Influence of Temperature on the Fracture Parameters of Basalt Fiber Concrete

N. Shiva kumar¹ and Dr. T. Muralidhara Rao² ¹PG Scholar, CVR College of Engineering/Civil Engg. Department, Hyderabad, India Email: nshivakumarneela@gmail.com
²Professor, CVR College of Engineering/Civil Engg. Department, Hyderabad, India Email: tmuralidhararao@gmail.com

 Abstract: **In the present study, the effect of elevated temperatures on the strength parameters and fracture parameters of plain and basalt fiber high strength concrete was studied at the end of 28 days of conventional curing. The study was done for** 100° **C,** 300° **C,** 500° **C,** 700° **C and** 900° **C temperatures for 02 hours in a high temperature furnace of 10000 C capacity. The percentage decrease in strength parameters and fracture parameters was increased for plain and basalt fiber concrete specimens with the increase in the temperature.**

 Index Terms: **Elevated temperatures, compressive strength, modulus of elasticity, fracture energy, fracture toughness, basalt fiber**

I. INTRODUCTION

 Basalt is a type of igneous rock formed by the rapid cooling of lava at the surface of earth. Crushed basalt rock is the only raw material required for manufacturing the fiber. Characteristics of Basalt rock vary from the source of lava, cooling rate, and historical exposure to the elements. Though basalt rocks are available in different compositions, only certain compositions and characteristics can be used for making the continuous filaments with a diameter range of 9 to 24 microns. Basalt rocks with SiO2 content about 46% (acid basalt) are suitable for fiber production. Basalt fiber is composed of minerals plagioclase, pyroxene, and olivine. Basalt fibers are available in different lengths of 3,6,9,12,18 and 24mm having diameters 13-20 microns.

II. LITERATURE REVIEW

 Aathithya Raja M, Saravanan G, Satheesh.V. S [3] used basalt chopped fibre of length 6mm and 12mm to study the compressive strength, flexural strength and split tensile strength. The addition of basalt chopped fibres to concrete improved the tensile strength and flexural strength significantly compared to plain concrete due to the ability to hold on crack surfaces of concrete.

 N. Gopi, P. Baskar, B. Dharani and P. Abinaya[4] investigated the Mechanical properties of fiber reinforced concrete cubes, cylinders and prisms (M20 Grade) by varying the percentage of fibers (0.20%, 0.25%, and 0.30%). It was found that the addition of basalt fibre in concrete changes the mode of failure from brittle to ductile failure when subjected to compression, bending and impact. The experimental results showed that the compressive strength of Basalt fibre concrete was 38.34 N/mm² which is 22% higher than control concrete of 31.34 N/mm². The Basalt fibre concrete exhibited higher tensile strength than the normal concrete. The tensile strength of basalt fibre concrete was 7.66 N/mm² which is 45% higher than the tensile strength of normal concrete (5.26 N/mm^2) .

 Mohammed Ishtiyaque and M.G. Ghaikh[5] studied the effect of addition of basalt fibers at 0.25%, 0.5%, 0.75%, 1% (of volume of concrete) on fracture properties of concrete was studied. The test results showed an improvement in tensile strength and fracture properties of basalt fiber reinforced concrete mixes when compared with the normal mix. Tensile strength increased by 11% with addition of 0.25% basalt fibers. Fracture toughness also increased by 402% and 269% with addition of 0.25% and 0.75% of basalt fibers. But workability and compressive strengths reduced with the increased basalt fiber percentage.

 M.P.Sureshkumar, S.Ramesh, P.Easwaran, P.Pruthviraj [7] discussed about the properties, advantages and application of basalt fiber in various concrete works. Basalt fiber has high oxidation resistance, high softening and melting temperatures, higher young's modulus and tensile strength properties than that of glass fiber and it has better fire resisting property compared to the glass fiber. The basalt fiber rebar having full resistance against corrosion may be good alternative for the reinforcement of concrete structures, like RC bridge girders subjected to an environmental attack. Finally, it was concluded that the basalt fiber can be used as a good alternative strengthening material instead of glass fiber, carbon fiber, steel fiber, etc.

 Suchita Hirde and Sagar Shelar[8] studied the variation of compressive strength, flexural strength and split tensile strength of M40 grade concrete with various percentages $(0\%$ to 5 % by weight of cement at interval of 1%) of basalt fiber. The length of fiber used was 18 mm length. The compressive strength increased by 7.31% for 3 % basalt fiber content. Flexural strength increased by 57.14 % for 5 % basalt fiber. Split tensile strength increased by 33.6% for 4 % basalt fiber content.

III. EXPERIMENTAL STUDY

A. Cement

 Ordinary Portland Cement of 53 grade conforming to IS:8112-1989 was used in the present study.

