ISSN 2277-3916

CVR Journal of Science and Technology, Volume 12, June 2017

A Classification of MapReduce Schedulers in
Heterogeneous Environments

Nenavath Srinivas Naik! and M. Badrinarayana?
! Asst. Professor, CVR College of Engineering/CSE Department, Hyderabad, India.
Email: nenavathsrinu@cvr.ac.in
2Professor, CVR College of Engincering/CSE Department, Hyderabad, India.
Email: badri@cvr.ac.in

Abstract—MapReduce is an essential framework for dis-
tributed storage and parallel processing for large-scale data-
intensive jobs proposed in recent times. Intelligent scheduling
decisions can potentially help in significantly minimizing the
overall runtime of jobs. Hadoop default scheduler assumes a
homogeneous environment. This assumption of homogeneity does
not work at all times in practice and limits the MapReduce
performance. In heterogeneous environments, the job completion
times do not synchronize. Data locality is essentially moving com-
putation closer (faster access) to the input data. Fundamentally,
MapReduce does not always look into the heterogeneity from a
data locality perspective. Improving data locality for MapReduce
framework is an important issue to improve the performance of
large-scale Hadoop clusters.

This paper primarily provides an overview of the evaluation
of Hadoop and introduces the MapReduce framework in detail.
This paper also describes some relevant literature work on some
recent developments in MapReduce scheduling algorithms in
heterogeneous environments.

Index Terms -Hadoop, MapReduce, Job Scheduler, JobTracker,
TaskTracker and Heterogeneous Environments.

I. INTRODUCTION

The era of distributed and parallel computing had begun
in the mid 1960s. During that period, to increase the com-
putational speed, parallel processors were introduced. Later,
Ethernet came into the picture that would transform the way
data was distributed in a network with nodes working as
processors of the parallel machine [1]. As the sequential
architectures could not enhance the performance, there was
a need for parallel and distributed architectures. In addition
to this, the cost of hardware was also to be considered.
Usually, it is better to introduce much cheaper parallel-working
processors/multiple single-processor connected systems than
making a single processor faster.

Nowadays, distributed systems replaced supercomputers as
they are cheaper and became better alternatives for faster pro-
cessing. A distributed system is a collection of multiple, single
or multi-core, computers connected to a network that shares
data and processing power to solve a given task effectively
and efficiently. The motto of the distributed system is that the
completion of the task becomes faster if it is shared among
multiple processors than a single processor. It is important
to observe that a distributed system can complete a task by

DOI:10.32377/cvrjst1216

executing it in the parallel fashion which is not possible with
a single processor system [2].

MapReduce is now one of the most popular computa-
tional frameworks for large-scale data processing and analysis
for parallel and distributed computing systems. MapReduce
schedulers perform task assignment to available resources in
the cluster. The common goal of MapReduce scheduling is to
minimize the overall completion time of a job by appropriately
assigning tasks to the available nodes [3].

The rest of this paper is structured as follows. Overview
of Hadoop framework is presented in Section II. Section III
presents a classification of MapReduce schedulers in het-
erogeneous environments. Different MapReduce scheduling
problems are presented in Section IV. Finally, conclude the
paper in Section V.

II. OVERVIEW OF HADOOP FRAMEWORK

Big Data depends very much on the capabilities of the
systems for storage and processing. Traditional systems like
Relational Database are not designed to handle smooth pro-
cessing of Big Data [4]. In particular, the challenges of big data
are those of processing and capturing of unstructured data. It
is said many issues exist related to problems associated with
sharing, transferring, analyzing, and visualizing of big data
[5]. In traditional database systems, data is structured and is
stored in tables with fixed number of columns. Each column
has the particular data type. However, Big Data have a variety
of data formats like audio, video, and text that does not fit in
the table sizes.

Data-intensive applications are the ones that can process
big data to get useful data [5]. To conduct the activities of
data-intensive applications in parallel, requests devoting their
time in the movement and manipulation of data are to be
made. Movement of data involves the flow of data between
two different nodes of a network for further processing.

However, as there is a lot of unstructured data growth,
there is much demand for new processing frameworks to deal
with it. For this purpose, several solutions emerge, including
MapReduce. MapReduce is a framework for large-scale data
processing developed by Jeffrey Dean and Sanjay Ghemawat
[6] at Google. Now, it is one of the most popular frameworks
for large-scale data processing and analysis.

