
FPGA Implementation of CORDIC I using
Redundant Arithmetic
 Niharika Chaudhary1 and T. Subha Sri Lakshmi2

1PG Scholar, CVR College of Engineering/ECE Department, Hyderabad, India
Email: niharikaodf@gmail.com

2Asst. Professor, CVR College of Engineering/ECE Department, Hyderabad, India
Email: subha.sri@cvr.ac.in

Abstract: This paper provides high speed, low power
consumption, and less area utilization of the Coordinate
Rotation Digital Computer (CORDIC) Algorithm for digital
signal processing applications. Here methodology is built on a
multiplexer-based, that is used to accomplish the fast and
efficient hardware on FPGA for sine and cosine values. A 6-
stage CORDIC is calculated by four arrangements scheduled
i.e., Unrolled CORDIC and MUXes based CORDIC with and
without pipelining up to three stages. The proposed
architecture has adders, subtractors, and shifters. Shifters are
replaced with multiplexers up to 3-stages. All remaining adders
and subtractors are traded with Redundant Arithmetic. A 16-
bit CORDIC algorithm is designed to achieve the sine and
cosine function values by using VIVADO 20.1. Comparisons
are performed between Unrolled CORDIC structure and
MUXes based CORDIC structure for sine and cosine values in
terms of timing and power consumed. MUXes based CORDIC
structure attains high operating frequency, less area utilization,
and low power consumption for hardware implementation.

Index Terms: CORDIC Algorithm, Rotation Mode,
Multiplexer, Pipelining, Redundant Arithmetic, Unrolled
CORDIC

I. INTRODUCTION

In 1956 the CORDIC algorithm was presented by Jack
Volder while building a real-time navigator [1]. CORDIC is
simple and efficient because requires only addition,
subtraction, shifting of bits, and a lookup table. Sine and
Cosine can be derived from any complex functions. These
functions are used in a wide range of applications such as
DSP, wireless communication, biometrics, robotics, etc.
CORDIC method is castoff to generate hardware that
performs sine and cosine calculations. CORDIC is used in a
wide variety of elementary transcendental functions
involving exponentials, logarithms, and square roots.
Thereafter it was polished by Walter and others. In this
algorithm, the angle is broken into the sum of angles and
micro rotated by predefined angles. The CORDIC algorithm
is implemented in the FPGA platform because the speed and
computational power of ASICs are merged with the
resilience of microprocessors [3]. CORDIC algorithm is
castoff in various applications such as calculators,
mathematical coprocessor units, clock recovery circuits,
waveform generators. The iterative architecture provides
hardware implementation with minimum size and
throughput as a trade-off, while parallel and pipelined
CORDIC architecture offers high speed and high-
throughput computation.

CORDIC algorithm comprises diverse architectures for
mapping into hardware. These are grouped as folded and
unfolded (as shown in figure 1). These operations are done
by the knowledge of three iterative calculations [14]. First
method architecture of folded implemented by copying
every difference equation of CORDIC into time
multiplexing and hardware. In a single functional unit, all
these operations are done, so it will provide a trading area
for speed [16]. It can be categorized into two kinds; folded
bit-serial and folded word-serial architectures. It will check
the functional unit implementation logic for every one bit or
word of CORDIC in each iteration

Figure 1. Nomenclature of CORDIC

Cordic is an iterative method of performing the
microrotations for arbitrary angles using shifts and addition
[1]. This MUXes based approach shows high speed and
hardware efficient CORDIC, which can be used for DSP
applications. A reconfigurable CORDIC can be operated in
both rotation and vectoring mode. In this paper, only the
rotation mode is discussed.

Nevertheless, the number of micro rotations is a serious
downside of the critical path delay, the micro-rotation
increases propagation delay In this paper, proposed
CORDIC architecture the adders, subtractors, and shifters
are replaced by multiplexers and redundant Arithmetic.
CORDIC is designed in Unrolled CORDIC, pipelined
Unrolled CORDIC, and MUXes based CORDIC up to 3
stages with and without pipelining. Replacement of the
multiplexer and Redundant Arithmetic in the place of adders
and shifters minimize the area of utilization on an FPGA,
which intern reduces the power consumption, and surges the
speed of operation.

This paper provides a prototype for implementing
unrolled and pipelined architectures.

II . CORDIC ALGORITHM

The CORDIC programs on an iterative process that
executes vector rotations by representing them as arbitrary
angles by the application of shift and add operations [3]. The
generalized rotation transform from the results of the Volder
algorithm is given below [4].

