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Abstract: In Data Science, it is imperative to build a model 
that learns the parameters from the data itself to solve either 
predictive or prescriptive problems while ensuring improved 
fidelity of the solution. In this article, we propose to model the 
non-stationary present in the data in terms of spatial 
anisotropic interpolation which encapsulates the trend as 
polynomial regression and characterizes the associated error 
field as a Gaussian noise process. The fundamental emphasis of 
the paper lies in the minimization of anisotropic error by 
learning the model parameters using Hooke and Jeeve’s 
pattern search algorithm, a gradient-free pattern search 
algorithm and works even in missing value scenarios. The 
Design and Analysis of the Computer Experiments (DACE) 
based metaphor are developed and the quality of results are 
demonstrated on benchmark functions. The proposed 
implementation essentially has a wide range of applications in 
Computer Vision, weather prediction, Ore mining, etc.  

Index Terms: DACE, kriging, anisotropy, interpolation, 
regression, pattern search. 

I.  INTRODUCTION

Data Engineering is a branch of Computer Science which 
deals with understanding the underlying process that 
generates data and fits a scientific or statistical model 
through data, analyzes it further explores the hidden patterns 
and uses them to prescribe a valid set of rules to resolve 
high-level decisions. Thus, it has changed the fundamental 
way in which the real-world engineering problems are 
addressed. The critical part is to identify the associated 
physical phenomenon and its realization through either 
statistical or mathematical model building.  

Model building involves two equally important major 
phases namely, Design and Analysis of Data Space and 
selection of parameter space and it’s Fine-tuning. Firstly, a 
selected model is fit through the data, followed by its 
execution and evaluation. But in real-world problems, the 
data generated out of a process may not fit conveniently to a 
closed function necessitating the application of Machine 
Learning algorithms [1]. In such cases, engineers 
alternatively try to develop a robust model that learns the 
underlying physical phenomenon from the data itself while 
ensuring certain constraints leading to optimization 
problems. The constraints often are confined to some 
standard values while building the model. Most of the times, 
as the parameters are not properly learned from the nature of 
the data, the developed models suffer from failures. 

Coming to the statistical model building, it begins with 
collection the data under observation, classify them into 
dependent and independent variables and develop a function 
to solve classification or prediction sort of problems at hand 
with a minimum possible error. This aspect is addressed by 
answering three functional questions that constitute the data 
analytics pipeline: What are the variables involved in the 
scenarios, what kind of relationship can be modeled between 
the variables and finally what the external parameters are 
affecting these relations. The model implementation 
essentially requires evolving a suitable algorithm to realize 
the solution. Further, the model shall be translated into a 
computational model with the capability to handle large 
amounts of data. 

Technologies are evolving rapidly into complete 
ecosystems that help to deal with Big Data. The maturity of 
statistical models and the latest data visualization techniques 
constitute the heart of this ecosystem. For example, 
understanding data properties in terms of moments and trend 
clearly help in prescriptive and predictive analytics aspects. 
Model building considers the division of data space into two 
distinct but important parts; Data Space- deals with data 
itself, and Parameter Space- tuning the selected parameters 
that can improve the performance of the solution. Initially, it 
is carried out by assuming the set of parameters with 
standard values and generates the model by following a 
sequence of steps.  Select a domain-specific model, 
implement and execute the model and evaluate the 
correctness of the model using benchmark test beds. Very 
often, the model generated fails to offer the desired results 
reflecting its poor capabilities in capturing the latent 
relationship between the variables. In that case, the designer 
often tends to discard the model itself and work on 
alternatives and evaluate them. However, such a naive 
approach to juggle with models and flip-flop the solution 
set-based approach is not a good practice as the span of 
models available in the literature is really vast. Hence, it is 
imperative to shift the focus to the parameter space and 
learning the optimal values of parameters to yield better 
results from the selected model. 

A very good example to illustrate this philosophy is 
regression. In regression we try to fit a trend surface through 
the points at which the responses of the system are available 
with least mean square error [2]. This function is then used 
to predict the responses at unknown locations. The quality 
of the results is assessed through the various cross-
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validation techniques and error analysis methods. In case of 
high variance in the error we opt for higher-order 
polynomials, B-Splines, etc., as the basis functions to 
represent the trend. However, by its very nature regression is 
very sensitive to the outliers in the data space [2] and a mere 
change of basis functions may not result in desired quality 
predictions. Hence it is essential to switch the focus onto 
controlling the physical properties of the underlying system 
by incorporating few parameters and translate them into 
efficient implementations. One of the simpler means to work 
out and manipulate these parameters is to employ typical 
search algorithms that arrive at optimal values of the model. 
Literature is enriched with plenty of algorithms to predict 
the optimal value of the parameters. Many of these 
algorithms analyze the data and learn the parameters from 
the data itself which is widely referred to as Machine 
Learning. One such algorithm is Hooke and Jeeves method 
[3][7] which is a derivative-free method that can optimally 
search the parameter space and suggest ideal values of the 
parameters involved in the model. In the upcoming sections, 
we present different regression trend models and influence 
of values of parameters and efficient algorithms to arrive at 
ideal values. 