CVR College of Engineering 97

ISSN 2277-3916

CVR Journal of Science and Technology, Volume 12, June 2017

Google trends show an increasing trend for the search
term Hadoop worldwide [7]. The growing trend of Hadoop
is caused by companies adopting this technology into their
technology stack. Companies are now migrating towards
Hadoop technology (eco-system) as it provides an easy and
straightforward approach to access the data and to get the
“Value” from Big Data.

In particular, the MapReduce framework [8] made a signif-
icant impact by demonstrating a simple, flexible and generic
way of storing and processing large distributed datasets.
MapReduce programs are written in a particular functional
style and may be executed within a framework that auto-
matically enables distributed and highly parallel execution.
MapReduce was quickly embraced as a new paradigm for data-
intensive computing and widely adopted by other companies
working with web-scale data sets. For example, Hadoop is
currently used by major companies such as Amazon, eBay,
Facebook, Twitter, Yahoo! and many others [10].

A. Hadoop

The importance of Hadoop is due to its large scale adoption
in clusters with commodity systems. Use of Hadoop has
spread from large corporations with expensive server farms
to small business and academia for research and other data
processing tasks. It also indicates a shift from homogeneous
to heterogeneous computing environments that are small or
medium scale and thrifty.

Figure 1 depicts the general Hadoop cluster. It is com-
posed of nodes, racks, and switches. All nodes in a rack
are connected to a rack switch, and all rack-switches are
then connected via bandwidth links to the core switch. There
are two branches of Hadoop releases, i.e. Hadoopl and
Hadoop2. Hadoop1 is the most famous for batch processing
and shows the potential value of Big Data distributed process-
ing. Hadoop2 or YARN (Yet Another Resource Negotiator)
[11] provides a unified resource management framework for
different data processing platforms. Similar to the original
Hadoop framework, the YARN framework also has a cen-
tralized manager node running the Resource Manager (RM)
daemon and multiple distributed working nodes running the
Node Manager (NM) daemons.

However, there are two main differences between the design
of YARN and original Hadoop. First, the Resource Manager
(RM) in YARN no longer monitors and coordinates job
execution as the JobTracker of traditional Hadoop do. An
Application Master (AM) is generated for each application
in YARN, which generates resource requests, negotiates re-
sources from the scheduler of RM and works with the Node
Managers to execute and to monitor the similar application
tasks.

The Hadoopl framework contains two components [12]: 1.
HDFS (Hadoop Distributed File System), which stores the
input data 2. MapReduce engine, which processes the data
blocks stored in different nodes of a cluster. HDFS contains a
NameNode and DataNodes in a cluster. NameNode is a master
node which contains the meta-data information of the data

Hadoop Cluster

o]
~

v ¥ ¥
JobTracker

[]

NameNode DataNode, + TaskTracker,

DatoNode, + TaskTrocker, DotaNode; + ToskTrocker; DataNode,, + TaskTrocker s,

DataNode, + TaskTrocker; DatoNode, + TaskTrockers DatoNode, + TaskTrocker

DatoNode, + ToskTracker; DatoNode; + TaskTrocker;

DatoNode, + DataNode DotaNode, + ToskTrocker,
Rack, Rack; Racky
Figure 1. A simplified schematic of a general Hadoop cluster [9]

block locations in a cluster. DataNodes are slave nodes, which
store the data blocks within a cluster. MapReduce contains a
JobTracker and multiple TaskTrackers. JobTracker deals with
job scheduling and assigns tasks to TaskTrackers within a
cluster depending on the slot availability. TaskTrackers process
the map and reduce tasks on the corresponding nodes in the
cluster.

B. MapReduce

MapReduce framework was inspired from the functional
programming languages [14]. The input and output data have
a particular format of (key, value) pairs. The Users define
an application using two functions: the Map function and
the Reduce function. The Map function repeats over a sect
of the input (key, value) pairs and produces intermediate
output (key, value) pairs. The MapReduce library groups all
intermediate values by key and gives them to the Reduce
function. The Reduce function iterates over the intermediate
values associated with the same key. Then it produces zero or
more output (key, value) pairs.

MapReduce framework is most widely used across the
industry and academia. It has been in practice in many do-
mains of data-intensive applications such as web data mining,
machine learning, health care data analysis, and scientific sim-
ulation. MapReduce is highly scalable and enables thousands
of commodity computers to be used as an efficient computing
platform. The framework detects and handles node failures
automatically without allowing the overall execution process
to be affected.

