E-ISSN 2581 - 7957
P-ISSN 2277 - 3916

CVR Journal of Science and Technology, Volume 19, December 2020

DOI: 10.32377/cvrjst 1915

Performance Prediction of Task Workloads in
Work-Stealing Runtimes for NUMA Multi-core
Architectures

J. Yashasree!, A. Mallareddy” and Dr. B. Vikranth?
!Asst. Professor, CVR College of Engineering/CSIT Department, Hyderabad, India
Email: yashasree123@gmail.com
2Assoc. Professor, CVR College of Engineering/IT Department, Hyderabad, India
Email: malla.reddy@cvr.ac.in
3Professor, CVR College of Engineering/IT Department, Hyderabad, India
Email: b.vikranth@cvr.ac.in

Abstract: Work stealing is a popular load balancing
technique which is successfully adapted by various user level
task parallel runtime systems such as Cilk, TBB etc. On the
other hand, processor manufacturers are working on releasing
processors with more than one socket on chip, to overcome the
memory wall problem. If work stealing based run-time systems
are ported onto such multi-socket machines, it may lead to
performance issues. This paper has attempted to study the
impact of such multi-socket multi-core architectures on
performance of work stealing based run-times. In this paper, a
work stealing parameter called remote steal count is
introduced specially for assessing work stealing run-times on
multi-socket architectures. This paper also proposes a simple
regression model between work stealing parameters and
performance of task-based applications. This model is helpful
to predict the performance impact of task parallel applications
while porting them into multi-socket hardware environment.

Index Terms: Multi-core, Multi-socket, Non-Uniform
Memory Architecture, Load balancing, Work Stealing, worker
threads, Regression.

I.INTRODUCTION

A. Features of Modern Multi-Core Architecures

Modern High-Performance Computing processor consists
of more than one integrated memory controller (IMC) on a
chip to fill the gap between fast growing speeds of CPU and
compatible data delivery rates of memory units [1].
Introducing more than one such IMC serves the data needs
of threads pinned to cores belonging to different chips
simultaneously. By deploying these multiple DRAM
controllers, the memory bandwidth is improved and
contention for single memory controller hub can be reduced
[2]. The processors cores are grouped and deployed in a
socket. These processors are High Performance Server
processors such as Intel Xeon or AMD Opteron. The
processors are connected with high speed links such as
Quick Path Interconnect (QPI) links [2] [3] from Intel or
Hyper transport links from AMD. These links allow more
than one socket to be deployed in a single pack on high
performance servers. The presence of multiple memory
controllers make these processors behave as Non Uniform
Memory Architecture (NUMA). A dual socket Xeon

E5-2620 series processor architecture which is studied in
this paper as an experimental platform is presented in Fig. 1.

Figure 1. Dual socket Xeon E5 2620 processor [4]

It can be observed from the Fig 1 that it is a two-socket (2
NUMA nodes) architecture since, two separate memory
controllers (MC) are attached to individual sockets. It means
that all the six cores present in a socket can access the
memory bank’s memory through the local memory
controller. If these cores need to access any data from
memory attached to a remote socket, they experience more
memory latency. A thread which is pinned onto a CPU core,
can access data from a memory bank connected to its local
memory controller at a faster rate than that of a remote
memory bank connected to different sockets. The ratio of
the remote memory access latency to the local memory
access latency is called NUMA ratio (Rnuma) and is given

by

Teemotedccoss
RNL'MA - (1)

[
i LocofArcece

CVR College of Engineering 97

E-ISSN 2581 - 7957
P-ISSN 2277 - 3916

where Trocalaccess represents the local memory access time
and TremoteAccess Tepresents the memory access time on
remote memory node. It is obvious that remote memory
access latency is greater than local memory access time.