 (1)

 (2)

This Cartesian plane switches by the angle , as
publicized in figure 2.

Figure 2. CORDIC angle rotation by .

The above equations can readapt as:

 (3)

 [f - (4)

These rotations of angles are forced such that tan = ±2-i.
This will decrease tangent multiplication by the simple shift
operation. By the execution of elementary rotations
alternative rotation of arbitrary angles is managed. Through

a sequence of micro-rotations of elementary angles (i)
CORDIC rotations are achieved. By decomposing into
elementary rotations in a sequence style the micro-rotations
is achieved:

 i (5)

By using these we can form simple iterative rotations

[ri + fi tan i] cos i = r i+1 (6)

[fi ri tan i] cos i = f i+1 (7)

 From trigonometric identities we have:

cos i = 1/ (1+tan2 i)1/2 (8)

Substituting equation (8) in equation (6) and (7) we have:

r i+1 = [ri + fi tan i] / (1 + tan2 i)1/2 (9)

f i+1 = [fi ri tan i] / (1 + tan2
i)1/2 (10)

 To guarantee that tangent multiplication reduced to
a small shifting operation, the rotation angles obtained from
the following relation:

Tan i = ±2-i (11)

 Here i represent the total number of iterations. And

tan i is traded in above equation by substituting equation
(12) in (9) and (10), we have:

 r i+1 = [ri + fi .ki. 2-i].Ji (12)

 f i+1 = [fi ri .ki. 2-i].Ji (13)

 Here,

 1/ (1+2-2i) 1/ 2 = Ji, denoted as scale of constant.

 ki = ±1, where ki is decision function.

 The constant scale value from obtained equations of
vector rotation is eradicated by a shift-add algorithm. In the
system, the product term Ji the use of
iterations in infinite times this product value has a range up
to 0.6073. Rotation algorithm gain is represented as An
where,

 An [1+2-2i]1/2 (14)

 The gain is unevenly equal to 1.647 for infinite
iterations. However, this gain is calculated with the support
of the total number of iterations, and also it depends on the
compound rotation angle is discrete by a sequence of
elementary rotations in the way of the direction. These
sequences are denoted as decision vectors. And all these
vectors, are used for the angular calculation system,
depending on the values of binary arctangents. Translations
are completed utilizing a look-up table among the angular
system and any other systems. For each iteration, an
enhanced conversion technique is employed by adding
subtractor and adder unit to it for elementary rotation angles.
The above angles are expressed by an appropriate angular
unit. A small lookup table supplies the angular values, and
also we can use hardwired, depending on the suitable
implementation.

 Accumulator angle is added to the third value of
difference equation to CORDIC algorithm:

zi i = Z i+1

 Z i+1 = zi ki tan-1 (2-i)

Hence, the CORDIC micro-rotation equations are
inscribed as:

 x i+1 = xi yi. 2-I.ki (15)

 y i+1 = yi + xi. 2-I.ki (16)

 z i+1 = zi ki tan-1 (2-i) (17)

III . CORDIC MODES

The CORDIC algorithm is divided into two modes.
Rotation mode is the one [15], in which the input vector
value is rotated by a specified angle. The second one is
Vectoring mode where the input vector is rotated to the x-
axis.

A. Rotation Mode
In this mode, some favored rotation angle is set by the

angle accumulator. The trigonometric, hyperbolic, or some
other transcendental values are found through these rotation
angles as the argument. Angle accumulators will take care of
the rotation decision. Here, the decision is made and
evaluated at every rotation.
CORDIC equations in this model are written as:

li hi. 2-I.ki = l i+1

hi + li. 2-I.ki = h i+1

ti ki tan-1 (2-i) = t i+1

Here,
ki = -1 if ti < 0 +1, else

 n iterations after it produces the following results:
tn = 0

[y1 cosz1 + x0 sinz1] An =H n

[x1 cosz1 y1 sinz1] An = Ln

B. Vectoting Mode
In vectoring mode, the input vector of the CORDIC

rotator is circled through whichever angle is essential to
align the resultant vector with the x-axis. The outcome of the
vectoring operation is a scaled magnitude of the original
vector (the x component of the result) and rotation angle. At
every rotation, the vectoring function works by minimizing
the y component of the residual vector. The sign of the
residual y component is used to determine which direction to
rotate next. If the angle accumulator is initialized to zero, it
holds the traversed angle at the end of the iterations.

