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Abstract—In this paper, a Leaky Time Varying 
Mean Mixed Norm Adaptive algorithm is proposed. 
The weight drift issue is overcome by minimizing the 
function defining weighted sum of the LMS and 
LMF cost functions along with the leakage factor. 
The weighting factor is applied in time varying 
environment and made to adapt itself so as to 
emphasize one cost function over the other based on 
closeness to the optimum value. The proposed 
algorithm results are compared with the 
conventional algorithms and the obtained results 
show an improvement over the convergence. 
 
Index Terms— Adaptive Filters, Fixed Mixed Norm 
(FMN), Variable Leaky LMMN (VLLMMN) 

I.  INTRODUCTION   

The least mean-square (LMS) [3] algorithm and the 
least mean-fourth (LMF) [4] algorithm can be 
generalized as minimization of the mean-kth error 
function, that is [ ]k

n nJ E e , k is some positive integer, 
when k=2 and k=4 are substituted above, the equation 
results in the LMS and LMF algorithms [1,2] 
respectively. 

  As can be seen from Figure (1), adaptive filters can 
be used to solve the problem of system identification, 
wherein a model is created to overcome the 
uncertainties in the system when its parameters are 
unknown to us and may be time varying. In such cases 
same input xn is being fed to both the adaptive filter and 
the system under modeling. The difference between 
them dn and the responses of the adaptive filter yn and 
the system are then compared i.e. the error en is used to 
adjust the parameters of the filter. With the increase in 
the number of iterations, the parameters of the adaptive 
filter reach an optimum value or approach to those of 
unknown system parameters as it is clearly evident from 
Figure (1). 

 In previous work [9], it’s been noticed that LMF 
algorithm performs well compared to the LMS 
algorithm in the environment which is non-Gaussian. As 
a variant of the LMS algorithm we find another example 
of adaptive filter algorithms is the leaky Least Mean 
Square (leaky LMS) algorithm [10]. So the leaky LMS 
algorithm was first introduced to overcome the weight 

drift problem occurring in the LMS adaptive filters 
which usually occurs due to insufficient excitation of 
the input. Following the same analysis it’s seen that the 
LMF algorithm also suffers from the weight drift 
problem under the same conditions as LMS algorithm. 
Making use of the best properties of these two 
algorithms leads us to the LMMN algorithm [5], which 
is found to provide a better performance in different 
noise environments like Gaussian and Non-Gaussian 
compared to either LMS or the LMF. But even LMMN 
algorithm undergoes a weight drift problem under 
insufficient excitation of the input signal. 

The LMS algorithm which reduces the square of the 
error is a very well known algorithm in adaptive 
filtering, while the LMF algorithm which reduces the 
fourth of the error has been proposed in [4] and gained 
much attention in the literature proposed in [5]-[7]. Both 
the algorithms are robust to the noise statistics in 
different environments like Gaussian noise, Uniform 
noise to name a few, because of which their 
convergence behaviour are different [4]. From the above 
discussion it is well understood that the larger gradient 
of LMF algorithm makes the convergence faster when 
away from the optimum ( 4 2

n ne e for 2 1ne  ). But more 
desirable characteristics in the neighborhood of 
optimum are obtained by making use of LMS algorithm. 

In the literature work the weighted sum of the two 
performance measures has been utilized and was 
proposed to combine the advantages of both in the 
mixed-norm adaptive algorithm [5]. The mixed-norm 
LMS-LMF adaptive algorithm is defined by the 
following cost function: 

 
2 4[ ] (1 ) [ ]n n nJ E e E e                                     (1) 

Where [0,1]  controls the mixture of the mixed norm 
algorithm i.e. a value of 1   in the above equation 
results in LMS algorithm whereas a value of 0   
leads to the LMF algorithm convergence behavior 
respectively. ne  is the error between the adaptive filter 
and the unknown system output and is usually defined 
as 

   n n n ne y x w                                                          (2) 

where ny is the desired value, nw is the filter coefficient 
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of the adaptive filter being employed, and nx is the input 
vector. 

 
 

Figure1: Block Diagram of Adaptive System Identification. 
 

So the combination of the conventional LMS and 
LMF algorithms give LMMN algorithm. But at some 
times the LMMN algorithm continues the error 
controlling process even if the input is not present i.e. 
what we call as weight drift problem in case of adaptive 
algorithms. To overcome this problem of weight drifting 
a leakage factor is introduced in the algorithm giving 
rise to Leaky LMMN algorithm [9]. 

