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Abstract: This paper provides high speed, low power 
consumption, and less area utilization of the Coordinate 
Rotation Digital Computer (CORDIC) Algorithm for digital 
signal processing applications. Here methodology is built on a 
multiplexer-based, that is used to accomplish the fast and 
efficient hardware on FPGA for sine and cosine values. A 6-
stage CORDIC is calculated by four arrangements scheduled 
i.e., Unrolled CORDIC and MUXes based CORDIC with and 
without pipelining up to three stages. The proposed 
architecture has adders, subtractors, and shifters. Shifters are 
replaced with multiplexers up to 3-stages. All remaining adders 
and subtractors are traded with Redundant Arithmetic. A 16-
bit CORDIC algorithm is designed to achieve the sine and 
cosine function values by using VIVADO 20.1. Comparisons 
are performed between Unrolled CORDIC structure and 
MUXes based CORDIC structure for sine and cosine values in 
terms of timing and power consumed. MUXes based CORDIC 
structure attains high operating frequency, less area utilization, 
and low power consumption for hardware implementation. 

Index Terms: CORDIC Algorithm, Rotation Mode, 
Multiplexer, Pipelining, Redundant Arithmetic, Unrolled 
CORDIC 

I.  INTRODUCTION

In 1956 the CORDIC algorithm was presented by Jack 
Volder while building a real-time navigator [1]. CORDIC is 
simple and efficient because requires only addition, 
subtraction, shifting of bits, and a lookup table. Sine and 
Cosine can be derived from any complex functions. These 
functions are used in a wide range of applications such as 
DSP, wireless communication, biometrics, robotics, etc. 
CORDIC method is castoff to generate hardware that 
performs sine and cosine calculations. CORDIC is used in a 
wide variety of elementary transcendental functions 
involving exponentials, logarithms, and square roots. 
Thereafter it was polished by Walter and others. In this 
algorithm, the angle is broken into the sum of angles and 
micro rotated by predefined angles. The CORDIC algorithm 
is implemented in the FPGA platform because the speed and 
computational power of ASICs are merged with the 
resilience of microprocessors [3]. CORDIC algorithm is 
castoff in various applications such as calculators, 
mathematical coprocessor units, clock recovery circuits, 
waveform generators. The iterative architecture provides 
hardware implementation with minimum size and 
throughput as a trade-off, while parallel and pipelined 
CORDIC architecture offers high  speed and high-
throughput computation. 

CORDIC algorithm comprises diverse architectures for 
mapping into hardware. These are grouped as folded and 
unfolded (as shown in figure 1). These operations are done 
by the knowledge of three iterative calculations [14]. First 
method architecture of folded implemented by copying 
every difference equation of CORDIC into time 
multiplexing and hardware. In a single functional unit, all 
these operations are done, so it will provide a trading area 
for speed [16].  It can be categorized into two kinds; folded 
bit-serial and folded word-serial architectures. It will check 
the functional unit implementation logic for every one bit or 
word of CORDIC in each iteration 

Figure 1.  Nomenclature of CORDIC 

Cordic is an iterative method of performing the 
microrotations for arbitrary angles using shifts and addition 
[1]. This MUXes based approach shows high speed and 
hardware efficient CORDIC, which can be used for DSP 
applications. A reconfigurable CORDIC can be operated in 
both rotation and vectoring mode. In this paper, only the 
rotation mode is discussed.  

Nevertheless, the number of micro rotations is a serious 
downside of the critical path delay, the micro-rotation 
increases propagation delay In this paper, proposed 
CORDIC architecture the adders, subtractors, and shifters 
are replaced by multiplexers and redundant Arithmetic. 
CORDIC is designed in Unrolled CORDIC, pipelined 
Unrolled CORDIC, and MUXes based CORDIC up to 3 
stages with and without pipelining. Replacement of the 
multiplexer and Redundant Arithmetic in the place of adders 
and shifters minimize the area of utilization on an FPGA, 
which intern reduces the power consumption, and surges the 
speed of operation. 

This paper provides a prototype for implementing 
unrolled and pipelined architectures. 



