
ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 6, June 2014

66 CVR College of Engineering

Design Of High Performance Configurable
Radix-4 Booth Multiplier Using Cadence Tools

Dr.T. Esther Rani
 CVR College of Engineering, Dept of ECE, Hyderabad, India

estherlawrenc@gmail.com

Abstract — Fast multipliers are crucial in digital
signal processing systems. The speed of multiply
operation is of great importance in digital signal
processors and general purpose processors especially
since the media processing took off. As the need for
efficient design is increasing without compromising
the performance, industry has to concentrate on the
tradeoffs. Here, a modified Booth multiplier is
implemented using an algorithm that reduces the
number of partial Products to be generated using the
fastest multiplication algorithm. In this work, 8X8
multipliers with maximum range of input from -128
to +127 and negative numbers represented in 2’s
complement form can be used. Booth Encoder i.e.,
Partial Product Generator and Hybrid adder are
used for the design of modified booth multiplier to
achieve minimum delay and less area.

Index Terms— Modified Booth multiplier, digital
signal processors, Booth Encoder, multiplication
algorithm, Hybrid adder.

I. INTRODUCTION

Multiplier is a key component of any high
performance system such as FIR filters,
microprocessors, digital signal processors, etc.
Performance of a system is generally determined by the
performance of the multiplier as the multiplier is the
element with slow operation and consumes more area in
any system. Therefore, optimizing the speed and area of
a multiplier is a major design issue. As the area and
speed are usually conflicting constraints, whole
spectrum of multipliers with different area-speed
constraints will be designed in parallel. The multipliers
with such design constraints have moderate
performance in both speed and area. Radix 2n
multipliers which operate on digits in a parallel fashion
instead of bits bring the pipelining to the digit level and
avoid most of’ the problems was introduced by M. K.
Ibrahim in 1993. These structures are iterative and
modular and the pipelining done at the digit level brings
the benefit of constant operation speed irrespective of
the size of the multiplier.

 A high speed low-power multiplier is proposed
adopting the new modified Booth implementing
approach. The modified booth encoder will reduce the
number of partial products generated by a factor of 2.

Power dissipation is recognized as a critical parameter
in modern VLSI design. Dynamic power dissipation
which is the major part of total power dissipation is due
to the charging and discharging capacitance in the
circuit. Dynamic power dissipation is calculated by Pd =
αCLV2f. Power reduction can be achieved by reduction
of output Capacitance CL, power supply voltage V,
switching activity α and clock frequency f.

In most computers, the operand usually contains the
same number of bits. When the operands are interpreted
as integers, the product is generally twice the length of
operands in order to preserve the information content.
This repeated addition method that is suggested by the
arithmetic definition is slow that it is almost always
replaced by an algorithm that makes use of positional
representation. It is possible to decompose multipliers
into two parts. The first part is dedicated to the
generation of partial products, and the second one
collects and adds them.

 Booth multiplication allows for smaller, faster
multiplication circuits through encoding the signed
numbers to 2’s complement, which is also a standard
technique used in chip design, and provides significant
improvements by reducing the number of partial
product to half compared to conventional multiplication
techniques. Multipliers are categorized relative to their
applications, architecture and the way the partial
products are produced and summed up. Based on all
these, a designer might decide the type of multiplier.

A. Basic Binary Multiplier
A multiplier circuit is able to perform a multiplication

of n-bitsXn-bits at a high speed by increasing the speed
of the forming process of the partial products so that the
delay time may be inhibited from increasing for a large
n, and which can inhibit the chip size becoming large.
Multiplication is more complicated than addition, being
implemented by shifting as well as addition. Because of
the partial products involved in most multiplication
algorithms, more time and more circuit area is required
to compute, allocate, and sum the partial products to
obtain the multiplication result. Pencil-and-paper
algorithm for multiplication is explained below.

10.32377/cvrjst0611

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 6, June 2014

 CVR College of Engineering 67

Multiplicand: 0010 -- Stored in register r1

Multiplier: x 1101 -- Stored in register r2

Partial Prod 0010 -- No shift for LSB of Multiplier
 " " 0000 -- 1-bit shift of zeroes (can omit)
 " " 0010 -- 2-bit shift for bit 2 of
Multiplier
 " " 0010 -- 3-bit shift for bit 3 of Multiplier
------------------- Zero-fill the partial products and ad
PRODUCT 0011010 -- Sum of all partial products
stored in r3

B. Partial Product Generation

Since the amount of hardware and the delay depends
on the number of partial products to be added, this may
reduce the hardware cost and improve performance by
considering different methods. Straightforward
extensions of the Booth recoding scheme can further
reduce the number of partial products, but require a time
consuming N-bit carry propagate addition before any
partial product generation can take place. Figure 1shows
the basic unsigned multiplication using dot notation.