In the experimental setup, Intel’s Memory Latency
Checker [5] program is executed for calculating the memory
latency values of local and remote memory accesses. These
values are presented in TasLe I. This table clearly shows that
a thread is pinned to one of the cores on socket 0. The
latency involved in accessing a data item from socket 0 is
77.3 nano seconds whereas if the data item is located on
socket 1 memory module, the latency is 124.7 nano seconds.
The other way around is also approximately the same.

TABLEL
. LOCAL AND REMOTE ACCESS LATENCIES IN
XEON E5-2620

socket | 0 1
0 77.3 nS 124.7 nS
1 122.8nS | 75.0 nS

Rnuma factor is computed substituting the values of from
TaBLE I. Rnuma is considered as the average of remote
latency accesses by socket 0 and socket 1 which yield 1.625
for Xeon E5 2620 architecture.

B. Effect of NUMA architectures on Work Stealing run-time
environment
Work stealing algorithm is a popular load balancing
approach used in many user level run-time systems such as

Cilk [6], Intel Threading Building Blocks (TBB) [7], Wool

[8] and few implementations of OpenMP [9]. The common

approach followed in work stealing is: during the

initialization of the run-time system, a new worker thread is
created which is associated with each processor core at
hardware level. Associated with each worker thread, there is

a task queue that contains the tasks spawned by the

application program. These tasks are added to the queue.

Each worker thread pops out one task at a time and executes

the body of the task. Since the tasks arrive randomly as the

user program instantiates tasks, the queues associated with
worker threads may contain different counts of tasks,
thereby causing imbalance in the load. Keeping the goal of
balancing the load among worker threads as final objective,
work-stealing strategy designates the worker thread which is
under loaded as a thief worker. The thief worker attempts to
steal tasks from another worker’s queue. The worker from
which one or more tasks are stolen is called a victim worker.

If work stealing technique is applied in NUMA multi-core

architectures:

o Identity affinity must be guaranteed. Individual worker
thread is pinned to a processor core belonging to a
particular node.

e [f underlying hardware is NUMA, the memory locality
of these worker queues is important since it is frequently
accessed by the associated worker thread. In other
words, the worker queue must be bound to the memory
node(socket) where the worker thread is pinned to.
Worker threads access these task queues in almost fully
distributed way except in the instance of stealing
occurrence i.e. regular job of the worker thread is to pop
tasks from its own queue and execute the job on its

98

CVR Journal of Science and Technology, Volume 19, December 2020
DOLI: 10.32377/cvrjst 1915

processor. If locality of these queues is not considered,
and if the worker thread and its task queue are mapped to
different nodes due to the default first-touch policy of
Linux [10] the overall performance may be affected due
to increased remote memory access.

Figure 2. A thief worker attempting to steal task from remote
node

e If a thief and victim are pinned to two different cores
belonging to different sockets, the delays involved in
stealing introduce additional performance overhead
because of NUMA.

In this paper, the concept of remote stealing is analyzed,
and a technique is proposed to predict the remote stealing
attempts based on our experimental results.

C. Related Work

The effect of scheduling different threads that access
different data and shared data is analyzed in [11] but the
processors considered here are single socket machines with
multiple cores. This approach is confined to cache miss
values when data is shared among multiple threads on a
multi core processor when more than one core has common
last level cache. Threads that access shared data that is
bound to different NUMA nodes and its effects is analyzed
in [1]. Machine learning based performance prediction of
applications on single socket multi-core processors by using
the cache level parameters is done in [12]. Comparison and
performance analysis of different data structures as task-
queues in work stealing run-time systems is done in [13].
This proposed model in this paper is inspired by [12] but our
work is confined to prediction of task parallel application’s
execution times on work stealing run-time systems with
multi-socket processors. To the best of our knowledge, the
work carried out is unique and the proposed model is useful
in studying the effect of remote steal attempts on overall
performance of an application.

D. Organization of the paper

Section II of this paper describes the motivation of the
work behind the proposed strategy. In Section III, the
experimental setup and the procedure followed in order to
obtain work stealing parameters is elaborated. The
mathematical model is proposed in Section III based on the
empirical analysis. Section IV contains the concluding
points of the proposed strategies in the paper.

