Behaviour of Magnetised Water Concrete under Different Curing Conditions

S.Laxmikanth Reddy¹ and V.Naveen Kumar²

¹Student, CVR College of Engineering/ Structural Engineering, Civil Engineering Department, Hyderabad, India Email: laxmikanth3607@gmail.com

²Asst. Professor, CVR College of Engineering/ Civil Engineering Department, Hyderabad, India Email: vuppunaveen22@gmail.com

Abstract—Concrete is the most widely used man made building material. The reaction of OPC with water results in hydration, which glue the reacting cement together to form a hardened cement paste. When cement and water are mixed with fine and coarse aggregate the resulting product is called concrete. Till now potable (Normal) water is used for mixing different ingredients of concrete. It is expected that in the near future, the civil engineering community will have to produce structures in harmony with the concept of sustainable development through the use of high-performance materials with low environmental effects that are produced at a reasonable cost. Magnetic water concrete, synthesized from the normal materials used in manufacturing of concrete, provides one route towards this objective.

This paper presents the effect of addition of magnetised water on behaviour of concrete under different curing conditions.

Total number of specimen casted are 12 cubes and 6 cylinders of normal water concrete normal curing, 12 cubes and 6 cylinders of magnetised water concrete normal curing, 3 cubes and 6 cylinders of normal water concrete accelerated curing, 3 cubes and 6 cylinders of magnetised water concrete accelerated curing each of M20 and M25 grade of concrete determining compressive strength and splitting tensile strength.

Index Terms—Magnetised water concrete, Normal water concrete, Magnetised water, Normal water, Normal curing, Accelerated curing.

I. Introduction

Cement mortar and concrete are most widely used construction materials. Concrete is made by using Portland cement, fine aggregates, coarse aggregates and water. The hydration products act as binder to hold all the aggregates together to form concrete. The hydration is an exothermic reaction which liberates considerable quantity of heat and this is to be dissipated for continuing hydration process. Curing is generally done by immesion, spraying, ponding water on concrete surface. It is very difficult to choose another construction material which is as versatile as concrete.

II. MATERIALS

A. Cement

Locally available 53 grade ordinary Portland cement has been used in the present investigation work for all concrete mixes.

TABLE I
PHYSICAL PROPERTIES OF ORDINARY PORTLAND CEMENT

Name of the	Result	I.S Recommended	I.S code
test	Ttoball	values	1.5 0000
Finess of	3.5%	<10%	IS269-
cement			1976
Standard	32%	From bottom 5 to	IS4031-
consistency		7mm	1968
Specific	3.02	3.15	IS2720
gravity			Part3
Soundness of	3mm	<10mm	IS269-
cement			1989
Compressive	53.5N/mm ²	$>=53 \text{N/mm}^2$	IS269-
strength of			1976
cement (28			
days)			

B. Magnets

In the present investigation, magnets were obtained from a scientific store. The shape of the magnets are rounded. The average magnetic strength of magnets is 985 gauss.

Figure 1. Magnets

C. Fine aggregates

In the present investigation, river sand available in the local market was used as fine aggregate. The physical properties of fine aggergates were tested in accordance with IS 2386.

TABLE II
PHYSICAL PROPERTIES OF FINE AGGREGATE

Properties	Result
Fineness	2.88
Specific gravity	2.74
Bulk density in loose state	1550 kg/m ³

Fine aggregate conform to zone-II in accordance with IS: 383-1970.

D. Coarse aggregate

In the present investigation, crushed coarse aggregate of 10mm size obtained from local crushing plants is used. The physical properties of coarse aggregate were tested in accordance with IS 2386.

TABLE III
PHYSICAL PROPERTIES OF COARSE AGGREGATES

Properties	Result
Finess Modulus	5.314
Specific Gravity	2.77
Bulk Density	1332 kg/m ³

E. Magnetised water

Magnetised water is obtained by placing 1liter beakers filled with water over the magnets for a period of 24 hours. During this time magnetic field is going to penetrate through the glass into the water, which absorbs the magnetism and this magnetised water is used for preparing concrete.

Figure 2. One liter beakers placeg over magnets

III. MIX DESIGN

In the present investigation, M20 and M25 grade concrete mix trials were done on procured material. The indian standard mix design procedure is adopted (i.e., IS: 10262-2009).

TABLE IV
M20 GRADE CONCRETE PROPORTION QUANTITIES
PER CUBIC METER

Target strength fck	26.6N/mm ²		
Volume of concrete	1m ³		
Weightofwater	220.48kg		
Weight of cement	400.48kg		
Weight of fine aggregate	957.03kg		
Weight of coarse aggregate	824.17kg		
W/C ratio	0.55		
Mix proportion	1:2.38:2.05		

 $\begin{array}{c} \text{Table V} \\ \text{M25 Grade Concrete Proportion Quantities} \\ \text{Per Cubic Meter} \end{array}$

Target strength fck	31.6N/mm ²
Volume of concrete	1 m ³
Weightofwater	220.48kg
Weight of cement	440.96kg
Weight of fine aggregate	937.35kg
Weight of coarse aggregate	807.233kg
W/C ratio	0.5
Mix proportion	1:2.125:1.83

IV. RESULTS AND DISCUSSIONS

Effect of magnetised water on workability of concrete mixes. Workability tests are conducted for different concrete mixes with normal water and magnetised water.

