
ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 6, June 2014

 CVR College of Engineering 7

Managing Semantics of Graphic Components
Through Remodeling Traditional Display Files

Dr. Hari Ramakrishna,

CBIT/ Computer Science and Engineering, Hyderabad, India
Email: dr.hariramakrishna@rediffmail.com

Abstract—Management, reuse and customization of
semantics of graphic components through
remodeling traditional display file models and
graphic frameworks is presented. All these models
are well tested in several graphic applications. A
model debug driver tool application is adopted for
the presentation of these models. Typical C++ code
segments and Microsoft based visual studio
application outputs are presented. These models are
more generic and they can be used in any application
domain using any language and development
environment that support basic graphic primitives.
The traditional ways of handling display files are
also presented.

Index Terms—Display files, Semantic graphic
behavior, graphic components, graphic frameworks,
debug driver tool, Microsoft graphic applications,
object oriented models and frameworks. Dynamic
display files.

I. INTRODUCTION

Software industry is looking for rapid application
development mechanisms with client orientation and
short time span delivery, increasing quality and with-
standing rapid changes in technology and requirements.

In this connection exporting third party tools plays a
major role. Using third party tools decreases testing
time. Development of frameworks for increasing degree
of reuse has become an important focus. Customization
of such frameworks as per client requirements increases
importance of frameworks. Frameworks are different
from libraries; client code is embedded in frameworks
whereas client code includes and calls libraries. [1]

Display file concepts are traditionally used in several
graphic models. Geometry of a graphic system is stored
as a set of graphic instructions in display file. Display
file interpreter recognizes these commands and
generates graphics as per the client requirements.

Present day graphic and CAD systems are used at
advanced levels. Present graphic systems demand
implementation, and simulation of graphic components
such that they mimic original real time components.
Such requirements demand managing semantics of

graphic components. These components should be in a
position to implement their behavior, communicate with
other components of the system and generate required
graphics dynamically. These requirements demand
remodeling of traditionally used graphic display file
concepts.

II. TRADITIONAL DISPLAY FILE CONCEPTS

Display files store graphic behavior of elements of
any graphic or GIS systems in a specific defined
structure. The display file for general purpose
interactive graphics software is divided into a set of
segments such that each segment corresponds to a
component of the overall display file. For example, in a
building graphics information system, each civil
engineering building element is treated as a segment. In
other words, windows, doors, racks etc, which are
known as civil engineering building elements, are stored
in the display file as graphics segment. Sets of attributes
are associated with each segment. All these attributes of
segments are stored in segment-table.

The information that must be associated with each
segment and how the information might be organized
are important in understanding display file concepts.
Each segment has its own unique name, and it can be
referred with that name. For performing some segment
operations like changing the visibility of segment,
distinguishing the segment from other segments is
required. When referring to a display file segment, set
of display file instructions that belong to that segment
are required. This may be determined by knowing
where the display file instructions for that segment
begin, and how many of them are there in its specific
display file. For each segment, we need some way of
associating its display file position information and its
attribute information with its name. Sample display file
attributes are listed in table 1.

Segmentation can be managed through a set of
procedures to create, open, close and transform a
segment. Sample user-routines needed to manage
segments are listed in table 2.

The object-oriented dynamic display file models
presented in this paper do not need implementation of
segmentation requirements. The objects take care of

10.32377/cvrjst0602

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 6, June 2014

8 CVR College of Engineering

segmentation requirements as each graphic segment is
defined as an object.

III. DISPLAY STRUCTURE MODELS

In the structure of the traditional display file, each
display file command contains two parts: operation code
(opcode), and operands. Opcode indicates what kind of
command it is. Operands refer to required coordinates
and other arguments required for executing the opcode.
The display file is made up of a series of these
instructions. The Display file stores all this information
forming a huge storage. In the new concepts, this
problem is solved as the display file for each component
is generated dynamically. Only domain specific
component state, and behavior identity are stored in the
object itself. This information is helpful in the
generation of display file content required for rendering
that object.