CVR College of Engineering

E-ISSN 2581 - 7957
P-ISSN 2277 - 3916

II. MOTIVATION

The work-stealing strategy proposed is also called as
randomized work-stealing [14] since it follows a technique
for choosing a victim by generating a random number. The
random number generated indicates the victim worker. If the
architecture on which the work stealing runtime is deployed
has a multi-socket NUMA architecture, the processors are
divided into equal portion on different sockets. In our
experimental platform (Xeon ES5-2620), there are two
sockets each, with its own memory banks. A total of 12
cores are arranged as 6 cores per socket. All the 6 cores of
the socket can access its local memory bank at low latency.
If the work stealing is randomized, the random victim
chosen by the algorithm may refer to a worker with remote
socket affinity.

e In randomized work stealing strategy, whenever a
worker thread finds no tasks in its own task queue, it
becomes a thief, and it can randomly choose a worker
queue as a victim for stealing tasks. But if randomly
chosen worker thread is pinned to a core belonging to a
different node, it is a remote steal attempt. This
scenario is depicted in Fig. 2.

e As a result of random stealing, unrelated tasks stolen
from other workers brought to execution on local
worker thread may result in performance isolation
problems [11].

III. EXPERIMENTAL RESULTS

A. Platform description

MATMUL benchmark program was executed on a
hardware platform with dual socket Xeon-E52620 processor
where each socket has 6 cores (12 hyper threads). Hyper
threading was intentionally disabled in BIOs while carrying
out our experimentation to ensure that cache contention
effects are minimized on the performance. The physical
memory of the hardware platform is a total of 16 GB, where
each socket is attached with its own integrated memory
controller connected to 8GB RAM. The work-stealing layer
of target experimental platform consists a total of 12 worker
threads pinned to each core.as shown in Fig.3. Separate
worker queues are associated with each worker thread.
Dispatcher module is responsible for initial static-
distribution of the tasks equally among all the worker
queues. The actual load imbalance occurs because of run-
time characteristics of tasks, since each task may execute for
different quantum of time when it is scheduled on to a
worker thread. These worker threads behave as software
level virtual processors, within the work stealing
infrastructure.

To analyze the remote work stealing effects, MATMUL
benchmark [16] implemented using work stealing runtime is
executed on the target experimental platform. The size of
matrix is taken as 8192x8192 for the following reasons:

e The size of matrix is intentionally taken as 8192 to be
greater than the kernel supported virtual memory page
size, to ensure that the data section of the program
occupies multiple pages in virtual memory system.
Consideration of a large matrix also increases the

CVR College of Engineering

CVR Journal of Science and Technology, Volume 19, December 2020
DOLI: 10.32377/cvrjst 1915

possibility of pages mapping across multiple nodes of
NUMA architecture.

e Huge number (8192x8192) of tasks must be generated
quickly so that the worker queues filled quickly
causing a load imbalance in terms of tasks thereby
causing considerable number of task-stealing attempts
by the worker threads.

19 3 AL R

B
() N [
5965 SS“_a-mS §66 64

Figure 3. Modular Architecture of Experimental Platform

The MATMUL workloads are run using randomized
work stealing policy with the additional feature of thread to
CPU pinning policy. Remote steal count is measured for
varying number of worker threads. It is ensured that the
number of worker threads is even, such that two different
halves of worker threads are bound to two different sockets
during the execution of experiments. For instance, the first
entry on the TABLE II represents the case with only two
worker threads. In such a case, one thread has been
explicitly bound on to a core belonging to one node and the
other worker thread onto a different core belonging to
different node. Explicit control of thread affinity is made
possible using sched _setaffinity control functions of Linux
environment.