B. Aggregates

 The physical properties of Fine aggregate and coarse aggregate used in the present study are presented in Table I.

TABLE I. **PHYSICAL PROPERTIES OF AGGREGATES**

Physical property	Fine	Coarse
	aggregates	aggregates
Specific Gravity	2.65	2.70
Fineness Modulus	2.87	7.10
Water Absorption	1.5%	0/2 (18"

Fine aggregate in the concrete mix was taken in the following proportions. 2.36 mm= 10% ; 1.18 mm= 30% ; 600 microns=25% ; 300 microns=25%; 150 microns=10%. Coarse aggregate in the concrete mix was taken in the following proportions. 20mm passing and 10 mm retained= 60%; 10mm passing and 4.75 mm retained=40%.

C. Water

 Potable water was used in the preparation of concrete. Water used conforms to IS:456-2000.

D. Mineral Admixture

 Ultrafine material 'Alccofine1203' conforming to IS:12089-1987 and IS:456-2000 (Clause No:5.2.2) was used as a supplementary cementitious material. Its particle size is much finer than the cement particle size. Ten percent of cement is replaced by alccofine1203. 10% replacement of cement is found to be the optimum percentage of replacement to produce the desired high strength concrete. The physical properties and chemical properties of Alccofine 1203 are given in Table II and Table III respectively.

 TABLE II. **PHYSICAL PROPERTIES OF ALCCOFINE 1203**

Specifi	Bulk density	Fineness	Particle size distribution		
gravity	(kg/m^3)	$\text{ (cm}^2\text{/gm)}$	(u)		
2.9	680	12000	D10	D50	D90
				4-5	$8-9$

TABLE III. **CHEMICAL PROPERTIES OF ALCCOFINE 1203**

E. Chemical Admixture

 Superplasticizer used in the present study was MasterEASE3709(BASF Product). It is based on the modified polycarboxylic ether used for workability of concrete at fresh state. 1.5% by weight of binder was used in the concrete mix for workability.

F. Basalt fiber

In the present study 18mm length basalt fibers were used. The chemical composition of basalt fiber is shown in the below Table IV.

TABLE IV. **CHEMICAL COMPOSITION OF BASALT FIBER**

Physical Properties of Basalt fibers:

G. Mix Proportion

 Mix proportion used was 1:0.556:1.629:0.25. Using Absolute Volume Method, materials required are calculated as Cement = 721.643 kg/m³; Fine Aggregate = 401.233 kg/m³; Coarse Aggregate = 1175.556 kg/m³; Water = 180.410 kg/m^3 .

IV. TEST RESULTS

A. Compressive strength

 Eighteen, 100mm plain concrete cubes and eighteen 100mm basalt fiber concrete cubes were cast and tested for studying the effect of elevated temperatures on the compressive strength. Each cube was tested for residual compressive strength under 3000kN Compression Testing Machine.

 At the end of 28 days of conventional curing, cubes cast were taken out and air dried and tested for 100° C, 300° C, 500° c, 700[°]C and 900[°]C temperatures for 02 hours in a high temperature furnace of 1000° C capacity. After 02 hours, cubes were taken out of the furnace and allowed to cool.

TABLE V. **COMPRESSIVE STRENGTH OF PLAIN AND BASALT FIBER CONCRETE CUBES**

Plain concrete cubes			
Temperature \tilde{C}^0C	Avg residual compressive strength (Mpa)	Percentage decrease in avg. residual strength	
20	79.2		
100	755	4.7	
300	72.5	8.5	
500	71.5	9.7	
700	42	46.9	
900	14.5	81.7	
Basalt fiber concrete cubes			
Temperature C^0 C)	Avg residual compressive strength (Mpa)	Percentage decrease in avg. residual strength	
20	81.5		
100	80	1.84	
300	77.5	4.9	
500	77	5.5	
700	58	28.8	
900	33	59.5	

Figure 1. Average residual Compressive strength of Plain and Basalt fiber concrete cubes at different temperatures

room temperature before testing for their compressive strength.

 The average residual compressive strength and percentage decrease in average residual compressive strength of 100mm plain and basalt fiber concrete cubes are presented in Table V and Fig. 1.

B. Flexural strength

Eighteen,100mmX100mmX420mm plain concrete prisms and eighteen 100mmX100X420mm basalt fiber concrete prisms were cast and tested for studying the effect of elevated temperatures on the Flexural strength. Each prism

TABLE VI. **FLEXURAL STRENGTH OF PLAIN AND BASALT FIBER CONCRETE PRISMS**

Figure 2. Residual Flexural strength of plain concrete prisms and fiber concrete prisms at different temperatures

was tested for residual flexural strength under Universal Testing Machine.