In the traditional model, the display file must be
large enough to hold all the commands needed to create
the image. One must assign meaning to the possible
operation code before proceeding to interpret them. For
example, in a building graphical information system,
various geometrical elements such as point, line, circle,
arc and polygon may be considered. The general
attributes of any simple display file instruction are --
the type of the geometrical element and its color,
required coordinates and other geomantic information
specific to that element.

The instruction is interpreted by invoking the
required vector generator. The vector generators of
special geometrical elements may need more
information than that available in the main display file.
This information is also in the form of graphics
commands, which are stored in a separate display file.
For example, all the instructions for plotting a polygon
are in the polygon display file. Each vector generator of
this type has its own interpreter for the interpretation of
these commands. The starting-address and size of these
instructions also are the needed attributes which are
stored in the main display file. Figure 1 shows model
sample storage of this type.

The information of the display file is useful to model
the object and create the required image. The reason
behind this is two-fold: some measure of device-
independence is achieved, and it is easy to perform
image transformation by changing the position and
orientation of the required image. The display file
contains the information necessary to construct the
required image. The information can be in the form of
instructions such as “move the pen”, “draw a line”, and
“plot the required polygon”.

Saving instructions such as these usually takes much
less storage than saving the picture itself. Each
instruction indicates an action for the display device. A
display file interpreter is used to convert these

instructions into actual images. The display file
interpreter serves as an interface between graphics
program and the display device. The display file
instruction may be actually stored in a file either for a
display layer or for transfer to another machine. Such
files of imaging instruction are sometimes called
”metafiles”. Table 3 presents sample vector-generating
algorithms.

The vector generation algorithms used for dynamic
display file based graphic framework presented are
supported as a set of function libraries developed using
Microsoft MFC classes. These algorithms are portable
to any development environment that supports basic
graphic primitives.

 These functions are used by the display file
interpreter while converting the display file instructions
into the required picture on the display device. This
process of generating image makes our graphics
software independent of the nature of the display device
and upon its software.

Whatever may be the way of storing and plotting the
required images we require some tools for interaction
with the graphics system. Table 4 presents various
sample user-routines for building-graphics information
system. Figures 1 and 2 present display file models for
graphic framework. [2-6]

III. DYNAMIC DISPLAY FILE CONCEPTS

Dynamic display files are modeled to enable
computation of graphic geometry online as per the
behavior of the components. Such models enable
graphic components to mimic real time components.

For example a printed circuit board (PCB) contains
several electrical and electronic components. Each
component has its own behavior. Similar components
repeat several times in the same PCB but with different
name, location and connections. They are exhibiting
behavior as per the connected components.

Consider simulation of a logic circuit with electronic
lids and electronic switches on a PCB. The lids get on
and off as per the state of switches and logic circuit
output. The dynamic display files enable the geometry
of such components to get computed dynamically for
each event of the model.

The display file in this model will be filled with
display file instructions dynamically. Same display file
can be reused for several components decreasing the
object and class number in an application. This will
enable complex applications to run on light weight
systems with low configuration.

The debug driver tool is an application used for
testing faulty components of a PCB board. As per the
board structure the geometry is automatically computed.
The required information is name of the board, board

10.32377/cvrjst0602

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 6, June 2014

 CVR College of Engineering 9

type and structure of components on the board and their
relations.

IV. GRPHIC APPLICATION USING DYNAMIC
DISPLAY FILES

Implementation of graphic frameworks and
applications using dynamic display files has several
layers. Sample code segments and output screens along
with advantages of such models are presented.

As a first step, display file and graphic primitive
generation function libraries shown in table 2,3,4 need
to be implemented. Function class frameworks are used
for reuse and exporting such libraries as third party tools
[1].

Graphic frameworks along with some graphic
foundation classes are required in the next phase. Client
component definition library and graphical user
interface are required to build graphic applications.

Figure 3 presents a class diagram of the application
developed in Visual studio Net 2010 that uses graphic
framework developed using dynamic display file
concepts. These concepts are more generic and they can
be implemented in any application which supports basic
graphic primitives. The class diagram presents MFC
document view architecture used for providing GUI for
the application. CView, CDocument, CDialog etc are
MFC classes. Other classes are graphic framework
classes that implement dynamic display file model.