While analyzing the remote steal attempts, special work
stealing parameters were introduced in the source code to
find the values of the following interested counters:

e Remote Steal Attempts: counts how many randomly
generated victim indexes are leading to refer a worker
thread on remote nodes.

e Remote False Steals count how many randomly
generated victim indexes are leading to a failure to select
a proper victim.

The common approach followed in randomized work

stealing to choose a victim is:

victim_id = random (seed) % ncpus 2)

Where ncpus represents the number of processors or

hardware-threads in the machine. On a multi-socket NUMA

99

E-ISSN 2581 - 7957
P-ISSN 2277 - 3916

multicore machine, n is the count of CPUs on all nodes. For
instance, if the target platform is with 2 sockets where each
socket has 6 processors, randomized work stealing strategy
generates the victim index in range [0:/1]. Among these
generated indexes, the indexes generated in range [6:11] will
result in a remote memory access. In the run-time’s source
code, a new parameter Remote Steal Attempts is used to
count such remote event occurrences. Sample average
values are presented in TABLE II after running the
experiment for 10 times. It can be observed from the
TABLE 1II that, 50% of the steal attempts are remote.
Techniques to minimize the value of false steal count were
proposed in [15]. Similar approaches can be useful for
NUMA multi-core runtime; the second counter Remote
False Steals can be minimized.

TABLEII.

REMOTE STEAL MISS RATIOS IN RANDOMIZED WORK STEALING
Number Of Average Average
Worker Threads | Remote Steal Count | Local Steal Count
2 23 21.6
4 41 49
6 46 54
8 56 55
10 66 56
12 61 45
14 123 88
16 243 235
18 334 401
20 354 473
22 226 312
24 102 77

B. Model for performance prediction

To investigate the effect of remote steal attempts on the
performance of the workload, the MATMUL benchmark
[16] has been executed for 50 times on dual socket
architecture. Sample values of this experiment are presented
in TABLE III. Unlike considering different number of worker
threads as shown in TABLE II, this time, the number of
threads is confined to the number of cores (i.e. 12 cores with
12 worker threads) to maintain identity affinity. The remote
tasks-steal-attempts parameter is obtained from the
experiments and respective execution times are noted. Using
these results, an effort is put to study the impact of remote
stealing attempts on overall performance of the task parallel
matrix multiplication application.

TABLE III.
SAMPLE VALUES OF REMOTE STEAL ATTEMPTS ON EXECUTION TIME
No of | Local | Remote .
S. Execution
No worker | Steals Steal Time
threads | count count
1 12 90 81 1867
2 12 99 74 1966
3 12 75 51 1835
4 12 86 86 1848
5 12 47 20 1781

CVR Journal of Science and Technology, Volume 19, December 2020

DOI: 10.32377/cvrjst 1915

While proposing the mathematical model, Pearson
Correlation Coefficient Calculator is used on the obtained
data, the value of R was 0:9123 and it is a strong positive
relationship between remote steals and execution time. The
relationship is presented in the Fig. 4. The results of
regression analysis are presented below where X represents
the remote steal count and § indicates the execution time
experienced by the MATMUL benchmark application.

Sum of X = 3555

Sum of Y = 91885

Mean X =71.1

Mean Y = 1837.7

Sum of squares (SSX) = 127796.5

Sum of products (SP) = 205740.5

Regression Equation =y =bX + a

b = SP/SSX = 205740.5/127796.5 = 1.60991

a=MY - bMX =1837.7 - (1.61*71.1) = 1723.2356
9=1.60991X + 1723.2356 3)

It can be observed from (1) and (3) that the b value 1.6099 is
approximately equal to Rnuma value 1.625 of (1). This is
very important conclusion which shows the strong
relationship between Ryuma factor and the performance. Fig.
4 shows the predictive model of performance given the
number of remote steal counts as input. The error value
between predicted performance (50 values) and emperical
performance (50 values) is computed using root mean
square method that yeilded error value 5.1683. This is a
insignificant error with respect to execution time factor and
the model is apt for prediction of performance.