The LMMN cost function is modified a little bit to 
obtain Leaky LMMN by introducing a leakage 
parameter  in the same way as was done in the 
literature for the case of the leaky LMS [8]. The term 
leakage stems out from the fact that, unlike the 
conventional LMS, where weights remain stationary in 
case of stalling, in Leaky LMMN the weights “leak out” 
in case of stalling occurs i.e. the input sequence 
becomes zero. Therefore, the cost function that is 
required to minimize the error is given as 
 

2 2 4( ) || || { [ ] (1 ) [ ]}n nJ w w E e E e                 (3) 
 
Where J is the cost function in finding out the optimum 
weight vector  controls the mixture of the mixed norm 
algorithm related to the error vector ne  and   is the 
leakage factor which mitigates the weight drift problem 
occurring in the mixed norm algorithm. Following the 
above discussion the normalized weight error in the case 
of Leaky LMMN can be obtained from [9] as  
 

2 2 2 2 2 2
1|| w || (1 ) || || || ||n n n nw u v          

 
So that 2|| ||nw remains bounded for 0 1  .     
 

II. PROPOSED ALGORITHM 

The algorithm defined in equation (3) works when 
the "mixing" parameter or weighting factor is fixed and 

is does not consider the leakage in the time varying 
environment and is usually predetermined. In this paper, 
a self-adapting time variable weighting factor is 
considered that brings our proposed algorithm to the 
LMF algorithm when the coefficient vector is away 
from the optimal value and on the other hand 
emphasizes the LMS algorithm when the coefficient 
vector is close to the optimum. Here a time varying 
weighting factor is proposed to allow the algorithm to 
adapt itself to the changing input conditions and is 
denoted as variable n . This factor is then updated 
every iteration so it is large when we are away from the 
optimum and decreases as we approach towards the 
optimum. 

In the derivation of the proposed algorithm, modified 
variable step size (MVSS) algorithm is being used as 
proposed in [7] to update the weighting factor n . The 
proposed variable weight leaky mixed-norm LMS-LMF 
algorithm required to minimize the performance 
measure can be thus defined as: 

 
2 2 4( ) || || { [ ] (1 ) [ ]}n n n nJ w w E e E e         (4) 

 
where n is a time varying parameter updated according 
to: 
 

2
1 ( )n n p n                                                  (5) 

 
and 

 
( ) ( 1) (1 ) ( ) ( 1)p n p n e n e n                  (6) 

 
The parameters  and , are the exponential 

weighting parameters governing the average time 
constant and are usually confined to the interval [0, l], 
i.e., these parameters are responsible for the quality of 
estimation, and 0  . It can be observed from the 
algorithm defined in equation (1) that it can be restored 
efficiently when 1  and 0  , i.e., n is chosen to 
have a fixed value. 

If the constraints  and as defined in equation (5) 
are given, than making use of uni-modal character the 
cost function defined in equation (3) can be preserved. 

Following the discussion above it motivates for the 
development of the proposed algorithm that recursively 
adjusts the coefficients of a leaky system which is 
expressed in the following form, i.e., update equation of 
the variable leaky LMMN can be written as: 

 
2

1 (1 ) { (1 ) }n n n n n n nw w e e x                  (7)  
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where is the step size chosen small enough for the 
convergence of the algorithm to take place and the 
sufficient condition for the convergence of the proposed 
algorithm in the mean square sense can be found out in 
the same way as the approach used for the mean 
convergence on the step size and is usually is governed 
by the equation 

 

2
max

20
[ [ ] 3 [(1 )]( ) ( )]n n vE E R


     

 
   

 
   (8) 

where Where max ( )R is the largest eigen value of R, 
2
v is the input noise power and [ ]nE  is the mean of 

the mixing parameter. 
From Equation (6), p(n) can be set recursively in the 

following form: 
1

0
( ) (1 ) ( ) ( 1)

n
i

i
p n e n i e n i 





                  (9) 

and therefore 
1 1

2 2

0 0

( ) (1 ) ( ) ( 1) ( ) ( 1)
n n

i j

i j
p n e n i e n i e n j e n j  

 

 

        (10)  

Making use of the above set of recursive equations an 
expression for the mean of the mixing parameter, 
namely [ ]nE  can be obtained as  

 
1

2 2
1

0

2

2

[ ] [ ] (1 )

[ ( )]
[ ( 1)]

n
i

n n
i

E E

E e n i
E e n i

     





  

 

  


               (11) 

 
In the above Equation, its been assumed that the 

algorithm has converged, and in this case the samples of 
the error e(n) can be assumed uncorrelated, i.e., 

[ ( ) ( )] 0E e n i e n j   , ( )i j  . 
 