V. CLIENT PROCEDURES FOR CONFIGURING
GRAPHIC COMPONENTS

Some of the code segments that explain the
implementation of dynamic display file are presented in
this section. The domain client defines the component
semantics for the generation of display file that compute
the geometry required for display. Table 7 presents a
sample code for component definition.

This procedure is not a member of CLogicCom
class. It is a library function of a logic system for
defining logic components. It is invoked from
CLogicCom class Design method. This Design method
is virtual function invoked whenever there is a need to
re-compute the geometry of a component as per its
behavior and status in the system. For example, in the
LID device display the lights become on or off as per
the data available in the system. The display file
instructions are generated dynamically through invoking
the procedure listed in table 9.

Figure 4 presents Logic Switch and Logic Display as
per the user interface and logic circuit output. The green
and white represent 1 and 0 (on and off). The red and
black represent error and invalid data. The positions 4
and 7 represent error in red as the pins 4 and 8 are
carrying invalid data. The first display is shown in green
as the gate is AND gate and switches 2 and 3 are
representing one. Depending on connections the

component changes geometric behavior as per the
requirement of simulation like components.

CONCLUSIONS

The traditional display file models and a model
graphic framework based on traditional display files are
presented. The dynamic display file concept and class
diagrams along with sample code segments to
demonstrate dynamic display file functioning concepts
are presented. Output of a graphic application using
dynamic display file concepts is presented. These
concepts are applicable to any similar applications
irrespective of application domain, object oriented
development environment and development language
with basic graphic support. The relation subsystem and
other inherent concepts used are not covered in this
paper.

REFERENCES
[1] Dr.Hari Ramakrishna, “A pattern language and traditional

programming practices for exporting functionality” CVR
Journal of Science & Technology, released in December
2013 ISSN 2277-3916

[2] Dr.Hari Ramakrishna, ”Pattern Approach to Build
Traditional Graphic Frame works”, International 1 Journal
of Computer Applications Volume 59– No.15, p35-42,
December 2012. Published by Foundation of Computer
Science ISSN :(0975 – 8887), New York, USA

[3] Dr. Hari Ramakrishna, “Design Pattern for Graphic/CAD
Frameworks”, Ph.D thesis submitted to Faculty of
Engineering Osmania University March 2003,

[4] Christopher Alexander, “An Introduction for Objectoriented
Design”, A lecture Note at Alexander Personal web site
www.patternlanguage.com

[5] Pattern Languages of Program Design. Edited by James O.
Coplien and Douglas C. Schmidt. Addison-Wesley, 1995

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, "Design Patterns: Elements of Reusable Software
Architecture", Addison-Wesley, 1995

[7] Hari RamaKrishna “COM Applications for Real time
Electrical Engineering Applications” IEEE sponsored
International Conference at Bangalore - 2000.

[8] Hari RamaKrishna “Generation of flooring and wallpaper
patterns using computer graphics” Proceedings of the First
National Conference on Computer Aided Structural Analysis
and Design, Jan 3-5,1996, Engineering Staff College of
India and University College of Engineering, Osmania
University, Hyderabad.

[9] Newman, W. S and Sproul, R.S (1981),Principles of
interactive computer graphics McGraw-Hill International,
second edition.

10.32377/cvrjst0602

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 6, June 2014

10 CVR College of Engineering

TABLE I
SEGMENT TABLE ATTRIBUTES

(1) Segment name
(2) Segment’s starting address of the display file
(3) Segment size i.e. number of instruction of

segment
(4) Segment visibility i.e. on or off
(5) Segment transformation parameters i.e. scaling,

translation, rotation around x,y,z axes
(6) Segment reference point that is useful for

transformations
(7) Segment transparency (on or off) useful for

hidden line and surface elimination Etc.

