ISSN 2277 - 3916

CVR lournal of Science and Technology, Volume 11, December 20016

Performance Analysis of Load Balancing Queues in
User Level Runtime Systems for Multi-Core
Processors

Vikranth B
CVR College of EngmeeringTnformation Technology Department, Hyderabad, India
Email: bovikranthi@cvr.ac.in

Abstract: The speed of single processors is limited by the speed
of light or speed of electron. Hence, processor manufaciurers
are packing muoltiple low speed processors or cores on to the
same chip which are called multi-core processors. The number
of processors on single chip is graduoally increasing. Though
miulli-coreé processors are similar 1o Symmetrie Multi-
Processors (SMP), there are notable differences between them
like shared last level cache. Operating systems consider these
multi-core processors as SMP, and apply the suitable methods
for task-scheduling and load balancing., But these sirmtegies
cannot fully explore the details of multi-core processors. The
software also must be written to take the advantage of these
mulli-core processors. In this context, wser level runfime
systems evolved with a task as primitive concurrency
construct. These tasks created by the program during runtime
are added to the gueues at user level runtime.

I this paper, we analyze the performance of various user level
fquenes and their contention osing Java.

Index Terms—Concurrency, Task, Work stealing, Centralized
gquene, Multi quene Double ended quene.

I. INTRODUCTION

The goal of parallelism is to maximally exploit the
mumber of CPLU cores present at hardware level, The goals
of parallelism are:

= Increasing throughput
Reduce latency
Reduce power consumption
Scale depending on number of cores (CPUs).
Prevent loss of data locality.

& & & =

Since the operating systems consider multi core
processors as SMPs, the wser level scheduler has o take
care of scheduling the tasks created by the user to schedule
in an optimal fashion [1]. The common practice by popular
operating systems in case of multiprocessors is maintaining
a single quese or multiple queues per processor. The
processes of threads get added to these gueues dynamically
during the runtime and are scheduled on to the CPUs. Rear
end of the queue is used for adding work load and front end
of the guewe is used for popping the work load and be
executed. But the smallest execution unit in operating
systems fike Linux is a process or a thread (in Linux,
process amd thread are created wsing fork() and
pthread_createl) respectively), But both of these calls
involve clone() system call of kernel. Using clone svstem
call involves much overhead making it heavy weight
Though thread creation is of less overhead than a process

creation overhead, it is still considerable load on
performance imvolving:
o sysiem call overhead involving trap
* Lkernel level data-structure access on every
OpeEration.

Because of the above mentioned disadvantages of native
thread API, modem approach of parallel programming
rmuntime systems evolved from kernel level to user level.

These wser level runtime systems are popular and
became a De-facto standard for parallel programming [1).
Popular parallel runtimes such as Open MP, Cilk and TEB
follow this approach for their runtime implerentation.
These runtime systems introduce a new scheduling entity
called task which is considered 10 be even lighter in weight
than thread since il is completely maintained at user level,

These runtime syvstems, provide APT calls to create and
maintain tasks., The programmer has to follow a sequence
of AP calls to implement parallel programs.

1. init(}:Initialize the runtime

2. spawnTask(): Create tasks where ever parallel
activity is to be done

3. join():Wait for the tasks to complete.

4, releasel)y Free the runtime.

inif() During the initialization of woser level runtime
system, 4 pool of native threads(pthread on Linux) is
created and a single queue or multiple queves are created.
These threads which get created during initialization of
runtime are called worker threads or workers. Since it being
a one time duty, doring the initialization of runtime, every
time a parallel execution entity is to be created, we need not
enter the kernel level

spawnTaski) spawning a task allocates enough memory
for task body and its parameters and this task object is
added to the quene,

Jainf): All coarse grain or fine grain tasks have to wait
until all the remaining tasks of that level have been
completed at the joining points.

releasef)kt It is the last call to the runtime which does join
operation on native threads of thread pool and deallocation
of gueue objects which were created during the init().