Figure 1: Basic unsigned Multiplication using Dot notation

The number of dots in the partial product section of
the dot diagram proportional to the amount of hardware
required to sum the partial products and form the final
product. Time multiplexing can reduce the hardware
requirement, at the cost of slower operation. The latency
of an implementation of a particular algorithm is also
related to the height of the partial product section (i.e.,
the maximum number of dots in any vertical column) of
the dot diagram. This relationship can vary from
logarithmic to linear or tree implementations where
interconnect delays are significant. However, in a real
implementation there will more be interconnect delay
due to the physical separation of the common inputs of
each AND gate, and distribution of the multiplicand to
the selection elements.

C. Fast Adders
Fast carry propagate adders are important to high

performance multiplier design in two ways. First, an
efficient and fast adder is needed to make any "hard"

multiples that are needed in partial product generation.
Second, after the partial products have been summed in
a redundant form, a carry propagate adder is needed to
produce the final non redundant product. Half adder and
full adder are two types of single bit adders. The full
adder takes into account a carry input such that multiple
adders can be used to add larger numbers. Many
researchers reported on the multiplier architectures
including array, parallel and pipelined multipliers that
have been pursued and the pipelining is the most widely
used technique to reduce the propagation delays of
digital circuits.

i. Carry Look-Ahead Adder (CLA)

The concept behind the CLA is to get rid of the
rippling carry present in a conventional adder design.
The rippling of carry produces unnecessary delay in the
circuit. For a conventional adder the expressions for
sum and carry signal can be written as follows.

S =A xor B xor C……….....(1)
C0 = AB + BC + AC………...(2)

It is useful from an implementation perspective to
define S and C0 as functions of some intermediate
signals G (generate), D (delete) and P (propagate). G =1
implies that a carry bit will be generated, P=1 implies
that an incoming carry will be propagated to C0 as
shown in figure 2. These signals are computed as

G = AB…………..……….(3)
P = A xor B……………….(4)

Also S and C0 in terms of G and P can be expressed as

C 0(G,P) = G + PC……….(5)
S(G,P) = P xor C…………(6)

Figure 2: 4-bit Carry Look Ahead Adder

ii. Hybrid Adder
Hybrid Adder is a combination of any two adders and

is used in high speed applications. The proposed hybrid
adder consists of two carry look ahead adders and a
multiplexer as shown in figure 3. Adding two n-bit

10.32377/cvrjst0611

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 6, June 2014

68 CVR College of Engineering

numbers with a hybrid adder is done with two adders
(therefore two carry look ahead adders) in order to
perform the calculation twice, one time with the
assumption of the carry being zero and the other
assuming one. After the two results are calculated, the
correct sum, as well as the correct carry, is then selected
with the multiplexer once the correct carry is known.
The propagation delay is less for hybrid adder and at the
same time it occupies larger area compared to the other
adders.

Figure 3: n-bit Hybrid Adder

II. DESIGN OF RADIX-2 AND RADIX-4 BOOTH
MULTIPLIER

This section describes an 8x8 signed parallel Booth
multiplier which reduces the number of the partial
products. Modified booth algorithm is used and for
adding partial products efficiently. A 16-bit hybrid
adder has been implemented for generating the final
result. After deciding on the multiplier architecture,
different logic styles for multiplier implementation have
been compared and concluded that Booth Multiplier is
the most efficient multiplier in terms of power and
delay.

One of the solutions for realization of high-speed
multipliers is to enhance parallelism and to decrease the
number of subsequent calculation stages. It is well
known that both Modified Booth algorithm and the
hybrid adder are effective in decreasing number of
stages.

A. Booth Multiplication Algorithm for Radix-2
Booth algorithm gives a procedure for multiplying

binary integers in signed 2’s complement
representation.
The booth algorithm is explained with the following
example:
Example, 2 x - 4
 0010 (2) * 1100 (-4)

Step 1: Making the Booth table
I. From the two numbers, pick the number with the
smallest difference between a series of consecutive
numbers, and make it a multiplier.

i.e., 0010 -- From 0 to 0 no change, 0 to 1 one change, 1
to 0 another change, and so there are two changes on
this one
1100 -- From 1 to 1 no change, 1 to 0 one change, 0 to 0
no change, so there is only one change on this one.
Therefore, multiplication of 2 x (– 4), where 2 (0010 2)
is the multiplicand and (– 4)

(1100 2) is the multiplier.