Also, the mean-square error (MSE) can be set into the 

following: 
 

2 2 2[ ( )] [ ( )]a nE e n E e n                                     (12) 
 
 
where 2

n and 2[ ( )]aE e n are the noise power and the 
excess MSE, respectively. 

 

III. SIMULATION RESULTS 

The signal to be processed is worked out for both 
Gaussian and Uniform noise environment and then the 
time Variable Leaky Least Mean Mixed Norm 

(VLLMMN) algorithm is compared to the Fixed Mixed-
Norm (FMN) LMS-LMF algorithm in terms of faster 
convergence. The input signal nx which is not known to 
the system and to the adaptive filter is considered to be 

1  sequence and the channel used 
is [0.3482,0.8704, 0.3482]T

ow  .  
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 Figure 3: Behaviour of Proposed and the FMN 
algorithm in Uniform Noise and noise variance 0.2 
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Figure 2: Behaviour of Proposed and the FMN algorithm in Uniform 

Noise and noise variance 0.1. 
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 Considering a white input data, where the variance of 
the regressors is set to unity and maintaining all the 
parameters as defined above, the simulations in this 
paper are performed for Uniform and Gaussian noise 
environments with noise variance i.e Signal to Noise 
ratio (SNR) value set at 10 dB and 20 dB respectively. 
The performance measure considered is the normalized 
weight error norm 2 2

1010 log || || / || ||n o ow w w  with 
the number of taps set to 5. The additive noise is a zero 
mean and has a Gaussian distribution. Results are 
obtained by averaging 8000 samples over 100 
independent runs. 

Now comparing the time varying algorithm to the 
fixed mixed-norm algorithm for different values of 
mixing parameter . 

From the above figures the fixed mixed norm 
algorithm is considered with 0.8  and 0.2  . The 
FMN algorithm with 0.8    behaves almost similarly 
to the LMS algorithm whereas the FMN algorithm with 

0.2  emphasizes the approach towards the LMF 
algorithm. The superior performance of the proposed 
algorithm compared to the conventional algorithms can 
be observed from the Figures (2-5) where in the 
proposed Variable Leaky LMMN algorithm results 
outperform the two versions of the FMN algorithm. 
This is a result of the fact that the mixing parameter for 
the proposed algorithm is time varying, which 
accommodates itself according to changes in the 
environment. 
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Figure 4: Behaviour of Proposed and the FMN 

algorithm in Gaussian Noise and noise variance 0.1 
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 Figure 5: Behaviour of Proposed and the FMN algorithm in 
Gaussian Noise and noise variance 0.2 

 
It is clearly noticeable from figures (2-5) that the 

proposed Variable Leaky Least Mean Mixed Norm 
Algorithm (VLLMMN) algorithm totally overcomes the 
FMN algorithm. With 0.8  , it is observed from the 
simulations that the later has the same convergence rate 
as that of the proposed algorithm but results in larger 
excess steady state MSE. On the other hand, when 

0.2  is considered for the FMN algorithm as 
compared with the proposed VLLMMN algorithm, it 
results in the same excess steady state MSE as the 
proposed algorithm, but the later has a faster speed of 
convergence.  
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Figure 2: Behaviour of Proposed and the FMN algorithm in Uniform 

Noise and noise variance 0.1. 
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CONCLUSIONS 

A time varying mixed-norm algorithm i.e Variable 
Leaky Least Mean Mixed Norm Algorithm (VLLMMN) 
is proposed herein, where a combination of the LMS 
and the LMF algorithms is incorporated using the 
concepts of variable step size LMS adaptation. It is 
found to outperform both the LMS and the LMF 
algorithms in the time varying environment. A bound on 
the step size to ensure convergence in the mean is also 
provided. Finally, the consistency and the performance 
of the proposed algorithm are supported by the 
simulation results. 
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