
E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 20, June 2021
P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2009

CVR College of Engineering

FPGA Realization of Logic Gates using Neural
Networks

R. Ganesh1 and D. Bhanu Prakash2
1Assoc. Professor, CVR College of Engineering /ECE Department, Hyderabad, India

Email: rachaganesh@gmail.com
2Assoc. Professor, CVR College of Engineering /ECE Department, Hyderabad, India

Email: pbhanududi@gmail.com

Abstract: The real time systems are designed by using analog
and digital sub systems with control logic. In the design of digital
sub systems the logic gates are the major building blocks. The
Neural Networks found many applications in the areas of
pattern recognition, prediction, artificial intelligence and other
applications. Most of the Neural Network designs are realized
by using software domain and hardware domains. This paper
presents the hardware realization of logic gates using Neural
Network.

 The logic gates like NAND, AND, NOR, OR, NOT, BUFFER
are realized by using single layer neural network. The XNOR
and XOR logic gates are realized by using structural
representation of neural network based universal NAND gates.
All the logic gates are realized by using Verilog HDL with Xilinx
Vivado Design suite targeting for Xilinx Zynq-7000 SoC
Evaluation Board. The Neural Network based logic gates are
simulated for different test cases.

Index Terms: Neural Network, Logic Gate, Zynq-7000 SoC,
Verilog HDL, Xilinx Vivado EDA tool.

. INTRODUCTION

 The present modern real time systems are designed by
using Digital, Analog, Mixed and co-design subsystems, to
meet non functional constraints like area, speed, power, cost
and other parameters. In all these subsystems the digital
design plays an important role in meeting the non functional
constraints.

The Neural Networks (NN) found many applications in the
areas of pattern recognition, prediction, artificial intelligence,
and other applications [1]. Most of the Neural Network
designs are realized by using software domain with mainly
concentrating on the application input, outputs and not on the
internal structure of the design. This application oriented
design of software realization has an advantage of simple
coding, low cost with a limitation of slower execution time.

The limitation of software realization of NN can be
overcome by using hardwar realization using
Microprocessor, Digital Signal Processing (DSP) and Very
Large Scale Integration (VLSI). The Neural Network design
requires lot of parallel computations. The Microprocessors
and DSP are not suitable for parallel execution of NN
systems. Hence, to design Neural Network systems the VLSI
is considered as the best method for parallelism [2].

The design approaches for VLSI systems is shown in
Figure 1. The design of VLSI systems can be divided into
three sub system domains. i.e. Digital VLSI system domain,
Analog VLSI system domain and Mixed VLSI system
domains [3].

Figure 1. Design approaches in VLSI Design

The digital VLSI systems are realized by using textual
hardware languages like Very High Speed Integrated Circuit
Hardware Description Language (VHDL), Verilog HDL,
System Verilog etc. The Analog VLSI systems are realized
by using transistors based schematic representations. The
mixed VLSI systems are realized by using the combination of
both Analog and Digital design entry representations. The
Digital VLSI is divided into FPGA and standard cell-based
designs. The Field Programmable Gate Array (FPGA) based
design is having the feature of re-programmability, whereas
the standard cell-based VLSI require the foundry based
standard cell library and it is not having the feature of re-
programmability. The Analog VLSI systems using transistors
is done by using a full custom based approach, which does
not use any HDL coding and re-programmability.

The FPGA based designs are well suited for the realization
of digital design systems due to its flexibility of logic gates
realization, HDL entry and re-programmability features. The
logic gates are the major building blocks in the realization of
digital design system. All these logic gates i.e. NAND, AND,
NOR, OR, XNOR, XOR, NOT and BUFFER can be realized
by using different design methodologies based on the targeted
application. The design methodologies are selected to meet
the logic functionality equation and truth table of the
corresponding logic gate. All these logic gates are used as the
basic building blocks for realizing the complex system.

This paper presents realization of neural network based
logic gates i.e. NAND, AND, NOR, OR, XNOR, XOR, NOT
and BUFFER using FPGA. The chapter II presents the
concepts of Neural Networks along with the types of Neural
Network architectures. The chapter III presents design
methodology of Neural Networks based logic gates. The
chapter IV gives the design and realization of NN based logic
gates; the chapter V gives the simulation results. The
conclusion is presented in chapter VI followed by references.