A CORDIC equation in vectoring mode follows:

q j+1 = q j m j .w j. 2-j

m j +1 = m j + q j .w j. 2-j

f j +1 = f j w j tan-1 (2-j)

Here,
w j = +1 if m j < 0 -1, else

n iterations after it produces following results:

qn = An (q0
2+m0

2)1/2

f n = tan-1(m0 / q0) +F0

mn = 0

IV. REDUNDANT ARITHMETIC

In implementations as the computations always start from
the most significant bit (MSB). Redundant number
systemAdders play a major role in CORDIC and due to
carry propagation in adders the delay increases rapidly and
slows down the speed of operation so that, move on to
Redundant Arithmetic to decrease the delay and increase the
speed of operation. The conservative tasks like subtraction,
multiplication, and addition produce carry-propagation
chains. A redundant number scheme was announced to
resolve this problem [10]. The redundant number scheme
improves the arithmetic operations speed. This method is
used for sign processing and additional applications. When
the reconversion and conversion circuitry shares the
information among all the function units, this method also
saves the area in VLSI and also power dissipation, due to
these two reasons system will become more effective.
Redundant number systems (RNS) suitable for numerically
intensive applications. RNS can prevent or captures the
carry propagation, by generating parallel adders with the

word-length. This will be produced in an RNS format by
using low latency results. RNS can improve performance in
mathematically intensive applications. However, the
implementation of an arithmetic circuit is expensive because
for each symbol multiple bits are required. These circuits
will eliminate carry propagation, by giving near-constant
addition delay, regardless of the operand width. The
Redundant number system (RNS) has a unique property of
"carry-free" addition which makes them beneficial in
implementations as the computations always start from the
most significant bit (MSB).

A. Carry- Free Addition Radix-2
 Redundant number representations limit the carry

propagation to a few bit positions and are usually
independent of word length W. This carry free propagation
feature enables fast addition

The logic implementation is varied because the algorithm
for signed binary digit addition is not unique. By using two
binary unsigned numbers, it can perform the radix-2
operation, one bit is negative and another bit is positive and

it can be represented as [11]

 xi
+ and xi

- are both negative as well as positive
numbers these bit values are 0 and 1, xi should vary {1,0,1},
all these values are given in Table I.

TABLE I.

x+ x- X
 X= x+ x-

0 0 0 00

0 1 -1 01

1 1 1 10

1 1 0 11

B. Hybrid addition Radix-2

In this hybrid operation, the 2 input operands are a
redundant signed-digit representation and conventional
unsigned number. The output operand obtained is in
redundant signed-digit representation. For The signed-digit
number addition X<2.1> is considered which is a radix-2
operation, where 2 indicates the radix-2 job, and 1 indicates
the largest digit value and an unsigned conventional number
Y.

 X<2.1> + Y = S<2.1> (19)

In 2 steps we can get an added value. Here 1st step all the
bits are in parallel positions i i -1), W being the
word length. The intermediary sum pi = xi + yi is calculated,
it ranges between {1, 0, 1, 2}. This addition can be

 xi + yi = pi = 2ti + ui, (20)

Table II summarizes hybrid radix-2 addition, in that table
ti denotes transfer digit and it varies value from 0 or 1, and it
is also represented as ti

+ and ui denotes interim added sum
and it varies the values either 1 or 0, and it is also
represented as ui

-.

TABLE II.
SUMMARIZES THE DIGIT SETS INVOLVED IN HYBRID RADIX-2 ADDITION

Digit Binary
Code

Radix 2
Digit Set

xi xi
+ - xi

- {1,0,1}

yi yi
+ {0,1}

pi = xi + yi {1,0,1,2}

ui -ui
- {1,0}

ti ti
+ {0,1}

si = ui + ti-1 si
+ - si

- {1,0,1}

The most significant interim sum digit uw has a value
zero, the same as the least significant transfer digit t-1.

The digit sum si is designed by linking t+
i-1 and also ui

-,
which is one of the single-digit in the second step:

 si = t+
i-1 ui

-. (21)

Replacing the corresponding binary codes from Table 2
in (3a) we get:

 xi
+ - xi

- + yi
+ = 2ti

+ + ui
- (22)

These all operations are performed by using type-1 full
adder [12], it is nothing but plus-plus-minus adder (PPM)
[13] as shown in figure 3. The four-digit hybrid radix-2
adder is shown in figure 4.

