
Man Machine Interface Design using Hardware
Programming for Performance Enhancement

1Senior Manager, ECIL/Hyderabad, India
 Email: harnath.t@gmail.com

2Professor, CVR College of Engineering/ECE Department, Hyderabad, India
 Email: lalkishorek@gmail.com

Abstract: Existing Embedded Systems are designed using
a microprocessor. Design methodology of the embedded system
depends on the architecture of the microprocessor used.
Architecture of these embedded system designs have total
dependence on the architecture of the microprocessor used.
Study and analysis of various embedded system designs for the
past thirty years revealed that there are several other design,
development and manufacturing related issues with the
microprocessor based designs like speed of processing, power
consumption, excessive utilization of silicon, etc. Objective of
this paper is to critically examine the design requirements for
Man Machine Interface Logic, which is an embedded system
and ascertain the issues in the existing designs. Hardware
Programming, an innovative conceptual solution is proposed to
overcome the issues observed by designing an embedded
system without using any microprocessor. Design approach
and design methodology based on Hardware Programming
have been presented. Concepts of designing Man Machine
Interface logic using Hardware Programming have been
elaborated. Comparative Analysis is provided to ensure both
the qualitative and quantitative improvement in performance.
Performance is gauged in terms of both qualitative and
quantitative parameters.

Index Terms: Embedded System, Protocol Analysis,
Architecture, Silicon Utilization, Latency, Man Machine
Interface, Hardware Programming

I. INTRODUCTION

A. Man Machine Interface
 Man Machine Interface (MMI) logic is a subsystem used

in an electronic system for incorporating control, status,
system and storage operations. These operations facilitate
user in selecting different sets of parameters among the
available groups for carrying out different activities without
any design changes, whether hardware or software [1], [2].
In other words, MMI logic is meant for incorporating
programmability feature to an embedded system. MMI logic
itself is an independent embedded system. Transfer of
information to and from the system is through interfaces [3].
MMI has five types of interfaces. They are input interface,
output interface, I/O interface, system interface and memory
interface. Collection of control information is through input
interface from input devices like keypad. Display of output
status information is through output interface to output
devices like Liquid Crystal Display (LCD), Light Emitting
Diodes (LED). Bidirectional flow of information is through
I/O interfaces using I/O devices like Universal
Asynchronous Receiver Transmitter (UART). Non-volatile
storage of control and configuration data is done non-

volatile memory like Serial Peripheral Interface (SPI) Flash
memory using storage interface. Passing on the user fed

information is through system bus. UART is used for system
bus. SPI is used for memory interface. Design methodology
for MMI design is similar to any other embedded design.
The factors to be concentrated on while designing MMI with
a microprocessor are: Processing capabilities, Memory
requirements, Data transfer mechanism, Integration with rest
of the system and Clock requirements [4], [5].

 Study and Analysis of various embedded systems design
for the past 30 years have lead to the categorization of
embedded systems design into following types:

Embedded System using Hard Processor
Embedded System using Soft Processor
Embedded System using Multi-Core Hard Processor
Embedded System using Multiple Processors
Embedded System using Micro Controller
Embedded System using embedded hard processor on
Field Programmable Gate Array (FPGA) and
reconfigurable logic on the same FPGA
Embedded System using Digital Signal Processor
Combination of two or more of the above

The Trends being followed in latest embedded system
design are:

System Design with Multiple Processors and Multi
Core Processors [6], [7], [8].
System Design with Micro Controllers and Peripherals on
same chip
Hardware/ Software Co-Design
Heterogeneous Embedded System Design
FPGA based Embedded System Design [9], [10], [11].
Single Bit Processor based System [12].
Distributed Co-operative Design Method [13], [14].
Power Delay Reduction, Memory Efficient Techniques
Dynamic Profiling [15].

B. Issues in Existing Embedded Systems
Several issues have been observed in embedded system

design with respect to the design, performance, reliability
and productivity in industrial application perspective. A list
of the issues is given below.
 Architectural Dependence
 Multiple Skill Set Requirement

 Sequential Execution of Instructions

control data and collection of system related status

Dr. T. Harinath1 and Dr. K. Lal Kishore2

 Speed of Processing
 Large Memory Requirement
 Additional Resources Requirement
 Stringent Clock Requirement
 Excessive Utilization of Silicon
 High Power Consumption
 Design Complexity
 Huge Cost of Development
 Production / Manufacturing related issues

C. Possibilities of Replacing Microprocessor
Design of an embedded system revolves around the

architecture of the microprocessor used. Main activities of
an embedded system are classified into three parts, namely
receiving the data input, processing the data and sending the
output data. Data input is collected from different input
sources. Received data received is processed by the pre-
programmed algorithms and results are stored in memory.
These processed outputs are sent out to output devices. For
example, in case of a software defined radio, base band
signal is received through a Coder Decoder (CODEC),
various algorithms like modulation, filtering, etc are run on
the base band signal received. Samples of modulated and
filtered Intermediate Frequency (IF) are sent out to the
Radio Frequency (RF) circuitry for further processing. In
order to effectively implement the above three functions, a
microprocessor is used.

