EQ
(count=1). The trusted proxy rewrites EQ to an encrypted
query EQE and sends it to server. The server processes EQE
and returns the encrypted tuples result to the trusted proxy.
The trusted proxy applies the query result integrity
verification process given in Section 4.2 for correctness and
computes the count of the encrypted tuples returned by the
server and compares it with the count value stored with it for
completeness and returns the plaintext results to the user.
Since the equality query result satisfies correctness and
completeness then it automatically satisfies the freshness.

UPDATE Query
The trusted proxy interacts with the server to update the

stored table with the update information. The following are
the different cases of update operation:
1. Insertion: Suppose update is “insert the tuple r into table”.

The trusted proxy applies the tuple integrity code
generation process given in Section 4.1. The trusted proxy
delivers update information to the server and the server
inserts r into table. The trusted proxy maintains the count
c of the existing tuples in the table. The trusted proxy
updates c whenever new tuples t is inserted into the table
(i.e., c = c + t). Therefore, the trusted proxy can verify the
completeness and freshness of tuples by getting the count
c′ of the total tuples from the server and comparing c′
with c.

2. Deletion: Suppose update is “delete the tuple r from
table”. The trusted proxy delivers update information to
the server and the server deletes r from table. The trusted
proxy gets the count d of the tuples that are deleted from
the table. The trusted proxy maintains the count c of the
existing tuples in the table. The trusted proxy updates c
whenever new tuples t is deleted from the table (i.e. c = c
- t). Therefore, the trusted proxy can verify the
completeness and freshness of tuples by getting the count
c′ of the tuples from the server and comparing c′ with c.

3. Modify: Suppose update is “update the tuple r with r′ ”.
The trusted proxy applies the tuple integrity code
generation process given in Section 4.1 for r′. The trusted
proxy delivers update information to the server and the
server updates r to r′. The trusted proxy maintains the
count c of the existing tuples in the table. Therefore, the
trusted proxy can verify the completeness and freshness
of tuples by getting the count c′ of the tuples from the
server and comparing c′ with c.
The correctness of the tuples present in the table is

verified during the data retrieval process which is described
in Section 4.2.

V. EXPERIMENTAL EVALUATION

In this section we evaluate the performance of QRIG
scheme on an encrypted database. QRIG is implemented in
Java over MySQL database server. We measured the
performance of QRIG on a machine with a 2.27 GHz Intel
Core i5 processor running with Windows 7 with only a
single core enabled for consistency, running both the client
and the server on the same machine and with 2GB of
memory.

Figure 4. Equality query result integrity verification

E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 22, June 2022
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2201

In the experiments, we consider employee database
consisting of one table with two columns. Here the table
columns are encrypted with AES and SCOPE to support
equality and ordering operations over encrypted data
respectively. The database columns not requiring any
computation can be encrypted through standard algorithms
such as AES with random initialization vectors.

QRIG scheme performances are examined by considering
insert and retrieve operations on encrypted employee
database. In our experiments, we varied the total database
size between one hundred and one lakh entries. We were
able to run experiments up to one lakh entries, limited only
by the RAM size available on our workstation. The
efficiency of QRIG is measured in terms of the time taken to
generate tuple integrity codes during insert operations.
During the retrieval operation, the efficiency of QRIG is
measured in terms of the time taken for verifying query
result integrity by applying a set of retrieval queries on
encrypted employee database.

A. Database Insert And Retrieve
During the experiment, an insert query is applied on

employee table by inserting 102,103,104 and 105 records at a
time using QRIG scheme and the corresponding user time,
system time, and CPU time are calculated and is clearly
depicted in Table III. Next, a set of M range queries where
M=10, 20, 30…100 are applied on 1000 records present in
an encrypted employee database and the corresponding user
time, system time, and CPU time are calculated. The results
are described in Table IV.

Here, “user time” is the time spent running the application
code, “system time” is the time spent running OS code on
behalf of the application (such as for IO) and “CPU time” is
user time plus system time. It is the total time spent using a
CPU for your application. Here, the total insertion time
(CPU time) = User time + System time.

VI. CONCLUSIONS

We propose a novel Query Result Integrity Guarantee
scheme over encrypted databases, which allow a database
querier to verify that their queries were faithfully executed
by the server. The proposed scheme provides the security of
the stored data against the malicious attacks as well as the
database integrity features, which ensure the correctness,
completeness and freshness of the data stored at the server.
Our approach is efficient, and it only introduces small
storage overhead.