MapReduce framework follows a simple master-slave archi-
tecture, where JobTracker is the master node and TaskTrackers
are the slave nodes. The JobTracker handles scheduling deci-
sions for the MapReduce jobs. The JobTracker in Hadoop is
designed in such a way that the schedulers can be pluggable
in and out. The JobTracker and TaskTrackers communicate
with each other through heartbeat messages. Through these
messages, the TaskTracker indicates to the JobTracker that it
is alive. As a part of the heartbeat message, the TaskTracker

98 CVR College of Engineering

DOI:10.32377/cvrjst1216

ISSN 2277-3916

CVR Journal of Science and Technology, Volume 12, June 2017

MapReduce

1. Run job
Application S

3. Submit Job
.| JobClient ___,.__“__._..

JobTracker NameNode

Clinet JVM ; A '

Clinet Node _;'J Master Node

4, Retrieve
fnput Splits 7. Assign

\ 6. Sends Heartheat
Tasks]

e 2 sk s

2. Copy Job
Resources

‘
. Runs Map Runs Map
Task or
Reduce Task

¥ I

Task or
Reduce Task
Child VM
x x

4. tawnch E E
L.] TaskTracker | .

Slave Node

System .
Child VM

[Hadoop Distributed File

i

B Revdeveloh - 9. Lounch

Resources

Figure 2. Hadoop MapReduce workflow [13]

also indicate whether it is ready to accept a new task and other
related information. The client application submits jobs to the
JobTracker. The JobTracker communicates to NameNode to
find the data location. The JobTracker then creates a map
task for each data block. These tasks are queued up in the
JobTracker as per the scheduling algorithm. Whenever the
TaskTracker requests for a task, the JobTracker submits a task
to it as a return value. The TaskTracker launches each task in
a new Java Virtual Machine. A TaskTracker can run multiple
tasks at an instant which can be configured through the
configuration parameters. Once all the job tasks are finished
execution, then the output is stored back in HDFS.

We broadly describe MapReduce workflow as shown in

Figure 2 with the following sequence of steps.

1) The client submits the MapReduce job to the JobClient.

2) The JobClient copies the information regarding the job
resources to HDFS.

3) The JobClinet internally submits the job to the Job-
Tracker.

4) The JobTracker retrieves corresponding input data
blocks of the job.

5) The JobTracker interacts with the NameNode for meta-
data information of the input data.

6) The TaskTracker periodically sends the heartbeat in-
formation regarding the availability of slots and task
progress to the JobTracker.

7) The JobTracker assigns tasks to the TaskTrackers.

8) The TaskTracker retrieves job resources from the HDFS.

9) Finally, TaskTracker launches the child JVM, and it
executes the map or reduce task.

MapReduce contains the following stages [15] when
scheduling a job from the master node to the slave nodes as
shown in Figure 3.

1) User submits input data to the NameNode

A, Bubunit Job
.................... JobTracker

V. Load data imo HDEFS

5. Assigns Map Task s
N Nod - 7. Assigns Reduce Task
ameNode 4 .
/' TaskTracker, 1
' T +
2 Divides chates imio bocks i —
- Dupuit - Sort
' s I L1 c
* Tl n e LS
Block; 3 Reod et J Reduce
Block, e e ¥ Output File
A L % Chutput, =%
Block, & L .
LS L, Final
6. Shufle & Write Fo
s g . value)
Block, i f s i
/ — .
Ma L
Input File i g Reduce HDFS
AU | i L
Chitputs

Map Phase Reduce Phase

Figure 3. MapReduce Jobflow [15]

2) The NameNode divides the data into m blocks of the
same size. r copies (replicas) of every block are pro-
duced for fault tolerance. (r is the replication factor).

3) The master node picks up the idle slave nodes to
schedule map and reduce tasks.

4) User submits a job to the JobTracker for processing
corresponding data blocks.

5) A slave node that is executing a map task parses the
data block and assigns each (key, value) pair to the
Map function. The intermediate (key, value) pairs are
buffered in memory at corresponding nodes.

6) The buffered (key, value) pairs are written to the data
residing nodes at fixed intervals and divided into R
sections by means of a (configurable) partition function
(default is hash (intermediate key) mod R). The identical
(key, value) pairs go to the same partition. When
the task completes, the slave node sends the location
information of partition to the master node.

7) The node which contains Reducer function reads the
data using remote procedure calls. It sorts and groups
the data by intermediate key so that all values of the
same key are grouped. It is called shuffling of the task.

8) The master node produces the final output after execu-
tion of all map and reduce tasks.