The functions performed by the microprocessor used in
an embedded system are: Accessing and controlling
peripherals, scheduling events, processing of interrupts,
managing memory, receiving data, executing algorithm,
processing data and sending data. Microprocessor plays a
supporting role in an embedded system and an embedded
system can be designed with same specifications using
different types of microprocessors / microcontrollers /
digital signal processors. Hence, the focus of embedded
system must be on receiving the inputs, computation of the
algorithms and transmitting the processed data to the
external world. If all the activities being executed by the
microprocessor are implemented with some other logic or
mechanisms, Microprocessor can be successfully replaced
or avoided in the design of an embedded system.

II. MMI DESIGN USING HARDWARE PROGRAMMING
BASED DESIGN METHODOLOGY

Hardware Programming based design methodology is an
innovative technique to design an embedded system without
using any microprocessor, but realizing the logic as well as
driver applications using hardware programming with
Hardware Description Language (HDL) like VHDL or
Verilog HDL [16], [17], [18], [19]. This design
methodology is applied for MMI logic that can be used in
software defined radio project. This can be used in any
other systems as well, for example, networking applications,
nuclear applications and so on, with very minor changes.
Figure1 illustrates the application of MMI in a system. As
presented in the diagram, P1 is input interface. P2a and P2b
are output interfaces, P3 is I/O interface. P4 is system
interface and P5 is Memory interface.

Figure1. Application of Man Machine Interface

A. Identification of Activities
Activities of MMI Logic to be designed are:

 To ascertain the data entered through Keypad
 To provide appropriate messages on LCD Display
 To restrict the user access through passwords

management
 To collect the user configuration data through

asynchronous serial interface
 To authenticate the data access through

asynchronous serial interface
 To provide replies to user through asynchronous

serial interface
 To store user configuration data in non-volatile

memory through synchronous serial interface
 To configure the system based on the user

configuration data through asynchronous serial
interface as system bus

 To collect the status information of entire system
using system bus

 To provide user friendly menu driven operations
 To facilitate for erasure or modification of the

configuration data based on the user commands
 To prepare preset channels for user convenience (A

preset channel is a group of parameters and this
entire group can be selected with a single key
stroke)

B. Dividing System into Functional Modules
In order to realize the functions identified above, logic of

MMI module is divided into the following functional
modules.
a) Clock generation logic
b) Keypad interface logic
c) LCD display interface logic
d) LED interface logic
e) Key processing logic
f) Serial peripheral interface logic
g) UART1 receiver logic
h) UART1 transmitter logic
i) UART1 driver logic
j) UART2 receiver logic
k) UART2 transmitter logic
l) UART2 driver logic
m) Passwords Management logic

Modules (g), (h) and (i) are integrated to form UART1
logic. Modules (j), (k) and (l) are integrated to form
UART2 logic. MMI logic design using hardware
programming is shown in Figure 2. As shown in the figure,
modules are categorized into peripheral modules, algorithm
modules and clock & control modules. All the modules are
independent in working and do not require microprocessor
for its working. Keypad Interface Module, UART1 Receiver
and UART2 receiver are input peripheral modules, LCD
interface, LED interface, UART1 Transmitter and UART2
transmitter modules are output peripheral modules. UART1
Driver, UART2 Driver module and Passwords Management
Module are algorithm modules. SPI interface module is an
I/O peripheral module. Clock generation module and Key
processing logic work together as clock and control module.
Key processing logic performs control operations (i.e.
generating required control signals) and also does the
processing of the keypad interface output signals.

Figure 2. MMI Design using Hardware Programming

C. Identifying the Events of Functional Modules
Figure 3a through Figure 3h depict the events executed

by various modules of MMI logic.