In this paper, our focus is on studying the impact of the
guene data structures which are used by worker threads o
quee the tasks created by the programmer. We
implemented three types of gqueves;

& Centralized or single queus
* Multiple quevcs withowt work stealing
= Multiple quenes with work stealing

doi:10.32377/cvrjst1116

CWVR College of Enginecring 87

ISSN 2277 - 3916

CVR lournal of Science and Technology, Volume 11, December 20016

In this paper, the load balancing strategies are
implemented and evaluated their performance by using a
Matrix multiplication henchmark. To the best of our
knowledge this is not ever studied in previous literature,
Section [T describes various types of queues wsed in user
level runtime systems. Section Il describes the
experimental setup and result analysis.,

IL. Typres OF LOAD BALANCING QUELES

A. Single Oueue

In this approach, during the initialization of runtime
system, a single global queue data structure is created. This
global gueve is responsible for queuing the tasks created
using taskSpawn(). This global queve is shared among all
worker threads. Every worker thread is bound to a hardware
level core or processor. If hyper threading is enabled at
BIOS setup, the number of worker threads can be egual o
the number of hyper threads, All these worker threads
attlempt o perform o dequese operation on this global
guene to zel a task object when a worker becomes
available, Once it is successful in degueus operation a
worker gets a task object and worker invokes its task body
execution on its associated core.

Single queue approach is the simplest mechanism of
implementing user level runtime system. When a worker
thread is ready to execute a task, it atempts to dequeue a
task from the global guewe. This operation is a critical
section and the worker must acquire a lock before this
operation and release the lock after the operation. But it
may suffer from the following disadvantages which may
effect the overall performance of the parallel application.

Central guee

!’ k i i
!Lcr leeel warkes threads |

N S

Hemed

Cored Cora l Cors 3 Core 3

A e T s
Figore 1: Centralized Quene Architeciure

e« Since all workers sccess a single gueue worker
threads may suffer from contention.

s [t being a centralized approach, if worker threads
become available at same instance, they have to
compete to access the global quene. This may
effect overall throughput of parallel task.

s locality of the gquewe wmay cause cache
performance isolation problem and false sharing.
B Multi Quee

To overcome the main disadvantage of single queue
approach, if a separate gueuve is associated with every
worker thread, that is multi guegse approach. Hence it 15 the
first step for distributed load balancing. The tasks created
by the programmer are added to separate queues associated
with individual worker threads [2]. This approach
guarantees transparent load balancing with the constraint
that all the tasks are of equal duration. Since individual
worker thread has access to its own gueue, they need not
contend on deguens operation.

But this multi gquewe approach is not effective when all
tasks are of variant duration. 17 tasks are of different

* [" "
l I.brl:r Ieswel worker threads
¢) |
Kemal
Cong 0 Core 1 Coape 2 Coge 3

Figure 2: Muli Queve Architectune

durations, a guewe associgted with shont duration jobs
may become empty where as a queue with big duration
tasks is overloaded,

. Work stealing Queue

Work stealing is a distributed dynamic load balancing
technique [3]. In this strategy, the thread pool maintains
separate work quene per worker thread with stealing ability,
When a work queue becomes emply if can atlempt o steal a
task from other quewses. Since one ond of the gueue is
accessible by its worker thread and other end is to add
tasks, These quenes need an additional feature of dequeuing
from both ends in case of stealing by other worker. Double
ended gueues are used to implement this feature since it
allows task deletion from both ends [4]. One end is
accessed by the associated worker thread and other end
open for siealing by other worker threads when they
become empty, The tasks are created by application during
muntime using the taskSpawn() or similar construct. The
task gets added at the tail of a queve associated with each

bt CVR College of Engineering

doi:10.32377/cvrjst1116

ISSN 2277 - 3916

CVR Iournal of Science and Technology, Volume 11, December 20016

processor. When execution reaches a fork point sech as a
spawn of parallel loop, one or more new tasks are created
and put on a queus. The main strategies by which idle
workers find new tasks are:

+ Find a task from its own work queoe

« Distributed work gueues with randomized stealing

-
= : .! | - ;
l User level worker ihreads | |
L T v [
Hermel
Core Core 1 Come 2 Core 3

Figure 3: Work Stealing Cueue Architecture

Since work stealing queues allow balancing of load
across quewes, it is morve effective than muoli gqueue
approach.