II .  CORDIC ALGORITHM

The CORDIC programs on an iterative process that 
executes vector rotations by representing them as arbitrary 
angles by the application of shift and add operations [3]. The 
generalized rotation transform from the results of the Volder 
algorithm is given below [4]. 

   (1)   

     (2) 

This Cartesian plane switches by the angle , as 
publicized in figure 2. 

Figure 2.  CORDIC angle rotation by .

The above equations can readapt as: 

    (3) 

 [ f -    (4)   

These rotations of angles are forced such that tan  = ±2-i. 
This will decrease tangent multiplication by the simple shift 
operation. By the execution of elementary rotations 
alternative rotation of arbitrary angles is managed. Through 

a sequence of micro-rotations of elementary angles ( i)
CORDIC rotations are achieved. By decomposing  into 
elementary rotations in a sequence style the micro-rotations 
is achieved:  

 i    (5) 

By using these we can form simple iterative rotations 

[ri + fi tan i ] cos i = r i+1  (6)                     

[fi  ri tan i ] cos i  =  f i+1   (7)           

  From trigonometric identities we have: 

cos i = 1/ (1+tan2 i)1/2  (8) 

Substituting equation (8) in equation (6) and (7) we have: 

r i+1   =  [ ri + fi tan  i ] / ( 1 + tan2 i )1/2 (9)   

f i+1   =  [ fi  ri tan i ] / (1 + tan2
i )1/2   (10)  

        To guarantee that tangent multiplication reduced to 
a small shifting operation, the rotation angles obtained from 
the following relation: 

Tan i = ±2-i   (11) 

        Here i represent the total number of iterations. And 

tan i  is traded in above equation by substituting equation
(12) in (9) and (10), we have: 

 r i+1   =  [ ri + fi .ki. 2-i].Ji  (12)

 f i+1   =  [ fi  ri .ki. 2-i].Ji    (13)  

 Here, 

  1/ (1+2-2i) 1/ 2 = Ji, denoted as scale of constant. 

 ki = ±1, where ki  is decision function. 

        The constant scale value from obtained equations of 
vector rotation is eradicated by a shift-add algorithm. In the 
system, the product term Ji the use of 
iterations in infinite times this product value has a range up 
to 0.6073. Rotation algorithm gain is represented as An 
where, 

 An  [1+2-2i]1/2  (14) 

         The gain is unevenly equal to 1.647 for infinite 
iterations. However, this gain is calculated with the support 
of the total number of iterations, and also it depends on the 
compound rotation angle is discrete by a sequence of 
elementary rotations in the way of the direction. These 
sequences are denoted as decision vectors. And all these 
vectors, are used for the angular calculation system, 
depending on the values of binary arctangents. Translations 
are completed utilizing a look-up table among the angular 
system and any other systems. For each iteration, an 
enhanced conversion technique is employed by adding 
subtractor and adder unit to it for elementary rotation angles.  
The above angles are expressed by an appropriate angular 
unit. A small lookup table supplies the angular values, and 
also we can use hardwired, depending on the suitable 
implementation.  

       Accumulator angle is added to the third value of 
difference equation to CORDIC algorithm: 

zi  i   =  Z i+1

  Z i+1   =  zi  ki tan-1 (2-i)   

 



Hence, the CORDIC micro-rotation equations are 
inscribed as: 

   x i+1    =       xi  yi. 2-I.ki    (15) 

   y i+1  =  yi + xi. 2-I.ki    (16) 

   z i+1      =   zi  ki tan-1 ( 2-i )     (17) 

III .  CORDIC MODES

The CORDIC algorithm is divided into two modes. 
Rotation mode is the one [15], in which the input vector 
value is rotated by a specified angle. The second one is 
Vectoring mode where the input vector is rotated to the x-
axis. 