Figure 3a. Events Executed by Keypad interface, Key Processing, LED
Interface, LCD Display Interface and Clock Generation Logics of MMI

Figure 3b. Events Executed by UART1 Receiver & UART1 Transmitter
Logics of MMI

Figure 3c. Events Executed by Passwords Management

Figure 3d. Events Executed by UART1 Driver of MMI

Logics of MMI

Figure 3f. Events Executed by UART2 Driver Logic of MMI

Figure 3e. Events Executed by UART2 Receiver & UART2 Transmitter

Figure 3g. Events Executed by SPI Receiver and SPI Transmitter Logics of
MMI

Figure 3h. Events Executed by SPI Driver Logic of MMI

D. Analysis of Protocol
Protocol analysis is to be done for getting the particulars

of sources & destinations of data, packet transfer
information, and extraction & insertion of data in packet
structures. MMI gets inputs from different sources. Key
pressed information coming from keypad, Configuration
data or algorithm related data from UART2, System related
information from different slave devices through UART1,
and Configuration data stored in non-volatile memory
fetched through SPI interface are the various inputs to MMI
logic. Processed data is given as output to multiple
destinations. Messages related to control and status
information are sent to LCD display. Status information is
given to LEDs for continuous glowing or blinking of LEDs.
Configuration data available in the system is given on
demand through UART2. Reply messages to user queries
are also given through UART2. Configuration data and
control data are given to multiple slave devices of the
system through system bus. Configuration data is loaded
into non-volatile memory through SPI interface. Selective
data is given to the appropriate modules inside the MMI
logic for processing and computation of algorithms.
Transfer of data from various sources to different
destinations is done in many methods. Key press data is
passed on in the form of logic levels on rows and columns.
Different packet structures are used for Configuration
UART and System bus UART. Configuration UART is for
point to point communication. Figure4 shows the details of
packets exchanged in the process of getting configuration
data. System bus UART is used in point to multi point
configuration. MMI is configured as the master and other
system modules as slave devices. Master device only
initiates communication. The details of packets exchanged
for system bus communication to pass on control data /
configuration data / algorithm related data / status
information is shown in Figure5. Non-volatile memory

access is through SPI interface, wherein MMI is master and
Non-Volatile memory is slave. Different commands are sent
by Master along with address to write data into memory, to
read data from memory, to erase sectors and to bulk erase
operations etc., Slave select is active, i.e., at logic level low
till the communication between master and slave devices
taking place.

Figure 4. Data Loading into MMI

Figure 5. Flow of Packets through System Bus

E. Generation of Clock and Timing Signals
In order to ensure that all the events are executed at

predictable time intervals, all the modules are designed to
operate in synchronous mode. To avoid ambiguities, events
are started or completed at known intervals of time. Single
clock input is sufficient for MMI logic. All the other clock
signals required for different modules are generated in clock
generation module. A clock of 32.768 MHz clock is given
as input. Some of the clocks required for internal operations
of different modules are generated within those respective
individual modules. Timing signals also are derived within
those respective individual modules.

F. Receiving Data
The input data streams points must be analyzed for type

of data, its availability, format and destinations for the data
transfer between modules within MMI. Keypad interface
logic provides valid key press output, corresponding row
data and validation flag. This information is made available
to key processing logic. UART1 receiver provides valid data
output (in data words) and valid data flag to UART1 Driver.
UART2 receiver generates valid data words received and
valid data flag for UART2 Driver module. Receiver of SPI
module generates parallel data output along with
corresponding flags for the master driver of SPI to take up
further processing of data packets.

G. Setting of Flags
Status of different operations is given in the form of

setting Flags by individual modules. This will enable the
concerned modules to initiate further activities. Key
processing module performs control activities of MMI in
addition to the processing of keys pressed to invoke certain
events. Different operations selected through Keypad are: to
allow data reception from UART2, to verify and
authenticate the incoming data, to transfer algorithm related
data from one segment to the other within the same non-
volatile memory, to set configuration data for a selected
operation of the system, to erase the configuration data, to
ascertain status, to print control and status messages on LCD
display etc. Keypad entries are not accepted during the
process of transactions with non-volatile memory.
Configuration data from UART2 is communicated through
the exchange of a series of packets. Different flags are set to
indicate the successful extraction of required data and
information about errors in the received data. These flags
are used to enable storage of data or to transmit data through
system bus. UART1 data is analysed to monitor the status of
different slave devices on system bus. Respective flags are
set or reset accordingly. These flags are used for status
indication on LCD display or LEDs. SPI Flags related to the
status of data transfer and data erase operations being
carried out with non-volatile memory are used for the
purpose of displaying appropriate messages on LCD and
also for initiating certain activities by the system.