In the MapReduce framework, the job execution process
has two phases, namely, a Map phase and a Reduce phase.
The Map phase assigns each map task to a block of the input
data. The number of data blocks determines the number of
map tasks. Execution of a map task consists of the following
steps [16]:

1) The task’s slice is read and organized into records (key,
value) pairs, and the Map function are applied to each
block.

2) After the Map function’s completion, the commit phase
registers the final output with the TaskTracker, which

CVR College of Engineering 99

DOI:10.32377/cvrjst1216

ISSN 2277-3916

CVR Journal of Science and Technology, Volume 12, June 2017

notifies the JobTracker about the task’s completion.

3) The Output Collector stores the Map output in Interme-
diate keys

4) The Output Collector ’spills’ this information to the
disks. A spill of the in-memory buffer contains sorted
records; first by partition number, and second by (key,
value) pairs. The buffer information is written to a local
file system as a data file and an index file.

5) In the commit phase, the final output of a map task is
produced by integrating all the split files created by this
map task into a single pair of data and index files.

These files are recorded with the TaskTracker before the task

is completed. TaskTracker reads these files to service requests
from reduce tasks.

Reduce phase contains following three stages: shuffle, sort,
and reduce.

1) In the shuffle stage, the intermediate output produced by
the Map phase is collected. Every reduce task is allotted
a part of the intermediate output with a static key range.

2) In the sort stage, output with the same key are grouped
together to be processed by the reduce stage.

3) In the reduce stage, the user-defined Reduce function is
applied to every key and corresponding list of values.

III. SCHEDULING ALGORITHMS FOR HADOOP
MAPREDUCE

We present a mathematical model to describe general
scheduling problems in a Distributed Environment.

Let M ={M;, M>,...,M,,} be the set of machines or
computer nodes which have to process n jobs represented by
the set J ={J1, Jo, ..., Jn }. A job J; usually consists of several
tasks 14,75, ...,T;. Each task T; consists of n; operations
0;1, 042, ..., Oy To every O;; a process requirement p;; is
associated. Each operation O;; is associated with a set of
parallel machines M;;.

The goal is to design a scheduler, which is responsible
for making decisions to execute a task at some time and on
some machine. The most common objective of scheduling is
to reduce the completion time of a parallel application by
properly assigning the tasks to the processors. Inappropriate
scheduling of tasks would fail to exploit the true potential of
the system [17].

The MapReduce task scheduling is an NP-Hard problem
[19] as it needs to achieve a balance between the job per-
formance, data locality, user fairness or priority, resource uti-
lization, network congestion, and reliability. If the scheduling
policy considers data locality for sclecting a task, it may have
to compromise on the fairness as the node available may
have data of some job, which is not on head-of-line as per
the fairness policy. Similarly, if a task is scheduled based on
job’s priority, it is not necessary that it would have local data
on the available node. It would impact job performance and

100

JobClient

Job submission

JobTracker

Job Queue

TaskTracker
™ / i m'

TaskTracker

-

Heartbeal TaskTracker

messages

. - -]

Figure 4. Adding pluggable scheduler [19]

network utilization. Some data centers or users want to achieve
higher performance; some want high data locality, some want
to improve resource utilization and so on. The scheduling
policies need to be designed differently for achieving different
objectives in different scenarios.

The demand for scheduling adaptation in MapReduce comes
from following points: the heterogeneity of cluster nodes, the
data locality-awareness, and the diversity of job execution
times. Job scheduling or task scheduling in the MapReduce is
employed to manage workload efficiently between the com-
puting nodes and effectively share the resources of a Hadoop
cluster among various jobs and nodes [18]. The performance
of the Hadoop framework can be affected by the imbalance
workload distribution and partial resources sharing because of
not having a sophisticated scheduling mechanism.

At each heartbeat, the TaskTracker notifies the JobTracker
the number of available slots it currently has. MapReduce slots
define the maximum number of map and reduce tasks that
can run in parallel on a cluster node. The number of slots
depends on the number of cores on that node. The JobTracker
assigns tasks depending on job’s priority, the number of non-
running tasks and potentially other criteria. Since bug report
Hadoop-3412, Hadoop has been modified to accept pluggable
schedulers as shown in Figure 4 that allows the use of new
scheduling algorithms to help optimize jobs with different
specific characteristics.

A. Taxonomy for MapReduce Scheduling Algorithms

A significant characteristic of scheduling algorithms is their
runtime performance. It means just how schedulers adapt to
the heterogeneous cluster. Schedulers can run in a static (non-
adaptive) or dynamic (adaptive) environments at runtime [9].
The dynamic nature of MapReduce framework is centered on
several things, like resource, data, workload, and the job. We
categorize the scheduling algorithms into adaptive and non-
adaptive based on their runtime flexibility. The classification
of MapReduce schedulers is as shown in Figure 5.