Figure 4. Regression relationship between remote steal count and
execution time

100 CVR College of Engineering

E-ISSN 2581 - 7957
P-ISSN 2277 - 3916

IV. CONCLUSIONS

In this paper, the impact of multi-socket multi-core
architectures on randomized work stealing load balancing
algorithm implementation is analyzed. This paper also
proposes a linear regression model to predict the
performance of task-based application, based on the work
stealing parameter called remote steal count. The proposed
model confirms the dependency of performance of an
application on Rxuma value of the target architecture.

REFERENCES

[1] Z. &. G. T. R. Majo, " Memory system performance in
a NUMA multicore multiprocessor”, in In Proceedings
of the 4th Annual International Conference on Systems
and Storage , (2011, May)..

[2] A. B. R. A. M. A. R. J. Dimitrios Ziakas, "Intel R
quickpath interconnect architectural features
supporting scalable system architectures”, in IEEE
18th Annual Symposium on High Performance
Interconnects, 2010.

[3] D. E. A. Ziakas, "Intel® quickpath interconnect
architectural features supporting scalable system
architectures.", 2010.

[4] "IntelR . Xeon E5 2620v3 processor architecture",
Intel,2014.[OnlineAvailable: ~ ProcessorE5-2620-v3-
15M-Cache-2.40-GHz.

[5] K. K. A. T. W. V Viswanathan, ". Intel memory
latency checker", Intel Technology Journal, 2015.

[6] C.F.J.B.C.K.Robert D Blumofe, "Cilk: An efficient
multithreaded runtime system. Journal of parallel and
distributed", Journal of parallel and distributed
computing, vol. 37, no. 1, pp. 55-69, 1996.

[7] C. Pheatt, "Intel R threading building blocks," Journal
of Computing, vol. 23, no. 4, pp. 298-298, 2008.

[8] K.-F. Faxén, "Wool-a work stealing library", 2009.

CVR Journal of Science and Technology, Volume 19, December 2020

DOI: 10.32377/cvrjst 1915

[9T F. F. N. G. B. N. R. & W. P. A. .. Broquedis,
"Dynamic task and data placement over NUMA
architectures: an OpenMP runtime perspective", 2009.

[I0]M. D. D. H. A. G. H. Martin J Bligh, " Linux on
NUMA systems”., volume 1, in In Proceedings of the
Linux Symposium, Pages:89-102, 2004.

[I1]F. G. S. K. A. Y. S. Dhruba Chandra, " Predicting
inter-thread cache contention on a chip multi-processor
architecture”., pages 340-351. IEEE, 2005 in 11th
IEEE International Symposium on High-Performance
Computer Architecture HPCA-11. , 2005.

[12]A. N. A. R. W. Jitendra Kumar Rai, "Using machine
learning techniques for performance prediction on
multi-cores. In Applications and Developments in
Grid, Cloud, and High Performance Computing",
Applications and Developments in Grid, Cloud, and
High Performance Computing. IGI Global, pp. 259-
273,2013.

[13]B. Vikranth, "Performance Analysis of Load Balancing
Queues in User Level Runtime Systems for Multi-Core
Processors", CVR Journal of Science and Technology,
vol. 11, pp. 87-90, 2016.

[14]Robert D Blumofe and Charles E Leiserson,
" Scheduling multithreaded computations by work
stealing", Journal of the ACM (JACM), vol. 46, no. 5,
pp. 720-748, 1999.

[15]1B. R. W. A. C. R. R. Vikranth, "Topology aware task
stealing for on-chip NUMA multi-core processors", in
Procedia Computer Science, Barcelona, 2013.

[16]J. P. P. A. P. S. C. Burkardt, "MATMUL: An
Interactive Matrix Multiplication Benchmark," IETE
Journal, p. 640, 1995.

[17]1. Panourgias, " Numa effects on multicore, multi
socket systems", The University of Edinburgh, 2011.

CVR College of Engineering 101