Figure 3. Hybrid Radix 2 PPM Adder

 X= X+ - X- (18)

REDUNDANT NUMBER SYSTEM F RADIX-2

__ __

__

Figure 4. Four Digit Hybrid Radix-2 Adder

C. Hybrid Radix-2 subtraction
MMP subtractor does subtraction on a redundant binary

signed digit number system. To draw high-speed systems
this subtractor shown in Figure 5 is beneficial as it permits

ies out subtraction of a
redundant number x where, x = x- and x+ to an unsigned
binary number y, resulting in another redundant number
expressed by an interim sum and a transfer digit . the
input bits are defined as x+, x-, y {0,1}, and the output bits
are , {0,1}.
The following operations are performed by subtractor:

 x - y = =>

 (23)

where x is a redundant number expressed as
 x =

 Therefore,

 = (24)

 Figure 5. Hybrid Radix 2 MMP Subtractor

The interim sum and the transfer digit is stated by
the following Boolean expression using the Truth table:

=

=

After simplification of the above equations, a new
the equation for the interim sum and the transfer digit
is

=
__

= (25)

V . UNROLLED CORDIC ALGORITHM

CORDIC algorithm calculates the sine and cosine values
of input angles concurrently in rotation mode. Figure 6
shows the unrolled CORDIC. It carries redundant adders,
and subtractors, and shifters respectively. The subtraction or
addition of angle succeeded based on the MSB of the
previous angle in every rotation of the vector. The right
shifts for division are executed by shift registers. Initially,
for sine and cosine angles =1 and = 0. These initial
values are shifted by i bits, where i= {1,2,3,4,5,6} which is
divided by 1,2,4,6,8,16,32 at each stage. Discrete sine and
cosine values range from -1 to 1 [18].

Figure 6. Construction of general unrolled CORDIC

As initial conditions has the outcome of discrete sine and
cosine values varying from -1 to 1, so the fractional values
are realized in FPGA by -100 to 100. zi is varied for every
clock pulse to generate sine and cosine values. The rest
values are computed by using the quadrature symmetry
property of sine and cosine waves.

VI . PIPELINED UNROLLED CORDIC ALGORITHM

Pipelining is an implementation technique where a bundle
of data processing instructions is overlapped. These
instructions are given in a series. The pipeline process
maximum frequency of operation in CORDIC. The
architecture of the pipelined unrolled CORDIC is shown in
Figure 7 [19,20].

Enlarged area and N-clock delays are the disadvantages
of pipeline architecture. Hence, several pipelined registers
and their positions are computed repetitively.

Figure 7. The architecture of Pipelined unrolled CORDIC

Four intermediate stages of pipelined registers are used to
get optimized output.

VII . MULTIPLEXER BASED UNROLLED CORDIC
ALGORITHM

CORDIC archi a is reduced via multiplexer [20].
A multiplexer is used in the place of three stages in general
unrolled CORDIC. The output is equal to as =0 in the
first stage in original unrolled CORDIC architecture so the
1st st

= = 61
= = 61
= 45 (26)

In the first iteration stage, is calculated by subtraction
since is always positive as it varies from 0 to 90.
If is positive, then the second stage output is described as

= - ((((() = ((((() = 31
= + ((() = = 91 (27)

If is negative, then the second stage output is
= + (((((() = = 91
= -() == = 31 (28)

Figure 8 shows two multiplexers used for the second
stage.

Figure 8. 2 multiplexers used for the second stage

Equivalently, by using 4 multiplexers the third stage is
implemented with the following equation. is computed by
the formula

 = (29)

For the third stage multiplexers, the above equation is
used as the selection line input of the multiplexer.

For = positive , = positive

= + ((((() = (((() +((((() = = 99
= + (((() = (((() -((((()= = 7 (30)

 For = negative , = positive

= + ((((() = ((((() +(((() = = 99
= + ((() = (((() -((((() = = 83 (31)

For = positive , = negative

= - ((((() = (((() - ((((() = = 83
= + ((() = (((() +((((() = = 53 (32)

For = negative, = negative

= - ((((() = ((((() +((() = = 7
= + ((() = ((() + ((((() = = 99 (33)

The area is minimized as adders with 2:1 multiplexers are
swapped up to the 3rd stage. There is an exponential
increase in multiplexers i.e, 6,14,30 multiplexers for 3, 4,
and 5stages as adders and shifters are replaced with mux.
The fixed values expand due to the growth in multiplexers.
The deletion of the 5th stage needs thirty muxes with sixteen

fixed values. On that occasion, utilizing a ROM is more
effective.
The CORDIC-I algorithm runs on rotation mode whose
input is =0 and =1. The equation to used is

f i+1 = . [fi ri .di. 2-i]

r i+1 = . [ri + fi .di. 2-i]

At this time, is the scaling factor with 0.611 is multiplied
with the input = 1 Discrete sine and cosine values are
varied from -100 to 100 for FPGA realization.
Equations 30-33 are solved by taking input = 61
and Y= 0.