A.  Rotation Mode 
In this mode, some favored rotation angle is set by the 

angle accumulator. The trigonometric, hyperbolic, or some 
other transcendental values are found through these rotation 
angles as the argument. Angle accumulators will take care of 
the rotation decision. Here, the decision is made and 
evaluated at every rotation.  
CORDIC equations in this model are written as: 

li  hi. 2-I.ki   =   l i+1 

hi + li. 2-I.ki   =   h i+1

ti  ki tan-1 ( 2-i ) = t i+1 

Here,  
ki = -1  if ti < 0 +1, else 

 n iterations after it produces the following results:  
tn = 0 

[y1 cosz1 + x0 sinz1] An =H n 

[x1 cosz1  y1 sinz1 ] An = Ln 

B.  Vectoting Mode 
In vectoring mode, the input vector of the CORDIC 

rotator is circled through whichever angle is essential to 
align the resultant vector with the x-axis. The outcome of the 
vectoring operation is a scaled magnitude of the original 
vector (the x component of the result) and rotation angle. At 
every rotation, the vectoring function works by minimizing 
the y component of the residual vector. The sign of the 
residual y component is used to determine which direction to 
rotate next. If the angle accumulator is initialized to zero, it 
holds the traversed angle at the end of the iterations. 

A CORDIC equation in vectoring mode follows: 

q j+1 = q j  m j .w j. 2-j 

m j +1 = m j + q j .w j. 2-j 

f j +1 = f j  w j tan-1 ( 2-j ) 

Here, 
w j = +1  if      m j < 0 -1, else 

n iterations after it produces following results:  

qn = An (q0
2+m0

2)1/2 

f n = tan-1(m0 / q0) +F0 

mn = 0 

IV. REDUNDANT ARITHMETIC

In implementations as the computations always start from 
the most significant bit (MSB). Redundant number 
systemAdders play a major role in CORDIC and due to 
carry propagation in adders the delay increases rapidly and 
slows down the speed of operation so that, move on to 
Redundant Arithmetic to decrease the delay and increase the 
speed of operation. The conservative tasks like subtraction, 
multiplication, and addition produce carry-propagation 
chains. A redundant number scheme was announced to 
resolve this problem [10]. The redundant number scheme 
improves the arithmetic operations speed. This method is 
used for sign processing and additional applications. When 
the reconversion and conversion circuitry shares the 
information among all the function units, this method also 
saves the area in VLSI and also power dissipation, due to 
these two reasons system will become more effective. 
Redundant number systems (RNS) suitable for numerically 
intensive applications. RNS can prevent or captures the 
carry propagation, by generating parallel adders with the 

word-length. This will be produced in an RNS format by 
using low latency results. RNS can improve performance in 
mathematically intensive applications. However, the 
implementation of an arithmetic circuit is expensive because 
for each symbol multiple bits are required. These circuits 
will eliminate carry propagation, by giving near-constant 
addition delay, regardless of the operand width. The 
Redundant number system (RNS) has a unique property of 
"carry-free" addition which makes them beneficial in 
implementations as the computations always start from the 
most significant bit (MSB).  

A. Carry- Free Addition Radix-2 
  Redundant number representations limit the carry 

propagation to a few bit positions and are usually 
independent of word length W. This carry free propagation 
feature enables fast addition 

The logic implementation is varied because the algorithm 
for signed binary digit addition is not unique. By using two 
binary unsigned numbers, it can perform the radix-2 
operation, one bit is negative and another bit is positive and 



it can be represented as [11] 

     xi
+ and xi

-  are both negative as well as positive 
numbers these bit values are 0 and 1, xi should vary {1,0,1}, 
all these values are given in Table I.  

TABLE I.  

x+ x- X 
  X= x+ x- 

0 0 0 00 

0 1 -1 01 

1 1 1 10 

1 1 0 11 

B.  Hybrid addition Radix-2 

In this hybrid operation, the 2 input operands are a 
redundant signed-digit representation and conventional 
unsigned number. The output operand obtained is in 
redundant signed-digit representation. For The signed-digit 
number addition  X<2.1> is considered which is a radix-2 
operation, where 2 indicates the radix-2 job, and 1 indicates 
the largest digit value and an unsigned conventional number 
Y. 