E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 20, June 2021
P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2009

CVR College of Engineering

. NEURAL NETWORKS AND ITS ARCHITECTURES

 The Artificial Neural Networks are inspired by the
biological neural systems. The characteristics of any system
sub blocks are modelled by using mathematical
representation model. This mathematical system model is
realized by using Neural network which contains multiple
layers using neurons [4]. The block diagram of single neuron
is shown in Figure 2.

Figure 2. Block diagram of Single Neuron

 The single neuron consists of inputs with weights,
summation block, activation function with threshold to
generate output. The input consists of one or more values to
generate the single output. This output is computed by using
weighted sum of inputs and the threshold logic calculate the
output value for the selected application.
 The Artificial Neural Networks are designed by using
neuron connection network architectures using neurons.
These architectures are classified into five types and the
selection of the network architecture is based on the type of
the application, design algorithm and other design parameters
[5]. The types of ANN are:

3. Single-layer feed forward network
4. Multilayer feed forward network
5. Single node with its own feedback
6. Single-layer recurrent network
7. Multilayer recurrent network

 The single layer feed forward network consists of only two
layers i.e. input layer and output layer. The Multilayer feed
forward network consists of input layer, output layer and one
or more hidden layers to enable the network to be
computationally stronger [6].
 The Single node with its own feedback network outputs are
directed back to its inputs to the same layer or preceding layer
nodes, which results in feedback networks. The Single-layer
recurrent network is having feedback connection in which
processing element’s output can be directed back to itself or
to other processing element or both. In the Multilayer
recurrent network, the processing element output can be
directed to the processing element in the same layer and in
the preceding layer forming a multilayer recurrent network.
 The design of logic gates using ANN is done by using the
Single-layer feed forward network. This network has input
and output layers along with weighted sum of inputs and
threshold, this helps in making the decision for generating
the output.

. NEURAL NETWORKS BASED LOGIC GATES

 The general structure of logic gate and its corresponding
Neural Network is shown in Figure 3.

Figure 3. N-input logic gates and its Neural network

 The N-input logic gate is realized by using x1,x2,x3, ….,
xn inputs along with its corresponding weights w1,w2,w3,
….., wn using the threshold is shown in mathematical
equation (1).

 1, if Ʃ wixi > threshold
 y = (1)

 0, otherwise

 In this approach, the inputs are also treated as neurons and
the output is chosen as the actual value of the feature. The
above equation is rewritten by moving the threshold to other
side of the equation and these “-threshold” values are used as
the bias values. The mathematical equation is shown in
equation (2).

1, if Ʃ wixi +b >0
 y = (2)

0, otherwise

 All the basic logic gates are designed by using a single
structure with two inputs and different output for different
gates as shown in Figure 4. The individual logic gates i.e.
NAND, AND, NOR, OR, XNOR, XOR, BUFFER and NOT
gates with their corresponding symbols and truth tables are
shown in Figure 5.

Figure 4. Block diagram of all logic gates

E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 20, June 2021
P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2009

CVR College of Engineering

Figure 5. Symbols and truth tables of all logic gates

 The neural network based output computation equations for
single term Boolean equation uses the values of a and b as
inputs for logic gates. The nandout, andout, norout, orout,
notout and bufout are the output values for the NAND, AND,
NOR, OR, NOT and buffer logic gates respectively. The
weights of the logic gates are updated by using Perceptron
algorithm, which is as follows;
Step-1: Initialize weight values and bias with random
numbers
Step-2: Forward Propagate
Step-3: Calculate the error
Step-4: Update the weights and bias
Step-5: Repeat for all input values

The error is calculated as the difference between the
calculated output from step-2 and the actual desired output.
The weights are updated by using the following equations (3)
and (4).

Wi=Wi+d(Wi) (3)
d(Wi)=Error * Xi (4)

Where, X is input to the logic gate and ‘i’ indicates the
number of inputs for logic gate i.e. 1,2,3 ………n.
 The output values for all logic gates are done by using the
[w1*a+w2*b+w3*c+……….+bias] neural network
computational equation-2 by using decision making threshold
logic [7]. This neural network computation equation can be
rearranged as a straight-line equation is used to classify the
digital logic gates outputs.