In Non-adaptive algorithms, scheduling, order for users,

CVR College of Engineering

DOI:10.32377/cvrjst1216

ISSN 2277-3916

CVR Journal of Science and Technology, Volume 12, June 2017

| MapReduce Scheduling Algorithms

! S SR l

Resource | Data Woarkload Job

] Distribution

Figure 5.

| Volume | | Volume

)
[om | [ome] [] []

Taxonomy for MapReduce scheduling algorithms

jobs and tasks are static at runtime based on predefined poli-
cies. For example, The Hadoop first-in-first-out and priority-
based schedulers practice predefined policies for scheduling
jobs or tasks in order.

In a MapReduce system, the features of the data, physi-
cal resources, and workload vary at runtime. An Adaptive
scheduling algorithm assigns a task to a node based on the
availability, capacity, and load on nodes in the cluster at
runtime. It may additionally choose an ideal task assighment
approach predicated on the dynamic arrival attributes of the
workload. We further categorize the algorithms based on the
runtime features of the MapReduce framework.

1) Resource-Adaptive: The resources existing in a Hadoop
cluster have distinct features. A CPU resource can be cate-
gorized by its processing speed, network bandwidth, and a
system can be considered by grouping its CPU speed, RAM,
and disk storage capacity. An additional essential characteristic
of a resource is the processing load. Processing load of
a resource is used to decide the available capacity of the
resource. Some of the schedulers execute tasks based on the
nodes according to their speeds to guarantee fast execution and
approximately based on the existing capacity to avoid resource
conflicts.

a) Resource Capacity: The capacity of a system contains
the resources like the size of RAM, the number of CPUs, and
disk capacity along with their processing speed. The systems
used in heterogeneous clusters may have a varied capacity of
these resources. Therefore, a scheduler has to reflect this while
launching different kinds of tasks on them.

b) Resource Load: Overloading of systems usually has
consequences of longer execution times and failures as a result
of resource conflicts. Overloading moreover raises the tem-
perature of the system and consumption of power. Therefore,
schedulers have to adapt to decrease overloading and avoid
resource skewness.

2) Data-Adaptive : To minimize the data transfers delays
and network conflicts, a scheduler has to perform a significant
part in getting the execution of a task nearer to the data
residing node. Therefore, while scheduling tasks, a scheduler
is necessary to be responsive to the data location and the data

CVR College of Engineering

DOI:10.32377/cvrjst1216

volume.

a) Data Distribution: The Hadoop distributed file system
divides the input data into multiple blocks and distributes var-
ious replicas of blocks across existing nodes. The MapReduce
framework executes a task in parallel on these distributed data
blocks. The MapReduce scheduler requires being responsive
to the location of data blocks to exploit the data local task
executions. The scheduling of the reduce task has to be done
based on the intermediate data locations. Therefore, the nodes
that run local map tasks of the job must be set preference.

b) Data Volume: The MapReduce jobs are executed on
the nodes of the cluster that store a massive amount of data. If a
scheduler recognizes the nodes having the input data of a given
job correctly, then the performance of a job can be enhanced.
The chances of identifying a right data block on a node are less
if the amount of data to be processed is enormous. Hence, to
quickly recognize the local data nodes for a job, the scheduler
has to be adaptive in nature.

3) Workload-Volume-Adaptive: In distributed and parallel
environments several jobs are executed at a time. The volume
of data turns out to be important to ensure Quality of Service
necessities of response time and throughput.

4) Job-Adaptive: The important features of a MapReduce
job are its type, priority, size, and execution time. A scheduler
can adapt to one or more features as job contains a map
and reduce tasks, its type and time are resulting from the
corresponding task features.

a) Job Type: A job can be I/O-intensive or CPU-
intensive, or a combination of both. If the map tasks of two
CPU-intensive jobs are scheduled on a node, then both the
jobs will contend for the allocation of CPU, and it can take
a longer execution time. However, if the tasks of a CPU and
I/O-intensive jobs are scheduled on a node, they can execute
in parallel.

b) Job Time: A scheduler has to confirm that at least a
few tasks of a job are continuously executed in the cluster. For
that, it has to consider the response time, task execution time,
and the actual response time with different task schedules.