ITL EXPERIMENTAL RESULTS AND ANALYSIS

To illustrate the performance of different queve
approaches al user level runtime systems, we implenented
different types of queses in Java, The worker threads are
plain Java threads which implement jova, lang. Runnable
interface. Three types of worker queues are implemented as
blocking queues. Task construct is provided to the parallel
programmer simply in the form of an interface. If the
programmer has to implement his task body he can simply
implement the interface and override the run{) method of
the interface. To make the job of testing different types of
workloads, the user can choose an option at command line
interface, The relationships among the classes are presented
in Figure 4,

To evaluate the performance of the above mentioned
three approaches, we implemented Square Matrix
multiplication benchmark program. In this parallel
implementation each task is created to find a single element
of the product matrix {i.e. if the given two matrices A and B
are 512 X 512 matrices, a total of 2" tasks are created
during execution, The intension behind taking large sized
matrices is to overload the gueues with task objects and test

how effectively load balancing is done across the queues.
The benchmark is executed on

IBM x3400 server with 4 core (8 cores it hyvper threading
i5 enabled) Xeon ES-2401 and Linux Kernel version
3162200, The number of worker threads taken in our
experimental set up is equal 1o the number of cores (4) by
disabling hyper-threading,

It can be observed from the execution times presented in
Table! that work stealing queue approach gives better
performance than Centralized queue and Multi worker
queuse approaches. Though the difference of execution
times between multi worker quewe approach and work
stealing is little, the difference is gradually significant for
bigger matrix size inputs, The main difference is due to the
stealing approach 1o balance the load across queses which
15 not addressed in plain mult guewe approach. As stated in
introduction section, centralized queue approach gives poor
performance due to contention among the worker threads to
access the single glohal queuve. The difference of execution
time is spent on saving the critical section code to access
the global queune.

TABLE 1
EXECUTION TIMES OF VARIOUS WORKER QUEUE APFROACHES
Miatrix Size | Execution time In milllseconds

| Cenirafited queue | Multi quews | Work stealing queus

128 p] [1 1
36 |7 e s

512 15 {14 |14
lt024 |2 21 20
HEM . 53 ' 47 42

4056 | 153 | 150 141

SN

F'lluu\e 4: Class dhingram of alifferent approaches

doi:10.32377/cvrjst1116

CWVR College of Enginecring 89

ISSN 2277 - 3916 CVR Iournal of Science and Technology, Volume 11, December 20016

180
160
1a0
120
100

Bo

a0
20

Execition time n mil seconds

Matre S e

o 10000 2000 3000 A0

—m— Execution tme in ol
seconds Cenralized Work
queus

e DU W O URE L

Work siealing queus

IV. CONCLUSIONS

In this paper, we the effect of different load balancing
guenes on performance of task parallel applications. It is
observed that work stealing quewe approach performs better
when compared to centralized gueue approach and muli
guews approach,

REFERENCES

[1] Blagodurov, Screey, and Alexandra Fedorova, "Ulser-
level scheduling on NUMA muliicore systems under
Linwx.” 2011 5.1 : Proceedings, of Linux Symposiuem,,
2011.

[2] P.E. Hadjidoukas, G.Ch. Philos, V.V. Dimakepoulos,
“Exploiting fine-grain thread poarallelism on multicore
architectures”, .. 2009, Scientific Programming., pp.
Val. 17, No. 4, Nov., pp. 309-323,

[3] Faxén, Karl-Filip."Wool-a work stealing librare™ s,
ACM SIGARCH Computer Architecture News, 20064,
36.5: 93-100.

[4]Hendler, Danny, et al "A dvnamic-sized nonblocking
wark stealing degue®., 5.1, : ACM, 2005,

a0 CWVR College of Engineering

doi:10.32377/cvrjst1116