H. Storage of Data
For performing data storage, points to be analysed are:

data to be stored in Random Access Memory (RAM), data
to be stored in Non-Volatile Random Access Memory
(NVRAM), processing of NVRAM data, organization of
RAM data and organization of NVRAM data. Configuration
data, algorithm related data and preset channels data are
stored in NVRAM. Initially with power ON or after reset
operation, configuration and algorithm related data available
in NVRAM is fetched and loaded into different segments of
the RAM built with block RAMs of FPGA. Then flags are
set accordingly to make system work as per the settings.
Non-volatile memory is accessed through synchronous
mode. Initially, configuration data is stored in RAM and
after receiving the confirmation command from user, this
data is dumped into NVRAM. Display messages are fixed
and are stored as ASCII data in Read Only Memory
designed with the look up tables of FPGA.

I. Processing of Data
Incoming data packets are processed to get the actual

data. In MMI logic keys, configuration and algorithm
related data, stored data and status information are processed
by different algorithm modules. Outcome of these
algorithms are: To authorize the user in choosing parameters
for different operations (through two-level passwords), to
extract data for use in the system, to select the message to be
displayed on LCD, to set / reset flags related to the status of
slave devices of the system and so on.

J. Transferring the Processed Data
After processing the data, it should be made available at

output peripheral modules and I/O peripheral modules. Data

transfer through UART2 is done by exchange of different
packets. These data packets contain a few keywords in
addition to the actual data. UART2 transmitter will transmit
data in serial fashion according to the protocol. Flags
indicating the status regarding start bit transmit, transmit
process in progress are monitored to avoid data overwrite
and also to ensure error free transmission. Control data
packets are shared with different modules of the system
through UART1. As master slave configuration is adopted,
transfer of data to slave devices will be done one after the
other in a sequence with proper care. Similarly, status is
collected from slave modules in a sequence by giving
commands sequentially. With power on or with reset, status
is obtained from slave devices by giving appropriate control
commands. Later, exchange of control and status data is
done depending on user demands through keypad. Flags of
UART1 transmitter are continuously monitored by UART1
driver for smooth transfer of data. Data loading into non-
volatile memory takes place through SPI interface
depending on the user commands. Master driver of SPI
interface logic arranges data as per the frame structure.
Address and type of operations must be indicated clearly in
their respective fields of the data frames. Slave select must
be asserted low for the entire duration of data transfer.

K. Enabling / Disabling the Logic
To reduce power consumption, selective enabling /

disabling of the logic is done in the following ways.
To restrict unwanted operations by providing control
signals to the concerned logics
To shut down unused logic at any instant by supplying
control signals to the concerned logics.
To gate the clocks to ensure that clocks are not supplied
to unused modules at any point of time.

III. IMPLEMENTATION OF MMI LOGIC USING
HARDWARE PROGRAMMING

XILINX Software ISE Design Suite 14.5 is used for
various design activities of MMI like Design entry,
Simulation, Implementation (Translate, Mapping and Place
& Route), Programming File Generation, and Configuration
of the Device. MMI logic is realized using SPARTAN 3AN
XC3S1400AN device. The same MMI logic could be
successfully ported on XC3S1600E device and different
other devices of Virtex5 and Virtex6 families from XILINX
and also on ALTERA devices like Cyclone II and Stratix
Family FPGA devices. Device utilization summary of MMI
logic is given in Figure 6. As shown in Figure 6, MMI logic
consumed 1548 numbers of Slice Flip-Flops, 2520Nos of
Occupied Slices and 4553Nos of 4-input LUTs and 16Nos
of Block RAMs. Table-1 gives the summary of synthesis
results of various modules used in MMI logic.

Figure 6. Device Utilization Summary for MMI

TABLE I.
 SUMMARY OF SYNTHESIS RESULTS

Module No
of
I/O
pins

Occupied
Slices

4-i/p
LUTs

Block
RAM

Power

Clock
Generation

12 15 19 - 65mW

Keypad
Interface

15 24 32 - 67mW

Key
Processing

137 370 701 - 71mW

LCD
Display
Interface

27 99 195 - 66mW

LED
Interface

12 16 30 - 65mW

UART1
Receiver

12 33 23 - 66mW

UART1
Transmitter

14 24 40 - 65mW

UART1
Driver

106 184 339 - 66mW

UART1 88 245 401 - 70mW
UART2
Receiver

12 53 33 68mW

UART2
Transmitter

14 24 40 - 65mW

UART2
Driver

83 553 1004 8 70mW

UART2 65 641 1078 8 76mW
SPI
Interface

75 960 1824 8 71mW

Passwords
Management

74 246 468 - 68mW

Man
Machine
Interface

81 2520 4553 16 106mW

IV. BENEFITS OF MMI DESIGN USING HARDWARE
PROGRAMMING

The benefits observed in MMI designed using Hardware
Programming based design methodology are as given below
[20].
 Focus is shifted to Interface, rather than the architecture