REFERENCES
[1] B. Applebaum, Y. Ishai, and E. Kushilevitz, “From secrecy to

soundness: Efficient verification via secure computation,”
Automata, Languages and Programming, vol. 6198, pp. 152–
163, 2010.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, “Provable data possession at untrusted
stores,” In Proceedings of the 14th ACM conference on
Computer and communications security, pp. 598–609, 2007.

[3] G. Ateniese, S. Kamara, and J. Katz, “Proofs of storage from
homomorphic identification protocols,” In Proceedings of the
15th International Conference on the Theory and Application
of Cryptology and Information Security: Advances in
Cryptology, pp. 319–333, 2009.

[4] M. Bellare and G. Neven, “Multi-signatures in the plain
public-key model and a general forking lemma,” In ACM
Conference on Computer and Communications Security, pp.
390–399, 2006.

[5] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate
and verifiably encrypted signatures from bilinear maps,” In
Proceedings of the 22nd international conference on Theory
and applications of cryptographic techniques, pp. 416–432,
2003.

[6] K.-M. Chung, Y. Kalai, and S. Vadhan, “Improved delegation
of computation using fully homomorphic encryption,” In
Proceedings of the 30th annual conference on Advances in
cryptology, pp. 483–501, 2010.

TABLE I.
EMPLOYEE TABLE

Name Salary
John $ 32,000
Alice $ 20,000
Bob $ 69,000
Ravi $ 10,000
Lee $ 25,000

TABLE II.
ENCRYPTED EMPLOYEE TABLE

Tid encTuple eName eSalary
1 Enc (John, 32,000 || TIC) Enc (John) Enc (32,000)
2 Enc (Alice, 20,000 || TIC) Enc (Alice) Enc (20,000)
3 Enc (Bob, 69,000 || TIC) Enc (Bob) Enc (69,000)
4 Enc (Ravi, 10,000 || TIC) Enc (Ravi) Enc (10,000)
5 Enc (Lee, 25,000 || TIC) Enc (Lee) Enc (25,000)

TABLE III.
APPLYING INSERTION QUERY ON EMPLOYEE TABLE

Number of
Records
Inserted

 User time
(seconds)

System time
(seconds)

CPU time
(seconds)

100 0.03 0.01 0.04
1000 0.09 0.02 0.11
10000 0.22 0.02 0.24
100000 1.05 0.08 1.13

TABLE IV.
APPLYING INSERTION QUERY ON EMPLOYEE TABLE

Number of
Records
Inserted

 User time
(seconds)

System time
(seconds)

CPU time
(seconds)

Number
of

Records
retrieved

10 0.15 0.01 0.16 5382
20 0.22 0.01 0.23 10764
30 0.24 0.02 0.26 16137
40 0.27 0.03 0.30 21430
50 0.30 0.04 0.34 26326
60 0.35 0.04 0.39 31708
70 0.40 0.04 0.44 37090
80 0.46 0.04 0.50 42463
90 0.49 0.05 0.54 47756
100 0.53 0.05 0.58 52652

5

E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 22, June 2022
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2201

[7] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine,
“Authentic data publication over the internet,” J. Computer
Security, vol. 11(3), pp. 291–314, 2003.

[8] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia,
“Dynamic provable data possession,” In Proceedings of the
16th ACM conference on Computer and communications
security, pp. 213–222, 2009.

[9] A. Fiat, “Batch rsa,” In Proceedings on Advances in
cryptology, pp. 175–185, 1989.

[10] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive
verifiable computing: outsourcing computation to untrusted
workers,” In Proceedings of the 30th annual conference on
Advances in cryptology, pp. 465–482, 2010.

[11] M. Goodrich, R. Tamassia, and N. Triandopoulos, “Super-
efficient verification of dynamic outsourced databases,”
Topics in Cryptology, vol. 4964, pp. 407–424, 2008.

[12] A. Juels and B. S. Kaliski, Jr., “Pors: proofs of retrievability
for large files,” In Proceedings of the 14th ACM conference
on Computer and communications security, pp. 584–597,
2007.

[13] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin,
“Dynamic authenticated index structures for outsourced
databases,” In Proceedings of the ACM SIGMOD
international conference on Management of data, pp. 121–
132, 2006.