¢) Job Size: The job sizes are characteristically measured
as the number of map and reduce tasks essential to complete
that job. These tasks are subject to the size of data to be
executed by that job. The scheduler decides each job task be
scheduled based on their size.

d) Job Priority: The MapReduce framework runs dif-
ferent job types. Scheduling algorithms should be capable of
scheduling jobs and tasks depending on their priorities. These
priorities can be fixed by the administrator depending on the
user inputs. In a few circumstances, priorities can be identified
by the scheduler depending on further requests, for instance,
fairness and response times.

IV. MAPREDUCE SCHEDULING ISSUES

This section defines data locality, speculative execution, and
heterogeneity regarding the MapReduce framework because
these are the important performance issues for MapReduce

101

ISSN 2277-3916

CVR Journal of Science and Technology, Volume 12, June 2017

scheduling algorithms. We present the classification of litera-
ture as shown in Figure 6.

(]',) MapReduce Schedulers

Heterogeneous
Environments

Homogeneous
Environments

Stragglers ? Dala Locality L [). Dean, 2008] £ [Zhang. 2011 L[Kumr.zml
g M. g [Quan, L [Zaharia i [C. He, LEC-HM £ [Wang,
2012]

6 [Q. Chen, W. Jia,
Zaharia, 2014] 2016 »2010] 2011} 20151 2016]
2008]
[ARasgoli E) [chen, [2. Tang. [Chunguang [R. xiong. W, ¥,
L2011 2013) 20151 L2013 i 20151

Figure 6. A Classification Literature of MapReduce Scheduling Approaches

A. Data locality

To process an enormous amount of data, Hadoop has to
provide an efficient data locality scheduling approach for
improving its performance in a heterogeneous environment.
One of the Hadoop principles is that moving computation
is cheaper than moving data [17]. This principle says that
it is better to move the computation close to data location
rather than to move data to the computing node. It applies in
particular when the data size is vast because the moving of
computation minimizes the network congestion and enhances
the system performance. Data locality is about executing tasks
to their input data as close as possible. These days clusters
have many nodes and transmit large data that enforce network
load and create congestion. Therefore, designing a scheduler
that can avoid unnecessary data transmission in the Hadoop
cluster is a crucial factor for the MapReduce performance as
network bandwidth is a scarce resource for these systems.

For each node, all tasks are categorized according to the
distance between the input data node and computation node.
The best efficient locality is where the task processing is done
on the same node with corresponding input data block named
as node-level locality. When a task cannot achieve the node
level locality, then scheduler executes the task on the node
where the processing node and data node located in the same
rack named as rack-level locality. If the task still fails to
achieve the rack-level locality, then the scheduler schedules
the task on a node in another rack which is named after off-
rack-level locality. If the data locality is not accomplished,
transferring of data and I/O cost can adversely affect the
performance due to shared network bandwidth.

B. Speculative Execution

One of the common causes that prolong the execution of a
MapReduce job is a “straggler”. A Straggler in simple terms
is a task (map or reduce) that takes longer execution time

102

(- N\ y
IF the task has started for r’)
>60s |
AND has low progress score |
compared to the average
AND no more failed/

\. pending task in the pool /,'

S

—

= | Failure handling
Scheduled e i i |

|
Specllative I
I
|

)

i Normal
IF the task failed
OR the node hosting this

task FAILED :

]

‘ :

IF the node hesting this task
FAILED il PAREN.
X =
O Pending .Running .Comp!eted
Figure 7. Life cycle of a task in Hadoop

as compared to other tasks in the cluster. Straggler tasks can
cause resource wastage and hamper the performance of a
job in the cluster, i.e. if a single task is delayed it affects
the execution time of the whole job. It is commonly seen
that the longer that a job runs, the chances of its getting
delayed increase. The causes can be many; malfunctioning
of hardware, bugs in software and configurations, different
hardware and dynamic aspects like CPU time variability,
network traffic, disk contention, etc. These can be difficult
to identify as in most of the cases; jobs execute effectively.
As the stragglers may take longer execution time, MapReduce
goes for a redundant speculative execution on other nodes in
an attempt to minimize job execution time as shown in Figure
7.

MapReduce executes a speculative copy of its task (also
called a backup task) on another node to finish the computation
faster. The objective of speculative execution is to minimize
the job execution time. A speculative task is executed based
on a simple heuristic that compares each task progress to the
average progress of a job. If the JobTracker finds that the task
is running very slow (about other tasks of the same job) or
showing minimal progress over time, it schedules a copy of the
same task on another node without suspending the initial task.
Morcover, both the tasks run simultancously and separately.
When a task executes well, then any duplicate tasks that are
running are dismissed as they are not required. Therefore, if
the original task completes its execution before the speculative
task, then the speculative task is terminated. Conversely, if
the speculative task finishes first, then the original task is
terminated, which is termed as speculative execution.