Let us consider an equation w1*a+w2*b+bias=0 which can
be rearranged as b=-(w1/w2)*a-bias/w2. This equation looks
like y=mx+c. Here m=-(w1/w2) and c=-(bias/w2). Let us
consider two input AND gate with a,b as inputs and out as
output. The output is logic-1 only when a and b are equals to
‘1’. In other cases the output is ‘0’. The Neural network can

classify these conditions by using the straight line equation as
shown in Figure 6.

 Figure 6. Neural Network Classifier for AND gate

The neural network-based output computations for all logic
gates are calculated by using Perceptron algorithm for
weights and Neural network classifier for output logic
decision are as shown below.
nandout=-2a-2b+3
andout=2a+2b-3
norout=-2a-2b+1
orout=2a+2b-1
notout=-2a+1
bufout=2b-1

The output is logic-1 when the value of computation is
large or positive. Similarly, the output is logic-0 when the
value of computation is small or negative.
 All the logic gates are analysed with the computation
equations and neurons are shown in Figure 7. The NAND
gate design has weights of -2,-2 and a threshold bias value of
3 to meet the requirements of its truth table.

Figure 7. All logic gates using ANN

 The AND gate design has weights of 2, 2 and a threshold
bias value of -3 to meet the requirements of its truth table. The
NOR gate design has weights of -2, -2 and a threshold bias
value of 1 to meet the requirements of its truth table. The OR
gate design has weights of 2, 2 and a threshold bias value of
-1 to meet the requirements of its truth table. The NOT gate
design has weight of -2 and a threshold bias value of 1 to meet
the requirements of its truth table. The BUFFER gate design
has weight of 2 and a threshold bias value of -1 to meet the
requirements of its truth table.

E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 20, June 2021
P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2009

CVR College of Engineering

 The XNOR and XOR logic gates with inputs a and b are
having the boolean equations with more than one product and
addition terms to generate the xnorout and xorout as shown
in equations (5) and (6).

xnorout= ab+a’b’ (5)
xorout= ab’+a’b (6)

 The above equations 1 and 2 are having two multiplications
and one addition terms with direct and inverted input literals.
The direct neural network implementation of XNOR and
XOR logic gates needs the multilayer feed forward network
due to its nature of Boolean equation [8]. Hence, the logic
gates XNOR and XOR can be designed by using universal
logic gates i.e. NAND and NOR. The NAND logic gate based
XNOR and XOR structural designs are shown in Figure 8 and
Figure 9 respectively. The neural network based NAND gate
is used in realizing the XNOR and XOR gates.

Figure 8. XNOR Gate using structural ANN NAND gates

Figure 9. XOR Gate using structural ANN NAND gates

 All the logic gates using neural networks and structural
gate level circuits are designed by using Verilog HDL and
Xilinx FPGA. In this paper, the design and realization of
neural network-based logic gates are done by using FPGA.

. FPGA REALIZATION RESULTS

All the logic gates using neural networks are designed and
realized by using Verilog HDL targeted for Xilinx Zed Board
Zynq Evaluation and Development Kit (xc7z020clg484-1).
All the logic gates are synthesized by using the Xilinx Vivado
EDA tool.The summary of cells utilized and synthesis result
for the unified single design with all logic gates is shown in
Figure 10.

Figure 10. Synthesis Result of Neural Network based all logic gates

The unified all logic gates design is synthesized with 16
cells, 10 I/O ports and 19 nets. This design resulted in input
signal as a, b and outputs for all logic gates as bufout, andout,
nandout, norout, notout, orout, xnorout, xorout signals as
shown in Figure 10.

. SIMULATION RESULTS

The simulation results of Neural Network based all logic
gates i.e. NAND, AND, NOR, OR, XNOR, XOR, BUFFER
and NOT using Verilog HDL with Xilinx Vivado EDA tool
are done by targeting Zynq FPGA evaluation board.

The simulation result of two input NAND gate with ‘a’, ‘b’
inputs and one output as ‘nandout’ signal is shown in Figure
11 for all test vectors.