II. Let X = 1100 (multiplier)
 Let Y = 0010 (multiplicand)
Take the 2’s complement of Y and call it –Y
–Y = 1110

III. Load the X value in the table.
IV. Load 0 for X-1 value it should be the previous first
least significant bit of X
V. Load 0 in U and V rows which will have the product
of X and Y at the end of operation.
VI. Make four rows for each cycle; this is because four
bits numbers are multiplied.

Figure 4: 4-bit Radix-2 Booth multiplication example

Step 2: Booth Algorithm
Booth algorithm requires examination of the

multiplier bits, and shifting of the partial product. Prior
to the shifting, the multiplicand may be added to partial
product, subtracted from the partial product, or left
unchanged according to the following rules.

The first least significant bits of the multiplier “X” is
observed, and the previous least significant bits of the
multiplier “X - 1”. Table 1shows the Radix-2 Booth
Encoding.

TABLE I
RADIX-2 BOOTH ENCODING TABLE

X X-1 Partial product
0 0 Shift only
0 1 Add Y to U, and shift
1 0 Subtract Y from U, and shift or add

 (-Y) to U and shift
1 1 Shift only

II Take U & V together and shift arithmetic right shift
which preserves the sign bit of 2’s complement number.
Thus a positive number remains positive, and a negative
number remains negative.

10.32377/cvrjst0611

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 6, June 2014

 CVR College of Engineering 69

III Shift X circular right shifts because this will prevent
us from using two registers for the X value.

Figure 5: 4-bit Radix-2 Booth multiplication example

`
After finishing four cycles, the answer is shown in

the last rows of U and V which is: 11111000 2
 By the fourth cycle, the two algorithms have the

same values in the product register.

B. Booth Multiplication Algorithm for Radix-4
One of the solutions of realizing high speed

multipliers is to enhance parallelism which helps to
decrease the number of subsequent calculation stages.
The original version of the Booth algorithm (Radix-2)
had two drawbacks that, the number of add subtract
operations and the number of shift operations becomes
variable and becomes inconvenient in designing parallel
multipliers. Also the algorithm becomes inefficient
when there are isolated 1’s. These are overcome by
using modified Radix-4 Booth algorithm which scans
strings of three bits with the algorithm given below:
1) Extend the sign bit 1 position if necessary to ensure
that n is even.
2) Append a 0 to the right of the LSB of the multiplier.
3) According to the value of each vector, each Partial
Product will he 0, +y , -y, +2y or -2y.

The negative values of y are made by taking the 2’s
complement .The multiplication of y is done by shifting
y by one bit to the left. Thus, in any case, in designing a
n-bit parallel multipliers, only n/2 partial products are
generated. The block diagram of radix-4 booth
multiplier is as shown in figure 6.

Figure 6: Block Diagram of Radix-4 Booth Multiplier

C. Booth Encoder
It will encode the multiplicand based on multiplier

bits. In Radix -4 compare 3 bits at a time with
overlapping technique. Grouping starts from the LSB,
and the first block only uses two bits of the multiplier
and assumes a zero for the third bit. There are two
inputs for booth encoder one is multiplicand and the
other is 3 bits from multiplier, based on these two inputs
it will encode the multiplicand. For 8 bit multiplier the
no of blocks and partial products will be 4. The function
of booth encoder is as shown in the table2 below.

TABLE II

 RADIX-4 BOOTH ENCODING TABLE

BLOCK PARTIAL PRODUCT
000 0
001 1*multiplicand
010 1*multiplicand
011 2*multiplicand
100 -2*multiplicand
101 -1*multiplicand
110 -1*multiplicand
111 0

D. Hybrid Adder
Multiplication of two numbers is carried out in two

steps.
1. Generating partial products: Generation of partial

products is done by booth encoder.
2. Adding the partial products: To produce output, all

the partial products must be added. This is done by
high speed hybrid adder. Hybrid adder is a
combination of carry look ahead adder and carry
select adder.

10.32377/cvrjst0611

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 6, June 2014

70 CVR College of Engineering

III. IMPLEMENTATION OF BOOTH
MULTIPLIERS

This design flow would start with a behavioral-style
description of the system, written in Verilog, and would
take the following steps. Simulation at the high level
behavioral model used to confirm that the
conceptualized design does function correctly. Logic
synthesis describes the design as an interconnection or
netlist of logic gates and flip-flops. Technology
mapping maps the gates from logic synthesis into the
standard cells in the library. At the end of the
technology mapping step, physically what each
component in our system looks like and what
interconnections need are known, but physically what
the interconnections will look like were not specified.
Placement and Routing takes the standard cell netlist as
an input, and produces a full layout.