of microprocessor
 Hardware Design Skills are sufficient
 Concurrent Execution of Events
 High Speed of Processing
 Low Latency of the System
 Reduction in Memory Requirements
 Elimination of Unwanted Additional Resources
 Single Clock Source is Sufficient
 Logical Resources are effectively utilized
 Reduced Power Consumption
 Simplified Design Methodology
 Low Cost of Development
 Effective Solutions for the issues being faced in

Production / Manufacturing

 Intel, Motorola family microprocessors and different
families of DSPs from Analog Devices & Texas are
considered for making comparison analysis explained in
following sub-sections.

A. Reduction of Logical Resources
Traditional MMI logic based on microprocessor design

requires Microprocessor, Program memory, RAM, Non-
Volatile memory, UART Controller (configuration), SPI
Controller (Non-Volatile memory), SPI Controller (system
bus), Keypad read register, Keypad write register, LCD
register, LCD display, LEDs, Keypad and Crystal oscillators
to supply clock. All these components are needed for any
microprocessor based design, be it a hard processor or a soft
processor in an FPGA. If soft processor is used, logical
resources of FPGA are consumed by the soft core of the
processor. That soft core can cover some of the peripherals.
If embedded processor (a built in component of FPGA) is
used, then resources consumed within the FPGA are fixed,
but resources available for logic realization are not
consumed by the processor. Soft processors like Micro
blaze, Nios, Pico blaze and ARM controllers etc. consume
lot of logic resources that are more than one thousand slice
registers and LUTs. These various devices used are actually
meant for general purpose applications. Hence,
customization with software programming is to be done to
use them as per the user requirements of the system. Some
of the features of peripheral devices as well as the processor
may not be even used in some applications. Hence, those
logic resources are not used and will go waste or sometimes
might consume power. Hardware Programming is a
customized design to effectively utilize the resources [21].
The peripherals are implemented as required and consume
less logic resources. Unnecessary logic will not be used.
Hardware programming model for MMI designed is a
continuation of System on Chip concepts and consumes
minimum logic resources as given below:
- FPGA, to implement all the logic on it

- Configuration memory for FPGA for storage of
configuration data related to resources and
interconnections among them. This memory can also be
used to store configuration data of the system
permanently

- Keypad to enter user commands
- LCD display to the display of messages
- LEDs for indicating status

 The entire MMI logic implemented had consumed
around 2500 Slices Registers only. Hence, there is a huge
savings by virtue of customization due to the hardware
programming design methodology.

B. Reduction of Clock Requirements
Processor based system is designed using built-in

peripherals on the microprocessor chip and also using
ASICs for some of the peripherals. These peripherals require
clocks of some specific frequencies. Microprocessor also
works with clock within certain range of frequency. Hence
multiple clock sources are required. Whereas in the case of
hardware programming based design, a single clock source
is used to derive different clock sources required to make the
logic modules operate at different frequencies appropriate to
the transfer and computation of data through various
interfaces. MMI has used only one clock of 32.768MHz. All
the clock signals required for different modules are derived
from the single clock source.

C. Reduction of Memory Requirements
Hardware Programming based embedded systems do not

require any specific program memory and data memory as
microprocessor is not used. Block RAMs of FPGAs are
configured as synchronous DPRAMs for effective storage of
required data. Hence very less number of memory locations
are required. MMI logic has used only sixteen numbers of
Block RAMs compared to Megabytes of memory required
in case of processor based systems. This has lead to the
improvement in execution time also.

D. Reduction of Power Consumption
As the number of components used is very less, the logic

resources are very optimized and most importantly the
unused logic at any time is shut down or disabled
selectively, power consumption is drastically reduced. With
the advent of latest technology programmable devices that
have very thin silicon wafers, operating voltages have come
down and hence the power consumption will still be reduced
significantly. Data sheets of microprocessor indicate power
consumption of microprocessor as a few hundreds of mill
watts; MMI logic has consumed only a few tens of mill
watts.