At the end of 28 days of conventional curing, prisms were taken out from water and air dried and tested for 100° C, 300° C, 500° c, 700° C and 900° C temperatures for 02 hours in a high temperature furnace of 1000° C capacity. After 02 hours, prisms were taken out of the furnace and allowed to cool at room temperature before testing for their flexural strength.

 The average residual flexural strength and percentage decrease in average residual flexural strength of 100mmX100mmX420mm plain and basalt fiber concrete prisms are presented in Table VI and Fig. 2.

Between 100° C to 900° C, the percentage decrease in residual flexural strength was increased for both plain concrete prisms and basalt fiber concrete prisms.

C. Split tensile strength

Eighteen,300mm length and 150mm diameter plain concrete cylinders and eighteen 300mm length and 150mm diameter basalt fiber concrete cylinders were cast and tested

for studying the effect of elevated temperatures on the split tensile strength. Each cylinder was tested for residual split tensile strength under compression Testing Machine.

At the end of 28 days of conventional curing, cylinders cast were taken out and air dried and tested for 100° C, 300° C, 500° c, 700° C and 900° C temperatures for 02 hours in a high temperature furnace of 1000° C capacity. After 02 hours, cylinders were taken out of the furnace and allowed to cool at room temperature before testing for their split tensile strength. The average residual split tensile strength and percentage decrease in average residual split strength of 300mm length and 150mm diameter plain and basalt fiber concrete cylinders are presented in Table VII and Fig. 3.

Between 100° C to 900° C, the percentage decrease in residual split tensile strength was increased for both plain concrete cylinders and basalt fiber concrete cylinders.

TABLE VII. **SPLIT TENSILE STRENGTH OF PLAIN AND BASALT FIBER CONCRETE CYLINDERS**

Plain concrete cylinders			
Temperature	Avg residual split	Percentage decrease	
(^0C)	tensile strength (Mpa)	in avg. residual split	
		tensile strength	
20	5.16		
100	4.95	4	
300	4.13	19.9	
500	3.25	37	
700	2.26	56.2	
900	1.82	64.7	
	Basalt fiber concrete cylinders		
Temperature	Avg residual split	Percentage decrease	
ľС)	tensile strength (Mpa)	in avg. residual split	
		tensile strength	
20	6.1		
100	5.94	2.62	
300	5.58	8.52	
500	5.21	14.59	
700			
	4.83	20.81	

Figure 3. Average residual split tensile strengths of plain concrete cylinders and fiber concrete cylinders at different temperatures.

D. Modulus of Elasticity

Eighteen,300mm length and 150mm diameter plain concrete cylinderss and eighteen 300mm length and 150mm diameter basalt fiber concrete cylinders were cast and tested or studying the effect of elevated temperatures on the Modulus of Elasticity. Each cylinder was tested for residual Modulus of Elasticiry under compression Testing Machine.

 At the end of 28 days of conventional curing, cylinders cast were taken out and air dried and tested for 100° C, 300° C, 500° c, 700° C and 900° C temperatures for 02 hours in a high temperature furnace of 1000° C capacity. After 02 hours, cylinders were taken out of the furnace and allowed to cool at room temperature before testing for their Modulus of Elasticity.

 The average Modulus of Elasticity and percentage decrease in average Modulus of Elasticity of 300mm length and 150mm diameter plain and basalt fiber concrete cylinders are presented in Table VIII and Fig. 4.

TARI F VIII. **MODULUS OF ELASTICITY OF PLAIN AND BASALT FIBER CONCRETE CYLINDERS**

Plain concrete cylinders			
Temperature	Modulus of	Percentage decrease in	
0C	Elasticity (Mpa)	Modulus of Elasticity	
20	41668		
100	39130	6.1	
300	35986	13.6	
500	31425	24.6	
700	23568	43.3	
900	15580	62.61	
	Basalt fiber concrete cylinders		
Temperature	Modulus of Elasticity		Percentage decrease
\tilde{C}^0C	(Mpa)		in Modulus of
			Elasticity
20	43500		
100	41392		4.8
300	39000		10.3
500	37700		13.3
700	32040		26.3
900	25415		41.6

Figure 4. Average Youngs Modulus of plain concrete cylinders and fiber concrete cylinders at different temperatures.

E. Fracture Energy and Fracture Toughness

 Eighteen,100mmX100mmX420mm plain concrete prisms and eighteen 100mmX100X420mm basalt fiber concrete prisms were cast and tested under Universal Testing Machine for studying the effect of elevated temperatures on the Fracture energy and Fracture toughness.

 At the end of 28 days of conventional curing, prisms cast were taken out and air dried and tested for 100° C, 300° C, 500° c, 700[°]C and 900[°]C temperatures for 02 hours in a high temperature furnace of 1000° C capacity. After 02 hours, prisms were taken out of the furnace and allowed to cool at room temperature before testing for their Fracture energy and Fracture toughness.