 X<2.1> + Y =   S<2.1>    (19)    

In 2 steps we can get an added value. Here 1st step all the 
bits are in parallel positions i i -1), W being the 
word length. The intermediary sum pi = xi + yi is calculated, 
it ranges between {1, 0, 1, 2}. This addition can be  

   xi + yi = pi = 2ti + ui,   (20) 

Table II summarizes hybrid radix-2 addition, in that table 
ti denotes transfer digit and it varies value from 0 or 1, and it 
is also represented as ti

+ and ui denotes interim added sum 
and it varies the values either 1 or 0, and it is also 
represented as ui

-. 

TABLE II. 
SUMMARIZES THE DIGIT SETS INVOLVED IN HYBRID RADIX-2 ADDITION 

Digit Binary 
Code 

Radix 2 
Digit Set 

xi xi
+ - xi

- {1,0,1} 

yi yi
+ {0,1} 

pi = xi + yi ...... {1,0,1,2} 

ui -ui
- {1,0} 

ti ti
+ {0,1} 

si = ui + ti-1 si
+ - si

- {1,0,1} 

The most significant interim sum digit uw has a value 
zero, the same as the least significant transfer digit t-1. 

The digit sum si is designed by linking t+
i-1 and also ui

-, 
which is one of the single-digit in the second step:  

 si = t+
i-1  ui

-.    (21)  

Replacing the corresponding binary codes from Table 2 
in (3a) we get: 

   xi
+ - xi

- + yi
+ = 2ti

+ + ui
-    (22)  

These all operations are performed by using type-1 full 
adder [12], it is nothing but plus-plus-minus adder (PPM) 
[13] as shown in figure 3. The four-digit hybrid radix-2 
adder is shown in figure 4. 

Figure 3.  Hybrid Radix 2 PPM Adder

  X= X+ - X-    (18)   

REDUNDANT NUMBER SYSTEM F RADIX-2 



__ __ 

__ 

Figure 4. Four Digit Hybrid Radix-2 Adder 

C.  Hybrid Radix-2 subtraction 
MMP subtractor does subtraction on a redundant binary 

signed digit number system. To draw high-speed systems 
this subtractor shown in Figure 5 is beneficial as it permits 

ies out subtraction of a 
redundant number x where, x = x- and x+ to an unsigned 
binary number y, resulting in another redundant number 
expressed by an interim sum  and a transfer digit . the 
input bits are defined as x+, x-, y  {0,1}, and the output bits 
are ,   {0,1}. 
The following operations are performed by subtractor: 

  x - y =  => 

  (23) 

where x is a redundant number expressed as 
  x = 

  Therefore, 

 =   (24) 

  Figure 5.  Hybrid Radix 2 MMP Subtractor 

The interim sum   and the transfer digit  is stated by 
the following Boolean expression using the Truth table: 

=

=

After simplification of the above equations, a new  
the equation for the interim sum   and the transfer digit 
is 

= 
__

=   (25) 

V .  UNROLLED CORDIC ALGORITHM

CORDIC algorithm calculates the sine and cosine values 
of input angles concurrently in rotation mode. Figure 6 
shows the unrolled CORDIC. It carries redundant adders, 
and subtractors, and shifters respectively. The subtraction or 
addition of angle succeeded based on the MSB of the 
previous angle in every rotation of the vector. The right 
shifts for division are executed by shift registers. Initially, 
for sine and cosine angles =1 and = 0. These initial 
values are shifted by i bits, where i= {1,2,3,4,5,6} which is 
divided by 1,2,4,6,8,16,32 at each stage. Discrete sine and 
cosine values range from -1 to 1 [18]. 

Figure 6. Construction of general unrolled CORDIC 

As initial conditions has the outcome of discrete sine and 
cosine values varying from -1 to 1, so the fractional values 
are realized in FPGA by -100 to 100.  zi is varied for every 
clock pulse to generate sine and cosine values. The rest 
values are computed by using the quadrature symmetry 
property of sine and cosine waves. 



VI .  PIPELINED UNROLLED CORDIC ALGORITHM

Pipelining is an implementation technique where a bundle 
of data processing instructions is overlapped. These 
instructions are given in a series. The pipeline process 
maximum frequency of operation in CORDIC. The 
architecture of the pipelined unrolled CORDIC is shown in 
Figure 7  [19,20]. 