CAD tools, like Cadence, are used to automate these
steps as much as possible. The Cadence Incisive® NC
Simulator has been used to simulate the design at the
behavioral level. The Cadence Encoutner® RTL
Compiler global synthesis has been used to produce the
logic synthesis of the design and map it to the required
technology. The Cadence SoC Encounter™ RTL-to-
GDSII system places the design and routes it to produce
the final layout.

IV. RESULTS AND ANALYSIS

 The results of the booth multiplier are verified using
simulation process. As the main aim of the work is to
decrease the propagation delay and multiplier
performance depends on the performance of adders,
Multiplication of two numbers is carried out in two
steps: Generation of partial products has been
performed by booth encoder and addition of the partial
products. The simulation diagram of Radix-2 Booth
multiplier is as shown in the figure 7. The synthesized
netlist of the Radix-2 Booth multiplier has one main
module in which carry select adder is present.the
synthesized netlist of main module is as shown in figure
8. The synthesized netlist of the carry select adder for
radix-2 Booth multiplier is as shown in figure 9.

Figure 7: Simulation Diagram of Radix-2 Booth multiplier

Figure 8: synthesized netlist of Radix-2 Booth multiplier

10.32377/cvrjst0611

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 6, June 2014

 CVR College of Engineering 71

Figure 9: synthesized netlist of carry select adder for radix-2
Booth multiplier

By changing the timing delay values in the script the
power and area of the radix-2 Booth multiplier are
observed. For different values of timing delays the
corresponding slack, power and area are as shown the
table3.

TABLE III

DELAY, POWER and AREA for RADIX-2 BOOTH
MULTIPLIER

Delay
(ps)

Slack
(ps)

Power
(mW)

Area
(um^2)

3000 6 1.42 7504
3500 1 1.33 7548
4000 9 1.18 6686
4200 29 1.17 6603
4500 110 1.15 6470

The output of the SoC Encounter that is final layout
design of Radix-2 Booth multiplier and is shown below
in figure 10.

Figure 10:Final layout design of Radix-2 Booth multiplier.

The simulation diagram of modified Booth multiplier

is as shown in the figure11. The synthesized netlist of
the Radix-4 Booth multiplier has one main module in
which carry select adder is present.the synthesized
netlist of main module is as shown in figure 12. The
synthesized netlist of the carry select adder for modified
Booth multiplier is as shown in figure 13.

Figure 11: Simulation Diagram of modified Booth multiplier.

Figure 12:synthesized netlist of modified Booth multiplier

10.32377/cvrjst0611

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 6, June 2014

72 CVR College of Engineering

Figure 13: Synthesized netlist of carry select adder for

modified Booth multiplier.

By changing the timing delay values in the script the
power and area of the modified Booth multiplier are
observed. For different values of timing delays the
corresponding slack,power and area are as shown the
table 4.

TABLE IV
DELAY, POWER and AREA for MODIFIED BOOTH

MULTIPLIER

Delay (ps) Slack (ps) Power
(mW)

Area
(um^2)

3000 2 1.12 6749
3500 2 0.98 5911
4000 17 0.955 5582
4200 20 0.944 5565
4500 23 0.9 5545
The final layout design of the modified Booth

multiplier for length to width ratio equal to one is shown
in figure 14.

Figure 14: Final layout design of modified Booth
multiplier.

For a fixed delay in timing , the power and area of the

radix-2 Booth multiplier and Modified Booth multiplier
are as shown in the table 5.

TABLE V
COMPARISION OF POWER AND AREA OF BOTH
THE MULTIPLIERS FOR FIXED TIMING DELAY

 Radix-2
Booth

multiplier

Modified
Booth

multiplier

% change
in the
value

Delay (ps) 3000 3000 0
Power(mW) 1.42 1.12 21.126
Area (um^2) 7504 6749 10.06
From the above table it is observed that for same

delay the power and area of the modified Booth
multiplier are less compared to Radix-2 Booth
multiplier.

For a fixed area, the power and delay of the radix-2
Booth multiplier and Modified Booth multiplier are as
shown in the table 6.