V. CONCLUSIONS

Hardware Programming based design methodology is
used for the design of man machine interface logic and it
can be considered as an alternative design methodology for
embedded systems. As this design methodology does not
require a microprocessor, the issues related to the
microprocessor are overcome successfully. The design
approach of modular structure makes the design simple and

facilitates the designer in extending or modifying the design
with ease. These Hardware Programming concepts can be
extended for design of various systems being used in several
industrial applications.

REFERENCES

[1] Wang Yue S
Human Machine Interface of Metal Detector Machine based
on C/OS- th Chinese Control Conference
(CCC), 2015, DOI: 10.1109/ChiCC.2015.7261013.

[2] rdware Software Co-design of a
Safety-Critical Embedded Computer System for an

and Computer Engineering (CCECE), 2002, DOI:
10.1109/CCECE.2002.1013019, pp 657-662.

[3] Ajay Kumar Singh, Ankitha Taneja requency allocation in
soft
You, Oct-2008 Vol 40, No.10, pp-108.

[4] velopment of Customized

Design and Communication Systems, 2015, Vol 3, Issue 10,
IJVDCS7951-248, pp 1446-1449

[5]
flash memory devices in data logging applicati
Embedded systems design, Dec-2008, Vol 21, No.12, pp-18.

[6] Gereon Fuhr, Seyit Halil Hamurcu, Diego Pal, Thomas
-Minimized Hardware/

IEEE Embedded Systems Letters (Early Access), 2019, DOI:
10.1109/LES.2019.2901224.

[7] Ionut Radoi, Florin Rastoceanu, Daniel-Tiberius Hritcu,

Conference on Communications (COMM), 2018, DOI:
10.1109/ICComm.2018.8484792.

[8] Mahamudul Hassan, Sheikh Md Rabiul Isla
Implementation of Pre-Processing Chip for Brain Computer

Electrical and Signal Processing Techniques (ICREST),
2019, DOI: 10.1109/ICREST.2019.8644230.

[9] Intellectual Properties (IPS)
Integration for System o
Conference on Research Methodologies in Electronic
Devices and Circuits, 2012, DOI: 02.EDC.2012.1.1, pp 101-
106.

[10] Analysis
of XILINX verified AMBA Bridge fo
Lecture series in Computer Science, 2013, DOI:
03.LSCS.2013.2.535, Vol.2 pp 32-37.

[11] Parthasarathy T.R, Venkatakrishnan N, Balamurugan K,

Performanc ternational Conference
on Advanced Communication Control and Computing
Technologies (ICACCCT), 2012, DOI:
10.1109/ICACCCT.2012.6320745, pp 78-82.

[12]
Implementation of Memory Efficient Single Bit Processor for
Industrial Control Ap
Recent Trends in Engineering and Technology, 2010, DOI:
01.IJRTET.4.4.76, Vol 4, Issue 4, pp 29-31.

[13]
Design Method and Environment fo
Proceedings of the Ninth International Conference on
Computer Supported Cooperative Work in Design, 2005,
DOI: 10.1109/CSCWD.2005.194316, pp 956-960.

[14]
Embedded th IEEE International
Symposium on Object Oriented Real Time Distributed
Computing (ISORC), 2008, DOI: 10.1109/ISORC.2008.14,
pp 3-12.

[15] Mahendra Vucha, Rajendra Patel, Arvind Rajawat,
mization

in Heterogeneous Compu
and Technology, 2013, DOI: 03.elsevierst.2013.1.7, Vol 1,
pp 41-46.

[16] t of Customized
th

CST Infrastructure, Computer Society of India, 2013, pp
41-46

[17] T. Harnath, K. Lal Kis

VLSI and Embedded Systems, 2014, Vol 5, ISSN: 2249-
6556, Article 06364, pp 1054-1060

[18] T. Harnath, K. Lal Kishore,
 International Journal of VLSI

and Embedded Systems, 2014, Vol 5, ISSN: 2249-6556,
Article 06370, pp 1066-1073

[19]
Input ional Journal on VLSI
Design and Communication Systems, 2014, Vol 2, Issue
10, IJVDCS3313-197, pp 1069-1074

[20] rdware Programming to
rd Indian

Engineering Congress, 2018, Technical Volume, pp 352-
358

[21] ramming as an

VLSI Design and Communication Systems, 2016, Vol 4,
Issue 5, IJVDCS9724-70, pp 0357-0362