The obtained values are

P = xi /8 = 8

Q = 11 xi /8 = 84

R = 7 xi /8 = 53

S = 13 xi /8 = 99

Figure 9 shows the architecture of unrolled CORDIC
based on 2:1 mux.

Figure 9. The architecture of unrolled CORDIC with MUX

VIII . MULTIPLEXER BASED PIPELINED UNROLLED
CORDIC ALGORITHM

The multiplexer based pipeline CORDIC utilizes the
same computation as used for unrolled CORDIC with a
multiplexer. Architecture is shown in Figure 10.

Here, subtractors, adders, and shifters are swapped up to
3 stages with a multiplexer.

Figure 10. The architecture of Pipelined unrolled CORDIC with MUX

IX . RESULTS

An 8-bit CORDIC for constructing sine and cosine
function with and without pipelining based on Unrolled and
multiplexer based CORDIC. The initial design entry is
finished using VERILOG. The core is implemented with the
following synthesis description:

Design Entry: VERILOG
Synthesis and Simulation: VIVADO 18.1
Platform: FPGA
Family: Zynq-7000
Target board: xc7z020clg484-1
Optimization area: Power

Figure 11 is the implemented result of the Unrolled
CORDIC architecture schematic obtained from the tool.
In Fi

angle obtained as output. The addresses are the stored
predefined values of the CORDIC angles.

Calculation of zout : =
=

 + ==
=

+ =
 + =

Figure 11. Schematic of Unrolled CORDIC

Figure 12. Simulation Result of Unrolled CORDIC

Figure 13. Schematic of Pipelined Unrolled CORDIC

Figure 14. Simulation Result of Pipelined Unrolled CORDIC

Figure 13 is the implemented result of the pipelined
unrolled CORDIC architecture schematic obtained from the
tool.

i

angle obtained as output.
The addresses are the stored predefined values of the
CORDIC angles.

Figure 15 is the implemented result of unrolled CORDIC
using MUXes schematic obtained from the tool.

angle obtained as output.
The addresses are the stored predefined values of the
CORDIC angles.

Figure 15. Schematic of Unrolled CORDIC using MUXes

Figure 16. Simulation Result of Unrolled CORDIC using MUXes

Figure 17. Schematic of Pipelined Unrolled CORDIC using MUXes

Figure 18. Simulation Result of Pipelined Unrolled CORDIC using MUXes

Figure 17 is the implemented result of pipelined unrolled
CORDIC using with MUXes schematic obtained from the

ng with x, y,

microrotation angle obtained as output.
The addresses are the stored predefined values of the
CORDIC angles.

TABLE III.

VIVADO IMPLEMENTATION

SIN
60

COS
60

SIN
45

COS
45

No.of
Slices
used
(Area)

Power
(W)

Off
set

Tim
ing
(nS

)
Unrolled
CORDIC
Without
Mux

50 87 73 69 580 48.6 60.
21

Unrolled
CORDIC
With
Mux

50 86 63 67 427 43.1 53.
42

Pipelined
CORDIC
Without
Mux

50 87 69 73 594 42 53.
59

Pipelined
CORDIC
With
Mux

50 86 63 67 414 38.7 53.
51

 COMPARISON O FOUR SCHEMES BASED RESULTS OBTAINED IN

In this paper proposed algorithm achieves high speed, less
hardware implementation, and less power consumption on
FPGA. Table III shows a comparison of all four
architectures in terms of area and power. The area and
power are reduced because the adders, subtractors, and
shifters are replaced with the multiplexer up to 3 stages.
This lessens the complexity of architecture by which it runs
faster and efficiently. Thus, the decrease in area is shown in
Table III as the number of slices.