TABLE VI WORKABILITY TESTS ON M20 GRADE CONCRETE

WORKABIETT TESTS ON WIZO GRADE CONCRETE				
Workability tests	Normal water	Magnetised water		
Slump cone test	35	55		
(mm)				
Compaction	0.936	0.94		
factor				
Vee-bee	6.2	5.13		
consistometer				
(sec)				

TABLE VII WORKABILITY TESTS ON M25 GRADE CONCRETE

Workability tests	Normal water	Magnetised water
Slump cone test	35	55
(mm)		
Compaction	0.936	0.94
factor		
Vee-bee	6.2	5.13
consistometer		
(sec)		

Compressive strength of Normal Water Concrete (NWC) and Magnetised Water Concrete (MWC) of M20 grade concrete cubes. (Normal Curing)

Table VIII Compressive Strength Of M20 Grade Nwc And Mwc.

Days	Compressive	Compressive	
	strength of NWC	strength of MWC	
7	18.48	27.16	
28	25.43	31.4	
60	30.05	34.76	
90	35.01	39.82	

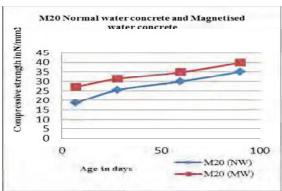


Figure 3. Compressive strength of M20 grade NWC and MWC.

Compressive strength of Normal Water Concrete (NWC) and Magnetised Water Concrete (MWC) of M25 grade concrete cubes. (Normal Curing)

TABLE IX
COMPRESSIVE STRENGTH OF M25 GRADE
NWC AND MWC

Days	Compressive strength of NWC	Compressive strength of MWC
7	21.56	30.43
28	30.22	35.1
60	34.64	39.3
90	38.66	42.76

Figure 4. Compressive strength of M25 grade NWC and MWC.

Compressive strength of Normal Water Concrete (NWC) and Magnetised Water Concrete (MWC) of M20 grade concrete cubes. (Accelerated Curing)

	IN	WC AND MWC		
Compressive str	ength of	Compressive	strength	of
NWC		MWC		
11.3		14.3		
R28(strength at 28	days)=8.09	+1.64(Ra)		
26.62		32.36		Ť

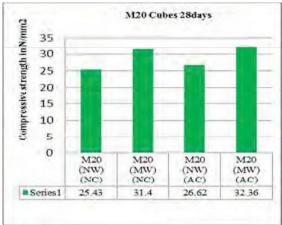


Figure 5. Compressive strength of M20 grade NWC and MWC.

Compressive strength of Normal Water Concrete (NWC) and Magnetised Water Concrete (MWC) of M25 grade concrete cubes. (Accelerated Curing)

TABLE XI COMPRESSIVE STRENGTH OF M25 GRADE NWC AND MWC

Compressive strength of NWC	Compressive strength of MWC	
13.7	16.8	
R28(strength at 28days)=8.09+1.64(Ra)		
30.55	35.65	

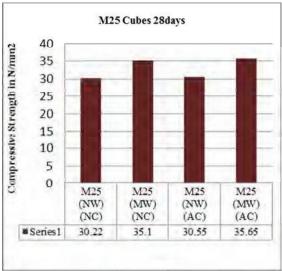


Figure 6. Compressive strength of M25 grade NWC and MWC.

Compressive strength of Normal Water Concrete (NWC) and Magnetised Water Concrete (MWC) of M20 and M25 grade concrete cylinders 28days. (Normal Curing)

$\begin{array}{c} \text{TABLE XII} \\ \text{COMPRESSIVE STRENGTH OF NWC AND MWC} \\ \text{CYLINDERS} \end{array}$

Grade	Days	Compressive	Compressive
		strength of	strength of
		NWC	MWC
M20	28	18.6	21.4
M25	28	20.8	23.6

Compressive strength of Normal Water Concrete (NWC) and Magnetised Water Concrete (MWC) of M20 and M25 grade concrete cylinders. (Accelerated Curing)

TABLE XIII COMPRESSIVE STRENGTH OF NWC AND MWC CYLINDERS

Grade	Compressive	Compressive			
	strength of NWC	strength of MWC			
M20	8.1	10.4			
M25	9.8	12.2			
R28(strength at 28 days)=8.09+1.64(Ra)					
M20	21.37	25.14			
M25	24.16	28.09			

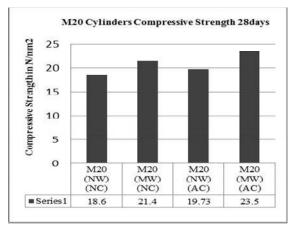


Figure 7. Compressive strength of M20 grade NWC and MWC cylinders.