II. KRIGING

Regression analysis involves taking the locations also 
called design sites at which the responses are available in 
the form of an array with location-value pairs. As there is an 
overwhelming amount of data, it becomes difficult to take 
all the data present into consideration. To alleviate this 
problem, we try to visualize design sites and design the 
experiments. While modeling the data it is not always 
possible to fit a sound surface through the data. This is 
because there are points farther away from the fit that we 
call them as outliers and they tend to pull the fit towards 
them, thus introducing high variance in the error. This error, 
also known as noise and can manifest in two different types 
depending on how we characterize it. If we try to 
characterize the error without a model, then it is called white 
noise [2]. In contrast if the same is done based on a model-
driven by the spatial information then the result is called a 
stationary noise [3][4]. 

In regression models, quite often the error is considered 
to be white noise and disregards the correlation among the 
design sights across all the statistical moments.  Thus, the 
white noise is an example of i.i.d. of random variables. This 
assumption leads the regression model to become sensitive 
to outliers. Stationary noise [2] is discrete signal and is 
similar to white noise but it is a vector that also considers 
the direction of the noisy data. It depicts what is the 
underlying shape of the change in error. 

As mentioned previously, the best example to realize a 
prediction model is regression. Generally, there are two 
types of regressions, namely linear and spatial regression. In 
linear regression, we encounter and work on white noise 
whereas in spatial regression we deal with stationary noise. 
In real-world scenarios, spatial regression is able to solve 
wide varieties of problems ranging from weather prediction, 
ore quality assessment, epidemics, etc. 

Spatial regression [2][4] deals with stationary noise 
which is the noise in which change in error depends on the 
direction. This stationary noise can be classified into three 
types: zeroth-order noise, first-order noise, and second-order 
noise. In zeroth-order assumes the trend as a constant, and 
first-order noise fits a general polynomial across the design 
space and the error feature has zero mean and in second-
order stationary noise case the trend is modeled as a 
piecewise continuous functions value of mean is zero and 
variance are finite. 

The second-order noise is sub-classified into isotropic 
and anisotropic noise [4]. Isotropic noise, as assumed to be 
equally distributed throughout the design space in all 
directions and can be modeled with relatively simpler 
efforts. Anisotropic noise varies not only with regard to the 
lag, i.e. the distance but also with the direction of the target 
data point. Kriging [3][5] is an implementation of spatial 
regression which offers a metaphor for the physical process 
and helps to solve the data prediction problems. The basic 
kriging model is well explained by the following two steps 
[3]. 

A. Model Building 
Let S={s1,s2,…sm}, si∈ Ʀ2  contain the design sites and 

Y={y1 y2 ,…,ym}∈ Ʀ are associated responses. Let the trend 
polynomial fit through the design sites is f(s). Let F∈Ʀ2 is a 
matrix defined by F= f(si)T and R is the matrix representing 
the spatial correlation among all the design sites. The 
closed-form of f(si) can be a 2-D polynomial involving the 
polynomial basis functions and cross-terms also. For 
example, the second-order polynomial is expressed as f(si)= 
1+ xi + yi + xi

2 + yi
2 + xiyi. Then the Kriging model [2] 

which accommodates the error is expressed as  

Fβ + ε = Y (1) 

For which the generalized least squares solution [2] is, 

β = (FT R-1 F)-1 FT R-1 Y (2) 

The corresponding variance estimate of the model is 

Σ2 = (Y – Fβ)T R-1 (Y – Fβ)/m. (3) 

Thus, we can observe β  and σ2 depend upon the correlation 
model.  