X. CONCLUSIONS

This paper discusses 8-bit CORDIC using the Unrolled
and multiplexer-based architectures with and without
pipelining for generating the sine and cosine values. A 6-
stages CORDIC is implemented with unrolled CORDIC,
pipelined CORDIC general, and Multiplexer based
architecture up to 3 stages. From the results observations, it
is found that the multiplexer-based approach operates on
only 11% of the total area when compared with without
MUXes which uses 16%. Therefore, 25% of the circuitry
can be detached when 3 stages are eliminated. In terms of
Power, the pipelined Unrolled CORDIC MUXes based
utilizes only 39% of the total power available on FPGA. The
pipelined Unrolled CORDIC based on MUXes has a
maximum frequency of 88.75MHz which is relatively good
as compared with others. As shown in Table III, the
pipelined Multiplexer built CORDIC algorithm decreases
equally area and power but increases the speed of operation.
Swapping the multiplexer in the place of adders, subtractors,
and shifters up to 3 stages and replacing the adders and
subtractors of all 6-stages with Redundant Arithmetic
reduces area utilization and power consumption on FPGA
and increase the speed of operation. Henceforth, built on a
user-defined application, any one of the 4 methodologies
can be selected.

REFERENCES
[1]

Comparison of Non-redundant and Redundant FPGA based
Unfolde
of Electronics and Communication Technology, vol. 3, issue
1 pp 85-89, March 2012.

[2]
IRE Trans. Electronic Computing, Volume EC-8,

pp 330 - 334, 1959.
[3]

Proceedings of the AFIPS Spring Joint
Computer Conference, pp. 379 385, May 1971.

[4] Journal of
VLSI Signal Processing, vol. 25, no. 2, pp. 107 112, 2000.

[5]
/SIGDA International

Symposium on Field Programmable Gate Arrays, pp 191-
200.

[6] De Lange A. A. J., Van der Hoeven A. J., Deprettere E. F.,
ating-point pipeline CMOS CORDIC

Proceedings of the IEEE International
, vol. 3, pp.

2043 2047, June 1988.
[7]

IEEE Transactions on Computers, vol.
23, no. 10, pp. 993 1001, 1974.

[8]
concurrent computing structures for matrix arithmetic and

Computer, vol. 15, no. 1, pp. 65 82,
1982.

[9] Cavallaro J. R. a
Journal of Parallel and Distributed

Computing, vol. 5, no. 3, pp. 271 290, 1988.
[10] -factor-redundant-

Proceedings of the 10th IEEE Symposium on
Computer Arithmetic, pp. 264 271, June 1991.

[11]
CORDIC architecture dedicated to compute the Gaussian

Engineering
Applications of Artificial Intelligence, vol. 16, no. 7-8, pp.
595 605, 2003.

[12] -pipelined direct

IEEE Transactions on Circuits and Systems I, vol. 53, no. 5,
pp. 1035 1044, 2006.

[13] Antelo E., Lang T. and Bruguera J. D. -High Radix
Journal

of VLSI Signal Processing, Kluwer Academic Publishers,
Netherlands, Vol.25, 141.153, 2000.

[14]
Constant-Factor Implementation of Multi-Dimensional

Journal of
VLSI Signal Processing, Kluwer Academic Publishers,
Netherlands, Volume 25, pp 155.166, 2000.

[15] Choi J. H., Kwak J. H. and Swartzlander, Journal of VLSI
Signal Processing, Kluwer Academic Publishers,
Netherlands, Volume 25, 2000.

[16]
IBM Journal, vol. 6, no. 2, pp. 210 226, 1962.

[17] Deprettere E., Dewilde P., and Udo R., "Pipelined CORDIC
Architecture for Fast VLSI Filtering and Array Processing,"
Proc. ICASSP'84, 1984, pp. 41.A.6.1- 41.A.6.4.

[18] M. Chinnathambi, N. Bharanidharan, and S. Rajaram,
"FPGA implementation of fast and area efficient CORDIC
algorithm," 2014 International Conference on
Communication and Network Technologies, Sivakasi, 2014,
pp. 228-232.

[19] P. Nilsson, "Complexity reductions in unrolled CORDIC
architectures," 2009 16th IEEE International Conference on
Electronics, Circuits, and Systems - (ICECS 2009),
YasmineHammamet, 2009, pp. 868-871.

[20] V. Naresh, B. Venkataramani and R. Raja, "An area efficient
multiplexer based CORDIC," 2013 International Conference
on Computer Communication and Informatics, Coimbatore,
2013,pp.1-5.