TABLE II
GRAPHIC SEGMENT TABLE INSTRUCTIONS

 (1) Create-segment (n)
(2) close-segment (n)
 (3) Append-segment (n)
 (4) set-segment-visibility (n,I)
 (5) Rotate-segment (n,ax,ay,az)
(6) translate-segment(n,tx,ty,tz)
 (7) Set-segment-reference-point (n,x,y,z)
 (8) scale-segment(n,sx,sy,sz)
 (9) Show-segment (n)
 (10) delete-segment (n)

TABLE III
DISPLAY ALGORITHMS

do-line3d (lc,bc,z,y,z),
do-point3d(lc,x,y,z),
do-circle3d(lc, cx,cy,cz,r,ax,ay,az),
doarc3d(lc,cx,cy,cz,r,sa,ea,ax,ay,az),
do-spehere)lc,cx,cy,cz,r) and
do-poly(lc,sadd,size:

where lc is the line foreground color, cz,cy,cz are the
coordinates, sa, ea are the starting and the ending
angles, ax, ay, az are the angles of inclination along
x,y, and z axes respectively, and r is the radius.

TABLE IV

SAMPLE TRADITIONAL DISPLAY FILE USER ROUTINES FOR
MANAGING GRAPHS

Move3d (x, y, z)
Line3d(x,y,z)
Line3d(lc,x,y,z)
Point3d(lc,x,y,z)
Arc3d(lc,x,y,z,r,sa,ea,ax,ay,az)
Circle3d(lc,x,y,z,r,ax,ay,az)

TABLE V
SAMPLE COMPONENT CLASS

class CLogicCmp :public Component
{
public: -------
 BOOL virtual IsLocated(CPoint);
 void virtual Design(void);

};

TABLE VI

SAMPLE DISPLAY FILE INSTRUCTION ALGORITHM

void Component::LineTo(int x,int y)
{
 m_iNoOfInst++;
 DF[1][m_iNoOfInst] = 2;
 iPen_X = x;
 iPen_Y = y;
 DF[2][m_iNoOfInst] = iPen_X;
 DF[3][m_iNoOfInst] = iPen_Y;
}

TABLE VII

CLASSES OF DYNAMIC DISPLAY FILE FRAMEWORK

1) CDocument, CView, CLogicSystemView ,

CLogicsystemDoc are Microsoft based classes in
Document view architecture.

2) CLogicCmp is inherited from Component and defines
the behavior of domain specific components. In the
above application components of a Degug driver
tools which are defined. The function in table 6 will
be invoked from design method of this class for
loading behavior of a electronic LID component.

3) The Component class implement all the Display file
procedures as per the definition of IDisplayFile
Interface and other implicit procedures required.

4) The Graphic Element class implements all the
procedures required for implementation of a graphic
framework.

5) IGraphic Component is used to address all the
graphic elements from Microsoft Document class.
This can implement a generic persistence system
which can be used to any graphic domain application
using this framework.

6) The view class is inherited from Clogic Component
for the purpose of creating a logic component. Even
the GUI design can be reused for any domain similar
to that of debugger driver tool.

TABLE VIII
COMPONENT CLASS MODEL

class Component : public CGraphElement
{
 < <Display file data definition >>

 << Display file implementation >>
<< virtual functions like >>
// For designing component at derived class
 void virtual Design(void);
// for rendering the component INTERPRETER
 void virtual Display(CDC* dc);
…………
}