Enlarged area and N-clock delays are the disadvantages 
of pipeline architecture. Hence, several pipelined registers 
and their positions are computed repetitively. 

Figure 7. The architecture of Pipelined unrolled CORDIC 

Four intermediate stages of pipelined registers are used to 
get optimized output.  

VII .  MULTIPLEXER BASED UNROLLED CORDIC
ALGORITHM

CORDIC archi a is reduced via multiplexer [20]. 
A multiplexer is used in the place of three stages in general 
unrolled CORDIC. The output is equal to  as =0 in the 
first stage in original unrolled CORDIC architecture so the 
1st st  

= = 61 
= = 61 
=   45     (26) 

In the first iteration stage,  is calculated by subtraction 
since  is always positive as it varies from 0 to 90. 
If is positive, then the second stage output is described as  

= - ((((( ) =  ((((( )  = 31 
= + ((( ) =  =  91                                  (27) 

If is negative, then the second stage output is 
= + (((((( ) =  = 91 
= -( ) ==  = 31  (28) 

Figure 8 shows two multiplexers used for the second 
stage. 

Figure 8. 2 multiplexers used for the second stage 

Equivalently, by using 4 multiplexers the third stage is 
implemented with the following equation. is computed by 
the formula  

 =  (29) 

For the third stage multiplexers, the above equation is 
used as the selection line input of the multiplexer. 

For  = positive , = positive 

= + ((((( ) =  (((( ) +((((( )  =  =  99 
= + (((( ) = (((( ) -((((( )=  =  7     (30) 

  For  = negative , = positive 

= + ((((( ) =  ((((( ) +(((( )   =  =  99  
= + ((( ) = (((( ) -((((( ) =  =  83   (31) 

For  = positive , = negative 

= - ((((( ) =  (((( ) - ((((( )   =  =  83 
= + ((( ) = (((( ) +((((( )   =  =  53       (32)   

For  = negative, = negative 

= - ((((( ) =  ((((( ) +((( )   =  =  7 
= + ((( ) = ((( ) + ((((( )   =  =  99   (33) 

The area is minimized as adders with 2:1 multiplexers are 
swapped up to the 3rd stage. There is an exponential 
increase in multiplexers i.e, 6,14,30 multiplexers for 3, 4, 
and 5stages as adders and shifters are replaced with mux. 
The fixed values expand due to the growth in multiplexers. 
The deletion of the 5th stage needs thirty muxes with sixteen 



fixed values. On that occasion, utilizing a ROM is more 
effective. 
The CORDIC-I algorithm runs on rotation mode whose 
input is =0 and =1. The equation to used is      

f i+1 = . [ fi  ri .di. 2-i] 

r i+1 = . [ ri + fi .di. 2-i] 

At this time,  is the scaling factor with 0.611 is multiplied 
with the input = 1 Discrete sine and cosine values are 
varied from -100 to 100 for FPGA realization.  
Equations 30-33 are solved by taking input = 61 
and Y= 0. 

The obtained values are 

P = xi /8 = 8

Q = 11 xi /8 = 84

R = 7 xi /8 = 53

S = 13 xi /8 = 99

Figure 9 shows the architecture of unrolled CORDIC 
based on 2:1 mux.   

Figure 9. The architecture of unrolled CORDIC with MUX 

VIII .  MULTIPLEXER BASED PIPELINED UNROLLED
CORDIC ALGORITHM

The multiplexer based pipeline CORDIC utilizes the 
same computation as used for unrolled CORDIC with a 
multiplexer. Architecture is shown in Figure 10.  

Here, subtractors, adders, and shifters are swapped up to 
3 stages with a multiplexer. 

Figure 10. The architecture of Pipelined unrolled CORDIC with MUX 

IX .  RESULTS

An 8-bit CORDIC for constructing sine and cosine 
function with and without pipelining based on Unrolled and 
multiplexer based CORDIC. The initial design entry is 
finished using VERILOG. The core is implemented with the 
following synthesis description: 

Design Entry: VERILOG
Synthesis and Simulation: VIVADO 18.1
Platform: FPGA
Family: Zynq-7000
Target board: xc7z020clg484-1
Optimization area: Power

Figure 11 is the implemented result of the Unrolled 
CORDIC architecture schematic obtained from the tool.  
In Fi



angle obtained as output. The addresses are the stored 
predefined values of the CORDIC angles. 