B. Develop the Predictor. 
The Kriging estimator at unknown design site x is given 

by 
ŷ(x) = f(x)T β + rT R-1  (Y - Fβ).  (5) 

Here r stands for the vector representing the correlation 
between the target site and all the design sites. The 
estimated mean squared error is finite and depends only on 
the correlation kernel. We can gain control over the error 
model by imposing a second-order stationary field. And the 
stationary property is well defined through designing a 
spatial correlation model. The literature is enriched with the 
correlation models as listed in [3]. In the present study we 
are considering only exponential kernel which is expressed 
as  
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R(Θ, d) =  exp (-Θ|d| ) (6) 

It is evident from the equation specified above the spatial 
correlation exponentially decreases with the lag(d) between 
the design sites and its behavior is further governed by the 
parameter Θ. If the components of the vector Θ are equal, 
then the spatial correlation is an instance of isotropic 
phenomenon whereas varying values of Θ refer to an 
anisotropy property. The significance of the vector Θ is it 
defines the shape of the error field either as a circle or an 
ellipse. Thus, theta influences the spatial correlation model 
and hence it is very essential to learn the theta value 
empirically from the data itself. 

III. HOOKE AND JEEVES METHOD AND MULT AGENT
IMPLEMENTATIO N 

To optimally determine the value of Θ literature offers 
many algorithms such as convergence, gold-section search, 
Nelder-mead search, Luus–Jaakola[7] search, etc. In this 
work we have opted to use Hooke and Jeeves method for 
optimized pattern searching as it is a pattern search-based 
algorithm. The simplicity of this method lies in its 
exploratory capabilities and fast convergence. This method 
is a numerical procedure that is free from computation of 
gradients and thus avoids the operator selection policy from 
central, forward and backward differences. Further, if the 
objective function is not expressed in a closed-form but only 
the experimental responses are available then pattern search 
based algorithms are best suited to solve the unconstrained 
non-linear optimization problems [6]. The quality of the 
solution of the pattern search algorithm is dependent upon 
the heuristic rule selection, potentially a hybrid version and 
its implementation.  

Hooke and Jeeves pattern search method [4] solves the 
optimization problem by generating the state space in 
explorative manner and proceeds to new state so long as the 
solution gets optimized. Otherwise, the algorithm retracts to 
the old state from the new state and proceeds in a different 
direction. The number of directions in which the exploration 
happens also can be configured. For example, in 2-D case 
the exploration directions can be either 4 or 8.  In the case of 
higher-dimensional space exploration takes place 
sequentially along different directions.  

While exploring along ith dimension the optimal values 
along all the preceding dimensions are frozen. Once a local 
optimal has arrived then the algorithm anneals to new 
location, which we refer to as Pattern Move, along the 
direction in which partial optimal solution is realized. These 
two steps are repeated until optimal solution is realized. On 
the other hand, if the new pattern fails to generate further 
improved solution the solution backtracks to old state and 
explores for the optimal solution in a different direction that 
realizes the complete span of the search space. The 
algorithm strives to reach an optimal location from a random 
location in two types of moves Exploratory and Pattern 
Move as discussed below 

1. Exploratory Search: A local move to seek an optimal
solution. Given the current location Xc, one of the features 
of the location is perturbed in forward and backward 
directions and the feature is updated with the new value at 

which function evaluates to the maximum. Such a similar 
procedure is repeated with reference to each pattern, one at a 
time and new best location is configured. We characterize 
the exploratory move as a success if the new location is 
different from the initial location otherwise the move stands 
for failure. The outcome of the experiment is the new 
location.  

Let Xc is the current state of the solution. Assume that the 
ith component of Xc is perturbed by p while retaining the 
values of other features.  Algorithm 1 lists out the behavior 
of Explore step for each feature Xi of the solution vector Xc. 
The function is evaluated at locations Xi, Xi + 1, and Xi - 1 
and updates the component with the location at which the 
minimum value of the function is achieved. This process is 
repeated for all components of Xc. The algorithm returns 
success if new location Xn with optimal value of f is reached 
otherwise the Exploration returns a failure. 

2. Pattern Move: Upon success from Exploration step the
pattern move is taken with a leap in the direction of line 
joining Xcwith Xn 

A. Algorithm 1: 

// Initialization Xn:= Xc 

Step 1: Calculate f:= f (Xc,i), the forward value f+ := f (Xc,i + 
1) and backward value f- := f (Xc,i, - 1).

Step 2: Find fmin := min (f, f+, f-). 
  Set Xn,i that corresponds to  fmin. 

Step 3: Check i == N? If no, set i := i + 1 and go to Step 1; 
Else Xn is the result and goto Step 4. 

Step 4: If Xn != Xc, success; Else failure. 

Step 5: Make pattern move 
Xp = Xn+ α(Xn - Xc)  

Step 6: Evaluate f at Xp. If it is evaluated to be better then 
control is transferred to Step 1. Otherwise, reduce 
the step size i.e. the value of  α in Step 5. 