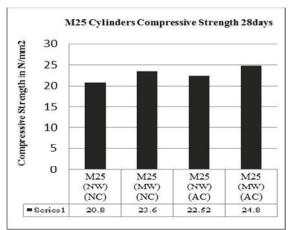


Figure 8. Compressive strength of M25 grade NWC and MWC cylinders.

Split tensile strength of Normal Water Concrete (NWC) and Magnetised Water Concrete (MWC) of M20 and M25 grade concrete cylinders 28days.

TABLE XIV SPLIT TENSILE STRENGTH

SI EIT TENSIEE STRENGTH					
Grad	e	Split tensile	Split tensile	Split tensile	Split tensile
		strength of	strength of	strength of	strength of
		NWC (NC)	MWC (NC)	NWC (AC)	MWC (AC)
M20		2.64	3.36	2.3	3.18
M25		2.9	3.62	2.57	3.4

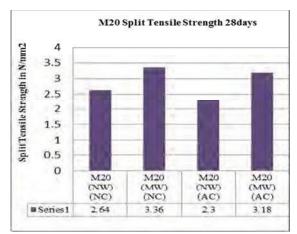


Figure 9. Split tensile strength of M20 grade concrete.

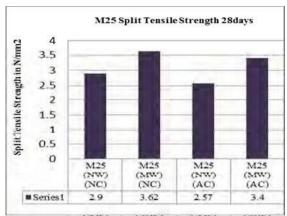


Figure 10. Split tensile strength of M25 grade concrete.

V. CONCLUSIONS

In this investigation, the behaviour of magnetised water concrete on compressive strength and splittensile strength are studied.

- 1. The workability of magnetised water concrete is slightly more than that of normal water concrete.
- 2. The compressive strength of concrete with two types of water in the mix, Normal water (Normal Curing and Accelerated Curing) is less than Magnetised water (Normal Curing and Accelerated Curing).
- 3. The split tensile strength of concrete with two types of water in the mix, Normal water (Normal Curing and Accelerated Curing) is less than Magnetised water (Normal Curing and Accelerated Curing).
- 4. Accelerated curing gives high early ge strength which enables the removal of the formwork within 24hours, thereby reducing the cycle time, resulting in cost-saving benfits.
- The increase of strengths of concrete when MW is used as mixing water in concrete is due to filling up of the voids(pores) in concrete with more products of hydration.
- The strength studies show that MWC also behaves like a NWC in strength development i.e., developing very high strengths at early ages and less strength at later ages.

REFERENCES

- [1] M. Gholizadeh and H. Arabshahi, "The Effect Of Magnetic Water On Strength Properties Of Concrete", Research Journal of Applied Sciences 6(1): 66-69, 2011.
- [2] Hassan Karam and Osama Al-shamali, "Effect Of Using Magnetized Water On Concrete Properties". Research Associate, Kuwait Institute For Scientific Research, Kuwait.
- [3] B. Shiva Konda Reddy, Vaishali G. Ghorpade and H. Sudarsana Rao, "Influence Of Magnetic Water On Strength Properties Of Concrete". Indian Journal of Science and Technology, Vol 7(1) ,14-18, January 2014.
- [4] B. Shiva Konda Reddy, Vaishali G. Ghorpade and H. Sudarsana Rao, "Use Of Magnetic Water For Mixing And Curing Of Concrete". International Journal of Advanced Engineering Research and Studies.
- [5] Gnana Venkatesh.S, Arun.M, Arunachalam.N, "Effect On Concrete Strength By Three Types Of Curing Methods". International Journal of Engineering and Management Research, Vol-4, Issue-6, December-2014.
- [6] Maria Eugenia Garcia Harbour, "Changes of biological properties in physical-chemical water induced Magnetic field" Master's thesis submitted at Department of Physical Chemistry, State University of Campinas, Brazil, December 1998, pp.1-112.

- [7] Nan Su and Chea-Fang Wu., "Effect of magnetic field treated water on mortar and concrete containing fly ash", Journal of Cement and Concrete Composites, 25, p.269 (2003).
- [8] Nan Su, Yeong-Hwa. Wu and Chung-Yo Mar., "Magnetic water on the engineering properties of concrete containing granulated blast furnace slag", Journal of Cement and Concrete Research, Vol.30, 2000, pp. 599-605.
- [9] Ashrae, "Efficiency of physical water treatments in controlling calcium scale accumulation in recirculation open cooling water system", Research project No.1155-TRP, submitted at department of mechanical engineering and mechanics, Drexel University, Philadelphia, May 2002, pp.1-226.
- [10] Code of practice for Concrete mix proportioning-guidelines (First revision), IS 10262: 2009, Published by bureau of Indian standards.