The average Fracture energy, Fracture toughness and percentage decrease in average fracture energy and Fracture toughness of 100mmX100mmX420mm plain and basalt fiber concrete prisms are presented in Table IX, Table X, Fig.5 and Fig.6. Load-Deflection of Plain concrete prisms and basalt fiber concrete prisms at different temperatures is shown in fig.7 and fig. 8 respectively.

 TABLE IX. FRACTURE ENERGY OF PLAIN AND BASALT FIBER

	CONCRETE PRISMS			
	Plain concrete prisms			
Temperature	Avg Fracture Energy	Percentage decrease		
0 C)	(J/m^2)	in Fracture Energy		
20	692.5			
100	585	15.52		
300	426	38.48		
500	194	71.9		
700	85	87.7		
900	61.25	91.1		
	Basalt fiber concrete concrete prisms			
Temperature	Avg Fracture Energy	Percentage decrease		
0C	(J/m ²)	in Fracture Energy		
20	1067.5			
100	966.25	9.48		
300	850	20.37		
500	612	42.66		
700	408.25	61.75		
900	340.5	68.10		
	TABLE X.			

 FRACTURE TOUGHNESS OF PLAIN AND BASALT FIBER CONCRETE PRISMS

Figure 5. Fracture Energy of Plain and basalt Fiber concrete prisms at different temperatures.

Figure 6. Fracture Toughness of Plain and basalt Fiber concrete prisms at different temperatures.

 Figure 7. Load-Deflection of Plain concrete prisms at different temperatures

 Figure 8. Load-Deflection of Fiber concrete prisms at different temperatures

V. CONCLUSIONS

 The sustaining temperature and melting temperature of Basalt fiber is 680° C and 1450° C respectively. Since the sustaining temperature of Basalt fiber is 680° C, the decrease in residual compressive strength, flexural strength, split tensile strength and modulus of elasticity is less than 15% up to 500° C. The percentage decrease in average Fracture energy (single point loading) and fracture toughness at 500° C for basalt fiber concrete prisms was 42.66% and 29.51% respectively. Even at 900 $\mathrm{^{0}C}$, the average percentage decrease in fracture energy and fracture toughness was 68.1% and 56.79% respectively. Due to the strong flexural resistance of basalt fiber, there was less decrease in the strength parameters and fracture parameters. Hence, use of Basalt fiber in high strength concrete is recommended.

REFERENCES

- [1] Duaa Fadil, Nildem Taysi, Abdullah Ahmed "The investigation of basalt and glass fibers on the Behavior of reinforced concrete beams". International Journal of Advances in Mechanical and Civil Engineering, Volume-5, Issue-3, Jun.-2018.
- [2] T. Parthiban, G. Pavithran, C. Pradeep, BA. Praveen Kumar, Mrs. Devi S. "Durability of concrete by adding basalt fiber". International Research Journal of Engineering and Technology (IRJET), Volume: 04 Issue: 09, September -2017.
- [3] M Aathithya Raja, G Saravanan, V.S Satheesh. "Flexural Behaviour of Basalt Chopped Strands Fibre Reinforced Concrete Beams". International Journal of Engineering Science and Computing, Volume 7 Issue No.3, March 2017.
- [4] N. Gopi, P. Baskar, B. Dharani and P. Abinaya "Experimental investigation of concrete with basalt fibre". International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) Volume 21 Issue 1 – April 2016.
- [5] Mohammed Ishtiyaque and M.G. Shaikh "Fracture behavior of concrete reinforced with basalt fiber" Journal for advanced research in applied sciences, volume-4, Issue 7, 2017.
- [6] Kirankumar, chetan V R "Experimental investigation on basalt fiber reinforced concrete". International journal of scientific Development and Research. Volume 2, Issue 6, June 2017.
- [7] M.P.Suresh kumar, S. Ramesh, P.eshwaran, P.Pruthiraj "Basalt fiber application in concrete". International Journal of advanced science and research. Volume 1, Issue 1, June 2016.
- [8] Suchita Hirde and Sagar Shelar"Effect of Basalt Fiber on Strength of Cement Concrete". International Journal of Current Engineering and Technology, 2017.
- [9] Zhenshan Wang, Kai Zhao, Zhe Li, Hui Ma "Experimental Study on Durability and Mechanical Properties of Basalt Fiber Reinforced Concrete under Sodium Sulfate Erosion". volume 62, 2017.
- [10] C.V.Neilson, and N.Bicanic" Residual fracture energy of high performance and normal concrete subject to high temperatures". Materials and structures volume 36, October 2006.