TABLE VI
COMPARISION OF POWER AND DELAY OF 2

MULTIPLIERS FOR FIXED AREA

 Radix-2
Booth

multiplier

Modified
Booth

multiplier

% change
in the
value

Delay (ps) 4000 3000 25
Power(mW) 1.2 1.12 6.67

Area
(um^2)

6700 6700 0

The table 7 is valid for 8 bit x 8 bit multiplier. The
table 7 shows advantage of radix-4 compared to radix-2.
It has less propagation delay and at the same time it
occupies lesser area.

TABLE VII
PERFORMANCE OF THE BOOTH MULTIPLIERS

 Radix-2
Booth

multiplier

Modified
(Radix-4)

Booth
multiplier

%
change
in the
value

Number
of slices

88 68 22.7

Number
of LUTs

156 126 19.23

Path
Delay
(ns)

24.22 17.1 29.39

The above table is valid for 8 bit x 8 bit multiplier.
The above table shows why to move from radix-2 to
radix-4 . The main advantage of using radix-4 is it has
less propagation delay, i.e speed and at the same time it
occupies lesser area.

10.32377/cvrjst0611

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 6, June 2014

 CVR College of Engineering 73

 Using NC Simulator tool, 8 bit modified Booth
multiplier at the behavioral level is coded in a
behavioral description using Verilog. It is compiled,
checked for syntax errors, elaborated and simulated
using a Verilog test bench using the following
commands to get the output as shown in figure 15.

Figure 15: Output waveform in NC simulator.

In RTL compiler tool, the mapping of a design into a

netlist of standard cells is done. The library containing
all these standard cells is usually built according to the
fabrication process limitations. The workshop uses a 0.5
um Silicon-on-insulator process manufactured by
Peregrine semi conductors. The output is a verilog file
describing the netlist. At this point, the number of gates
used and the propagation delay of the critical path of the
system is reported.

Once the script file is ready, the graphical user
interface of the Encoutner RTL Compiler is used to
source the script file and synthesize the design of the 8
bit modified Booth Multiplier. The following
commands are used to open the graphical user interface
of the Encoutner RTL Compiler. Then the final
synthesized design is obtained as shown in figure 16
below.

Figure 16: Encounter RTL compiler output after
synthesis.

SoC Encounter is used for the placement and routing

of the design. In this tool first import the design, specify
the floor plan, add the power rails, place the standard
cells, and route the design. SoC Encounter output after

placing standard cells and after routing are shown in
figures 17 and 18.

Figure 17: SoC Encounter window after placing standard

cells

Figure 18: SoC Encounter window after routing

V Conclusion

In this work, 8x8 Radix-4 modified Booth Multiplier
has been presented. Modest improvements in area and
power over more conventional algorithms have been
shown using this algorithm. Algorithms based upon the
Booth partial product method are distinctly superior in
power and area when compared to non-Booth encoded
methods. This result must be used carefully if applied to
other technologies, since different trade-offs may apply.
The main advantage of using Radix-4 is that it has less
propagation delay, and it occupies lesser area. This
work is also implemented by using the cadence tools of
NC simulator, Encounter RTL compiler and SoC
Encounter for simulation, logical synthesis and placing
& routing respectively.

10.32377/cvrjst0611

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 6, June 2014

74 CVR College of Engineering

REFERENCES
[1] Digital Design Principles and Practices – John F. Wakerly,

PHI/ Pearson Education Asia 3rdEd.,2005.
[2] Computer System Architecture – M. Morris Mano, 3rd

Edition, PHI/ Pearson., 2006.
[3] K.H.Chen and Y.S.Chu , "A low power multiplier with

spurious power suppression technique" ,IEEE Trans. Very
Large Scale Integr .(VLSI)Syst., Vol.15, no-7,
pp846-850, July 2007.

[4] Essentials of VLSI circuits and systems – Kamran
Eshraghian, Eshraghian Dougles and A.pucknell, PHI, 2005
Edition.

[5] CMOS VLSI Design: A Circuits and Systems Perspective,
Third Edition, Neil H.E. Weste, David Harris.

[6] John Rabaey “Digital Integrated Circuits”, PHI, 1st edition,
1999

[7] http://www.xilinx.com/
[8] Jack Horgan, “Low Power Soc Design”, EDAWeekly

Review May 17 - 21, 2004
[9] Cadence, “Low Power in EncounterTM RTL Compiler”,

Product Version 5.2, December 2005
[10] Cadence, “Cadence Low Power Design Flow”
[11] Cadence, “Low Power Application Note for RC 4.1 and

SoCE 4.1 USR3”, Version 1.0,1/14/2005

10.32377/cvrjst0611