[14] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin,
“Authenticated index structures for aggregation queries,”
ACM Trans. Inf. Syst. Secur., vol. 13(4), pp. 1–32, 2010.

[15] R. C. Merkle, “A certified digital signature,” In Proceedings
on Advances in cryptology, pp. 218–238, 1989.

[16] K. Mouratidis, D. Sacharidis, and H. Pang, “Partially
materialized digest scheme: an efficient verification method
for outsourced databases,” The VLDB Journal, vol. 18(1), pp.
363–381, 2009.

[17] E. Mykletun, M. Narasimha, and G. Tsudik, “Providing
authentication and integrity in outsourced databases using
merkley hash trees,” In UCI-SCONCE Technical Report,
2003.

[18] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication
and integrity in outsourced databases,” Trans. Storage, vol.
2(2), pp. 107–138, 2006.

[19] M. Narasimha and G. Tsudik, “Authentication of outsourced
databases using signature aggregation and chaining,” In
Proceedings of the 11th international conference on Database
Systems for Advanced Applications, pp. 420–436, 2006.

[20] G. Nuckolls, “Verified query results from hybrid
authentication trees,” In Proceedings of the 19th annual IFIP
WG 11.3 working conference on Data and Applications
Security, pp. 84–98, 2005.

[21] B. Palazzi, M. Pizzonia, and S. Pucacco, “Query racing: fast
completeness certification of query results,” In Proceedings of
the 24th annual IFIP WG 11.3 working conference on Data
and applications security and privacy, pp. 177–192, 2010.

[22] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan, “Verifying
completeness of relational query results in data publishing,” In
Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pp. 407–418, 2005.

[23] H. Pang, J. Zhang, and K. Mouratidis, “Scalable verification
for outsourced dynamic databases,” Proc. VLDB Endow., vol.
2(1), pp. 802–813, 2009.

[24] C. Papamanthou, R. Tamassia, and N. Triandopoulos,
“Authenticated hash tables,” In Proceedings of the 15th ACM
conference on Computer and communications security, pp.
437–448, 2008.

[25] C. Papamanthou, R. Tamassia, and N. Triandopoulos,
“Optimal verification of operations on dynamic sets,” In
Proceedings of the 31st annual conference on Advances in
cryptology, pp. 91–110, 2011.

[26] H. Shacham and B. Waters, “Compact proofs of
retrievability,” In Proceedings of the 14th International
Conference on the Theory and Application of Cryptology and
Information Security: Advances in Cryptology, pp. 90–107,
2008.

[27] R. Tamassia and N. Triandopoulos, “Certification and
authentication of data structures” In AMW, 2010.

[28] M. Xie, H. Wang, J. Yin, and X. Meng, “Integrity auditing of
outsourced data,” In Proceedings of the 33rd international
conference on Very large data bases, pp. 782–793, 2007.

[29] J. XU and E.-C. CHANG, “Authenticating aggregate range
queries over multidimensional dataset,” Cryptology ePrint
Archive, 2010.

[30] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis,
“Authenticated join processing in outsourced databases,” In
Proceedings of the 35th SIGMOD international conference on
Management of data, pp. 5–18, 2009.

[31] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios,
“Spatial outsourcing for location-based services,” In
Proceedings of the 2008 IEEE 24th International Conference
on Data Engineering, pp. 1082–1091, 2008.

[32] Srinivasa Reddy, K. and Ramachandram, S, “A secure, fast
insert and efficient search order preserving encryption scheme
for outsourced databases,” Int. J. Advanced Intelligence
Paradigms, Vol. 13, Nos. 1/2, pp.155–177, 2019.

[33] Reddy, K.S. and Ramachandram, S, “Cryptographic key
management scheme for supporting multi-user SQL queries
over encrypted databases,” Int. J. Computer Aided
Engineering and Technology, Vol. 12, No. 4, pp.461–479,
2020.

[34] Srinivasa Reddy, K. and Ramachandram, S, “A new
randomized order preserving encryption scheme,”
International Journal of Computer Applications, Vol. 108,
No. 12, pp.41–46, 2014.

[35] K.Srinivasa Reddy and Sirandas Ramachandram, “A Novel
Dynamic Order-Preserving Encryption Scheme,” IEEE First
International Conference on Networks & Soft Computing,
2014.