Scheduling of speculative tasks is complicated as it is
difficult to differentiate the tasks that are marginally slower
than the average completion time, especially in heterogeneous
environments. If straggler tasks are identified initially, then
the completion time of a job can be minimized. Even though
MapReduce schedulers attempt to launch backup tasks for

CVR College of Engineering

DOI:10.32377/cvrjst1216

ISSN 2277-3916

CVR Journal of Science and Technology, Volume 12, June 2017

stragglers, they fail to identify correct straggler tasks because
of errors and difficulties in estimating the remaining execution
time of tasks. Wrong identification of straggler tasks even-
tually gives rise to two problems; First, the execution times
of real stragglers are extended because launching a backup
task for wrongly identified stragglers will not improve the
MapReduce performance. Second, the system resources are
misused when launching backup tasks for wrong stragglers.
Straggler tasks are undesirable since they extend the job execu-
tion time and thus degrade the performance of the MapReduce
framework.

C. Heterogeneity

Hadoop was initially aimed for homogeneous cluster en-
vironments, but now it is commonly used in various hetero-
geneous environments [19]. The homogeneity assumption is
that all the nodes in the cluster will have the same processing
capacity. This assumption can degrade the MapReduce per-
formance because there is certain diversity in the hardware.
In current day scenarios, financially constrained entities like
universities and colleges would like to have a cluster with a
mix of legacy hardware with newer ones. Advancement of
hardware technology is another practical reason for heteroge-
neous clusters to increase, as hardware sourced at different
times in technology cycles can be brought together in a better
way. Therefore, coping with heterogeneous cluster hardware
would be a major goal to increase the scope of MapReduce.
In a heterogeneous environment, it is important to schedule
a job with proper resources to achieve high performance.
MapReduce jobs have heterogeneous resource demands as jobs
may be CPU or I/O-intensive.

Heterogeneity is categorized as below which is increasing
in both workloads and cluster configurations.

1) In Heterogeneous environments, each node in the cluster
can have different physical parameters such as process-
ing speed and disk capacity.

2) MapReduce jobs can be heterogeneous on various task
features such as data, the number of tasks, job execution
times, and computation requirements.

However, current MapReduce schedulers are not correctly
adapted for heterogeneous systems. Research in this paper is
originally motivated by addressing the scheduling challenges
arising due to increase in the heterogeneity of distributed
systems. This system introduces novel scheduling challenges
and directly affects the system performance.

V. CONCLUSIONS

This paper presented background work on the evaluation of
Hadoop framework. A detailed explanation of the MapReduce
framework is given and presented a taxonomy of MapRe-
duce scheduling algorithms. This paper also reviewed some
of the MapReduce scheduling approaches for heterogeneous
environments which are related to the job or task scheduling,
speculative execution, and data locality.

CVR College of Engineering

DOI:10.32377/cvrjst1216

REFERENCES

[1] J. DEAN AND S. GHEMAWAT. “MapReduce: Simplified data processing
on large clusters”. In Communications of the ACM, volume 51, number
1, pages 107-113, January 2008.

[2] D. JIANG, B. C. Ool, L. SHI, AND S. WU. “The performance of
MapReduce: an in-depth study”. In Proc. VLDB Endow., volume 3,
number 1-2, pages 472-483, September 2010.

[3] J. TAN, X. MENG, AND L. ZHANG. “Delay tails in MapReduce
scheduling”. In SIGMETRICS Perform. Eval. Rev., volume 40, number
1, pages 5-16, June 2012.

[4] T. WHITE. “Hadoop: The Definitive Guide”. In OReilly Media, 2015.

[5] J. XIE, F. MENG, H. WANG, H. PAN, J. CHENG, X. QIN. “RESEARCH
ON SCHEDULING SCHEME FOR HADOOP CLUSTERS”. IN Procedia
Computer Science, VOLUME 18, PAGES 24682471, JUNE 2013.

[6] MD. AssuncAaO, RN. CALHEIROS, S. BIANCHI, M. NETTO,
R. BUYYA. “BIG DATA COMPUTING AND CLOUDS: TRENDS AND FU-
TURE DIRECTIONS”. IN Journal of Parallel and Distributed Computing
(JPDC), VOLUMES 79-80, PAGES 3—-15, MAY 2015.