Thus Hooke-Jeeves method switches between two steps 
Exploratory Search and Pattern Move. In the first step local 
optimal value is located in the vicinity and the latter step 
takes the solution to a new pattern in the direction of 
successful exploration with a long leap and repeats the 
Exploratory step. If the exploration at the new pattern is in 
vain then the quantum of leap is reduced. 

In this paper, Hooke and Jeeves method is implemented 
to feature a parallel search mechanism by dividing the 
search space into disjoint regions and multiple parallel 
exploring agents are launched across these regions. Each 
agent is perceived as a random initial location in the given 
sub-region. The solutions generated by the exploration 
followed by pattern move from different agents are 
compared and the best solution is adapted. This parallel and 
divide and conquer strategy helps the empirical model to 
realize the global optimal solution and avoids the local 
optimal solution. 
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In the current work, a User Interface (UI)[7] had been 
designed by implementing a singleton pattern. The use-cases 
include actor being able to select a benchmark non-linear 
function, correlation kernel, and the number of orientations 
that are required by the program. Each input field is labeled 
with the corresponding name so that the user will find it 
easy to type or select the input. The other set of fields that 
are required are the x and y coordinates that refer to initial 
location of each agent, delta value, epsilon value, number of 
rotations and number of iterations. 

The following experiments demonstrate the results of the 
proposed model on benchmark mathematical functions that 
are available in the public domain of the internet.  

B. Experimental Results: 

Function: Sum Square 
EQUATION: (x - 2)2 + (y - 2)2 (7) 
X - Value: 11 
Y - Value: 13 
EPSILON: 0.01 
DELTA:  0.5 
ITERATIONS: 150 

Figure1. 3-D plot 

Figure 2. Contour Map 

The 3D representation of the sum square function depicts 
the span of the function over the data space in Figure1, 
Figure2 presents the Contour Map to demonstrate the 
convergence of the algorithm in the form of traces of the 
solution and the benchmark function is presented in contour 
form. It clearly demonstrates that the solution which is 

started at a random location is eventually reaching the 
optimal value of the function by making the pattern moves. 
A similar analogy is applied to the subsequent benchmark 
function evaluations shown in Figure 4 and Figure 6.  

Function: Matyas 
EQUATION: 0.26(x2 + y2) - 0.48xy 
X - Value: 12 
Y - Value: 14 
EPSILON: 0.0001 
DELTA:  0.5 
ITERATIONS: 100  

The 3D representation of the Matyas function is depicted 
in Figure 3 along with span of the function over the data 
space. 

Figure 3. 3-D plot 

Figure 4. Contour Map. 

Function: Beale 

EQUATION: 
 (1.5 - x + xy)2 + (2.25 - x + xy2)2 + (2.625 - x + xy3)2 
X - Value: 5 
Y - Value: 5 
DELTA: 0.5 
EPSILON: 0.01 
ITERATIONS: 200 
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Figure 5. 3-D plot 

Figure 6. Contour Map. 

Figure 7. 3-D plot 

The 3D representation of the Beale function is depicted in 
Figure 5. The function spans over the data space and has 
multiple optimal values. 

In this testing process we choose a Beale function with 
starting coordinates as (5, 5) and having delta value 0.5 with 
epsilon value 0.01 with value check in eight directions. 

Function: Booth 

EQUATION: (x + 2y - 7)2 + (2x - y - 5)2 

X - Value: 5 
Y - Value: 5 
DELTA: 0.5 
EPSILON: 0.01 

Figure 7 presents a 3D representation of the booth 
function and depicts the span of the function over the data 
space.  

In this testing process, we choose a booth function with 
starting coordinates as (7,8) and having delta value 0.5 with 
epsilon value 0.001 with value check in four directions. 

Figure 8. Contour Map. 

TABLE I  
SHOWING THE CONVERGENCE OF THE PROPOSED ALGORITHM 

Table 1 presents a summary of the results validating the 
performance of the algorithm on the benchmark functions. 

. CONCLUSIONS OF THE PRESENT STUDY

This paper successfully validated optimization results for 
various benchmark functions. The analytically calculated 
optimum solution is best matched with closed-form solution. 
The paper also, demonstrated the parallel implementation of 
Hooke and Jeeves method that avoided the local optimal 
problem.  The percentage error in analytical and python 
results depend on the number of iteration steps, length of 
data sets, objective function and constrained for 
optimization. 
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