Calculation of zout : =
=

 + ==
=

+ = 
 +  = 

Figure 11. Schematic of Unrolled CORDIC 

Figure 12. Simulation Result of Unrolled CORDIC 

Figure 13. Schematic of Pipelined Unrolled CORDIC 

Figure 14. Simulation Result of Pipelined Unrolled CORDIC 

Figure 13 is the implemented result of the pipelined 
unrolled CORDIC architecture schematic obtained from the 
tool.  

 
i

angle obtained as output. 
The addresses are the stored predefined values of the 
CORDIC angles. 

Figure 15 is the implemented result of unrolled CORDIC 
using MUXes schematic obtained from the tool.  

angle obtained as output. 
The addresses are the stored predefined values of the 
CORDIC angles. 



Figure 15. Schematic of Unrolled CORDIC using MUXes 

Figure 16. Simulation Result of Unrolled CORDIC using MUXes 

Figure 17. Schematic of Pipelined Unrolled CORDIC using MUXes

Figure 18. Simulation Result of Pipelined Unrolled CORDIC using MUXes 

Figure 17 is the implemented result of pipelined unrolled 
CORDIC using with MUXes schematic obtained from the 

ng with x, y, 

microrotation angle obtained as output. 
The addresses are the stored predefined values of the 
CORDIC angles. 

TABLE III. 

VIVADO IMPLEMENTATION 

SIN 
60 

COS 
60 

SIN 
45 

COS 
45 

No.of 
Slices 
used 
(Area) 

Power 
(W) 

Off
set 

Tim
ing 
(nS

) 
Unrolled 
CORDIC 
Without 
Mux 

50 87 73 69 580 48.6 60.
21 

Unrolled 
CORDIC 
With 
Mux 

50 86 63 67 427 43.1 53.
42 

Pipelined 
CORDIC 
Without 
Mux 

50 87 69 73 594 42 53.
59 

Pipelined 
CORDIC 
With 
Mux 

50 86 63 67 414 38.7 53.
51 

 COMPARISON O FOUR SCHEMES BASED  RESULTS OBTAINED IN 



In this paper proposed algorithm achieves high speed, less 
hardware implementation, and less power consumption on 
FPGA. Table III shows a comparison of all four 
architectures in terms of area and power. The area and 
power are reduced because the adders, subtractors, and 
shifters are replaced with the multiplexer up to 3 stages. 
This lessens the complexity of architecture by which it runs 
faster and efficiently. Thus, the decrease in area is shown in 
Table III as the number of slices. 

X. CONCLUSIONS 

This paper discusses 8-bit CORDIC using the Unrolled 
and multiplexer-based architectures with and without 
pipelining for generating the sine and cosine values. A 6-
stages CORDIC is implemented with unrolled CORDIC, 
pipelined CORDIC general, and Multiplexer based 
architecture up to 3 stages. From the results observations, it 
is found that the multiplexer-based approach operates on 
only 11% of the total area when compared with without 
MUXes which uses 16%. Therefore, 25% of the circuitry 
can be detached when 3 stages are eliminated. In terms of 
Power, the pipelined Unrolled CORDIC MUXes based 
utilizes only 39% of the total power available on FPGA. The 
pipelined Unrolled CORDIC based on MUXes has a 
maximum frequency of 88.75MHz which is relatively good 
as compared with others. As shown in Table III, the 
pipelined Multiplexer built CORDIC algorithm decreases 
equally area and power but increases the speed of operation. 
Swapping the multiplexer in the place of adders, subtractors, 
and shifters up to 3 stages and replacing the adders and 
subtractors of all 6-stages with Redundant Arithmetic 
reduces area utilization and power consumption on FPGA 
and increase the speed of operation. Henceforth, built on a 
user-defined application, any one of the 4 methodologies 
can be selected.  
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