10.32377/cvrjst0602

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 6, June 2014

 CVR College of Engineering 11

TABLE IX

COMPONENT SEMANTIC DEFINITION FOR A ELECTRONIC
DISPLAY LID COMPONENT

void VRLogicLID(Component* ge)
{// Component color
 ge->SetLineColor(ge->GetBkColor());
 ge->RectSolidAt(0,0,100,100);
// Inside Area
 ge->SetLineColor(LIGHTGRAY1);
 ge->RectSolidAt(0,0,96,96);
 ge->SetLineColor(DARKGRAY1);
 ge->RectAt(0,0,94,94);
 ge->RectAt(0,0,96,96);
 ge->SetLineColor(DARKGRAY1);
 ge->RectAt(12,0,24,85);
 ge->RectAt(12,0,18,80);
// Designing light on/off status
int k=1;
for (int i=-35;i<=35;i+=10)
{
 if (ge->GetData(k)==1)
 ge->SetLineColor(RGB(0,255,0));
 else if (ge->GetData(k)==0)
 ge->SetLineColor(RGB(255,255,255));
 else if (ge->GetData(k)==2)
 ge->SetLineColor(RGB(255,0,0));
 else
 ge->SetLineColor(RGB(0,0,0));
// 255,255,255 is white(0 or OFF)
// all zeros black (junk data)
// 255 ,0,0 is red(error in output)
//0,255,0 is green(1 or ON)
 ge->RectSolidAt(12,i,15,8);
 ge->SetLineColor(RGB(0,0,0));
 ge->RectAt(12,i,-15,8);
 k=k+1;
}
ge->SetLineColor(DARKGRAY1);
for(int i= -35; i<= 35; i+=10)
{
 ge->MoveTo(-45,i);
 ge->LineRel(-15,0);
}// displaying pins of the component
// displaying text of the components
 ge->TextBkColor(LIGHTGRAY1);
 ge->TextColor(RGB(255,0,0));
 ge->TextAt(-40,25);
 ge->Text11At(-40,-25);
} // end of the procedure

TABLE X

DESIGN PROCEDURE

void CLogicCmp::Design(void)
{ switch(GetComponentType())
 { case 1: VRLogicLID (this);
 break; …. }
}

TABLE XI
INTERFACE IDISPLAYFILEINSTRUCTIONS

class IDisplayFileInstructions
{
public:
 // Display File Functions
 void virtual MoveTo(int x,int y) = 0; // 1
 void virtual LineTo(int x,int y) = 0; // 2
void virtual TextAt(int x,int y) = 0; // 3 horizontal
void virtual MoveRel(int x,int y) = 0; // logical 1
void virtual LineRel(int x,int y) = 0; // logical 2
void virtual TextRel(int x,int y) = 0; // logical 3

void virtual VerticalTextAt(int x,int y) = 0; // 4 Vertical
void virtual VerticalTextRel(int x,int y) = 0; // logical 4
// 5 Rectangle
void virtual RectAt(int x,int y,int a,int b) = 0;
// 6 used even for circles ellipses
void virtual ArcAt(int x,int y,int sa,int ea,int r1, r2) = 0;
// 7 Filled Solid Ellise
void virtual EllipseSolid(int x, y, a, b) = 0;
// 8 Solid Rectangle
void virtual RectSolidAt(int x,int y,int a,int b) = 0;
// 9 Set color of line
void virtual SetLineColor(COLORREF i) = 0;
// 10 Set FillColor
void virtual SetFillColor(COLORREF i) = 0;
void virtual Text1At(int x,int y) = 0; // 11
void virtual Text2At(int x,int y) = 0; // 12
// 13 sets Text BkColor
void virtual TextBkColor(COLORREF r) = 0;
// 14 Set TextColor
void virtual TextColor(COLORREF col) = 0;
void virtual Text11At(int x,int y) = 0; // 15 Text
void virtual Text12At(int x,int y) = 0; // 16 Text
void virtual Text21At(int x,int y) = 0; // 17 Text
void virtual Text22At(int x,int y) = 0; // 18 Text

};

TABLE XII

GRAPHIC COMPONENT INTERFACE

class IGraphicComponent :public
IDisplayFile, public IGraphicElement
{

 << Graphic Element interface contains
Graphic Framework user interface
Procedures >>
<< I Display file has
IDisplayFileInstructions and other related
interfaces >>

};

10.32377/cvrjst0602

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 6, June 2014

12 CVR College of Engineering

Figure: 3 Class diagram of a graphic application in Visual
studio .NET 2010 using dynamic display files

Figure: 4 A logic circuit designed with and OR gate, AND
gate and logic switch components on a PCB.

10.32377/cvrjst0602