Figure 11. Simulation result of NAND Gate

The simulation result of two input AND gate with ‘a’, ‘b’
inputs and one output as ‘andout’ signal is shown in Figure
12 for all test vectors.

Figure 12. Simulation result of AND Gate

E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 20, June 2021
P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2009

CVR College of Engineering

The simulation result of two input NOR gate with ‘a’, ‘b’
inputs and one output as ‘norout’ signal is shown in Figure 13
for all test vectors.

Figure 13. Simulation result of NOR Gate

The simulation result of two input OR gate with ‘a’, ‘b’
inputs and one output as ‘orout’ signal is shown in Figure 14
for all test vectors.

Figure 14. Simulation result of OR Gate

The simulation result of two input XNOR gate with ‘a’, ‘b’
inputs and one output as ‘xnorout’ signal is shown in Figure
15 for all test vectors.

Figure 15. Simulation result of XNOR Gate

The simulation result of two input XOR gate with ‘a’, ‘b’
inputs and one output as ‘xorout’ signal is shown in Figure 16
for all test vectors.

Figure 16. Simulation result of XOR Gate

The simulation result of NOT gate with ‘a’ as input and
‘notout’ as output signal is shown in Figure 17 for all test
vectors.

Figure 17. Simulation result of NOT Gate

The simulation result of BUFFER with ‘b’ as input and
‘bufout’ as output signal is shown in Figure 18 for all test
vectors.

Figure 18. Simulation result of Buffer

The simulation result of unified structure for Neural
Network based all logic gate with ‘a’, ‘b’ as inputs and
‘nandout’, ‘andout’, ‘norout’, ‘orout’, ‘xnorout’, ‘xorout’,
‘notout’, ‘bufout’ is shown in Figure 19 for all test vectors.

Figure 19. Simulation result of all logic gates

. CONCLUSIONS

All the logic gates are realized by using Verilog HDL with
Xilinx Vivado Design suite targeting for Xilinx Zynq-7000
SoC Evaluation Board.

The logic gates NAND, AND, NOR, OR, NOT, BUFFER
are realized by using single layer neural network with
computational equations using Verilog HDL. The XNOR and
XOR logic gates are realized by using structural
representation of neural network based universal NAND
gates. All these logic gates are simulated for different test
cases.

A unified structure for Neural Network based all logic gates
is designed and synthesized using Xilinx Vivado EDA tool.
This unified logic gate structure is simulated for different test
cases.

E-ISSN 2581 – 7957 CVR Journal of Science and Technology, Volume 20, June 2021
P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst2009

CVR College of Engineering

[1]. O. I. Abiodun et al., "Comprehensive Review of Artificial
Neural Network Applications to Pattern Recognition,"
in IEEE Access, vol. 7, pp. 158820-158846, 2019.

[2]. Haitham Kareem Ali and Esraa Zeki Mohammed, “
Design Artificial Neural Network Using FPGA”, IJCSNS
International Journal of Computer Science and Network
Security, Vol.10, No.8, August 2010.

[3]. Ganesh.R, “Design Procedure for Digital and Analog ICs
using Cadence Tools”, CVR Journal of Science and
Technology, Volume 9, December 2015.

[4]. A. Muthuramalingam, S. Himavathi, E. Srinivasan, “
Neural Network Implementation Using FPGA: Issues and
Application”, International Journal of Information
Technology, Vol. 4 Issue 2, p86, 2008.

[5]. Murat H. Sazli, “A Brief Review Of Feed-Forward Neural
Networks”, Commun. Fac. Sci. Univ. Ank. Series A2-A3,
V.50(1), pp 11-17 (2006).

[6]. Crescenzio Gallo, “Artificial Neural Networks Tutorial”,
January 2015.

[7]. F. Rosenblatt, “The perceptron: a probabilistic model for
Information storage and organization in the brain”,
Psychological Review, Vol. 65, No. 6, 1958.

[8]. Blount, D., Banda, P., Teuscher, C., & Stefanovic, D.
(2017), “Feedforward Chemical Neural Network: An In
Silico Chemical System That Learns XOR. Artificial
Life”, Volume 23, Issue 3, p. 295-317.

REFERENCES