[7] T. CHIH-FONG, L. WEI-CHAO, K. SHIH-WEN. “BIG DATA MINING
WITH PARALLEL COMPUTING: A COMPARISON OF DISTRIBUTED AND
MAPREDUCE METHODOLOGIES”. IN Journal of Systems and Software,
VOLUME 122, PAGES 83-92, DECEMBER 2016.

[8] S. Y. HsieH, C. T. CHEN, C. H. CHEN, T. H. YEN, H. C. Hs1ao0,
R. BUYYA. “NOVEL SCHEDULING ALGORITHMS FOR EFFICIENT
DEPLOYMENT OF MAPREDUCE APPLICATIONS IN HETEROGENEOUS
COMPUTING ENVIRONMENTS”. IN IEEE Transactions on Cloud Com-
puting, VOLUME PP, NUMBER 99, PAGES 1-1, APRIL 2016.

[9] A. RASOOLI AND D. G. DOWN. “COSHH: A CLASSIFICATION AND
OPTIMIZATION BASED SCHEDULER FOR HETEROGENEOUS HADOOP
SYSTEMS”. IN Journal of Future Generation Computer Systems,
VOLUME 36, PAGES 1-15, JuLy 2014.

[10] Q. CHEN, C. L1U AND Z. XIAO. “IMPROVING MAPREDUCE PER-

FORMANCE USING SMART SPECULATIVE EXECUTION STRATEGY”.

IN IEEE Transactions on Computers, VOLUME 63, NUMBER 4, PAGES

954-967, APRIL 2014.

J. LU AND J. FENG. “A SURVEY OF MAPREDUCE BASED PARALLEL

PROCESSING TECHNOLOGIES”. IN China Communications, VOLUME

11, NUMBER 14, PAGES 146-155, SEPTEMBER 2014.

C. Hsu, K. SLAGTER, AND Y. CHUNG. “LOCALITY AND LOADING

AWARE VIRTUAL MACHINE MAPPING TECHNIQUES FOR OPTIMIZING

COMMUNICATIONS IN MAPREDUCE APPLICATIONS”. IN Future Gen-

eration Computer Systems, VOLUME 53, PAGES 43-54, DECEMBER

2015.

K. SLAGTER, C. HSU, AND Y. CHUNG. “AN ADAPTIVE AND

MEMORY EFFICIENT SAMPLING MECHANISM FOR PARTITIONING IN

MAPREDUCE”. IN International Journal of Parallel Programming,

VOLUME 43, ISSUE 3, PAGES 489-507, JUNE 2015.

Z. TANG, L. JIANG, J. ZHOU, AND K. LI. “A SELF-ADAPTIVE

SCHEDULING ALGORITHM FOR REDUCE START TIME”. IN Future

Generation Computer Systems, VOLUME 43, PAGES 51-60, FEBRUARY

2015.

W. YU, Y. WANG, X. QUE AND C. XU. “VIRTUAL SHUFFLING FOR

EFFICIENT DATA MOVEMENT IN MAPREDUCE”. IN IEEE Transactions

on Computers, VOLUME 64, NUMBER 2, PAGES 556-568, FEBRUARY

2015.

L. MASHAYEKHY, M. M. NEJAD, D. GROSU, Q. ZHANG AND

W. SHI. “ENERGY-AWARE SCHEDULING OF MAPREDUCE JOBS FOR

BIG DATA APPLICATIONS”. IN IEEE Transactions on Parallel and

Distributed Systems, VOLUME 26, NUMBER 10, PAGES 2720-2733,

OCTOBER 2015.

W. JIA AND L. XIAOPING. “TASK SCHEDULING FOR MAPREDUCE IN

HETEROGENEOUS NETWORKS”. IN Cluster Computing, VOLUME 19,

NUMBER |, PAGES 197-210, MARCH 2016.

M. C. LEE, J. C. LIN AND R. YAHYAPOUR. “HYBRID JOB-

DRIVEN SCHEDULING FOR VIRTUAL MAPREDUCE CLUSTERS”. IN

IEEE Transactions on Parallel and Distributed Systems, VOLUME 27,

NUMBER 6, PAGES 1687-1699, JUNE 2016.

[19] P. P. NGHIEM, S. M. FIGUEIRA. “TOWARDS EFFICIENT RESOURCE
PROVISIONING IN MAPREDUCE”. IN Journal of Parallel and Dis-
tributed Computing, VOLUME 95, PAGES 2941, SEPTEMBER 2016.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

103

