ISSN 2277 - 3916

CVR lournal of Science and Technology, Volume 11, December 20016

User level Static and Dynamic Core assignment
in Multi-core System

Dhruva R, Rinku' and Dr. M. Asha Rani®
'CVR College of Engineering/ECE Department, Hyderabad, India
Email: dhruva rinkui@evr.ac.in
? Jawaharlal Nehru Technology Umiversity/ECE Depariment, Hyderabad, India
Email: ashajntul @yahoo.com

Abstraci: There has always been a debate over the advantages
of multi-core architecture over single core. It is obvious that
the full advantage of multi-<core can be achieved only if the
programs are run in parallel [Amdahl's law] and the load is
distributed evenly among all the available cores. In this
context, processor or CPU affinity plays a major role in
improving the performance of the svstem where time
comstraints are present. But, hard CPU affinity can also
degrade the performance of the system in some scenarios. The
alternative is to dvnamicallv allocate the CPU core at
application level. This paper studies these two technigues at
application level to assign a particolar CPL core once and
stick to it, or switching amoeng various cores dynamically by
considering CPU usage.

Index Terms—multi-core, CPU affinity, static scheduling,
dynamic load balancing, CPLU utilization

I. INTRODUCTION

To enhance the performance of an embedded system,
multi-core architecture [7.10] is one of the possible
solutions which allows the system 0 process numerous jobs
simultaneously by parallel computation. At the same time
the returm on the investment has been a debating issue, As
Amdahl proved that just by increasing the number of cores,
the processing power can't be multiplied arithmetically, [1]
but it depends on various factors like program
parallelization. Even considering all favorable conditions
for Kemel scheduling for multi-core few more factors
affect the performance of the system.

Linux kernel has been giving significant importance 1w
multiprocessor architectore [4,9,13,15], Modern operating
systems provide multi-core aware anfrastructure [19],
interrupt load-balancer, affinity facilities [3], CPUSETS
[6], and CPU isolation |5]. These functions help running
tasks adapt to system characteristics including SMP
scheduler, synchronization very well by considering CPU
utilization. Stll there is enough scope to improve the
performance of the system by providing user level control
o decide a particular process o be run on a pre-defined
CPU core.

'CPU or progessor affinity’ increases the performance of
the system by assigning the process to one particular core,
that avoids cache miss [17,18]). Processor affinity takes
advantage of the fact that some remnants of a process that
Wis FUn o 4 given processor may remain in that processor's
memory state (for example, data in the CPU cache) after
another process is run on that CPLL Scheduling that process
o execute on the same processor could result in an efficient
wse of process by reducing performance-degrading

situations such as cache misses [15]. This approach would
be wseful, if the application has multiple-instances and is
mon-threaded, such as some graphics-rendering software.

In some applications {particularly Real-Time control
applications) [2]. it may be desirable to specifically assign a
task to its own dedicated core. For example, a time critical
task such as a control loop can be implemented in this
manner.[14] This allows the remaining tasks in the system
o share the other processor resources among themselves—
and ensures that nothing interferes with the time critical
process.

On the other hand, there are limitations with CPU
affinity. Most importantly, CPU affinity wastes the CPLU
usage if the task goes in to wait or sleep mode. This
degrades the performance of the system. as once the core
has been assigned, the process can’t run after a wait or
sleep unless the assigned core is free.

Load balancing on the cores is an alternative to achieve
better performance. Ulilization of a processor is usually
considered as the criterion in load balance [8], To generate
the maximum balanced load, tasks should be assigned o
the processor core with the lowest utilization [12], Beyond
0% schedulers that try to balance the load[16] it is
advantageous to provide monitoring and CPU switching at
user level, using system calls within a program. On a Linux
platform, a program in C can achieve this.

I1. METHODOLOGY

This paper 15 based on literature available as mentioned
in the references, as well experimental study on systems
rmunning with Linux operating system. Implementation of
static {CPU affinity’) and dynamic process allocation to a
CPU core is done using qToreator GUIL and C language in
Linux environment. To give reasonable understanding to
the uwser, pseudo code is provided, where the original
programs are tried and tested. The examples cited are to
demonsirate the soccessful running of programs and to
prove the concept. In the real world scenario, the context
and applications may vary widely, thus differ in results.

I IMPLEMENTATION

A, Static Core Axsignment

Static or off line scheduling to achieve process affinity[11]:

A process can be given affinity [18] to a particelar CPU
core a5 per the user choice. This can be controlled by a GUI
built wsing gqtCreator, which in turn runs the kernel level
commands to assign the affinity to a particular process, as

74 CVR College of Engineering

doi:10.32377/cvrjst1113

ISSN 2277 - 3916

CVR Iournal of Science and Technology, Volume 11, December 20016

shown in fig 1. Any number of processes can be listed in
the drop down list of the application, and the n numbers of
cores are given as buttons. Whenever the user selects a
particular process from the drop down list and assigns o a
particular core, the process is assigned to that core, System
calls “system” and “taskset” are wsed to achieve processor or
CPLI affinity.

TETH

£
a
™
i
L)

Figure 1 quad core with process
Pseudo code for task affinity on multi-core;

e create four core options as four buttons:

* credate ‘process’ options as dropdown menu items;

e read ‘process’ choice from dropdown menu into
"process name”;

+ read the ‘core selection’ from button;

+ assign fask on core 'n' using system call: system
("taskset n+1 "process name” &");

process’ runs on core '

o update the label on button with “process name”

B. Dynamic Core Assignment

Load balancing on a multi-core system can be achieved
by continually monitoring the leads on various CPU cores
and assign the desired program to the least leaded core. The
proc file system is a psendo-file system which provides an
interface to kernel data structures. It is commonly mounted
at fproc, Most of it is read-only, but some files allow kernel
variables to be changed. The PID of the desired process is
read from process status file of the kernel by tracing the
name of the process, With this, the desired process can be
fetched. The same way the load on each CPU core at
current state 15 read from the kernel data structures and
identified the least loaded core. After these two steps, the
desired process can be assigned to the least loaded core
using the PID of the process and appropriate affinity mask
in the “taskset” system call.

Proc/stat file contains the CPLU wsage statistics in ASCII
file format. The same can be read into the program and
decode the fields to identify the total CPU usage and idle
time, and also for all the existing cores. Each core details
are given in each line in the file.

In a guad core system, the load balancing program runs
on core), while monitoring and assigning the loads to cores
I, 2 and 3. This has heen implemented through an
algorithm as given here.

Simplified load balancing algorithm.

ficheck the process pid of process name from PID list
through /proc
o process_pid = gel_pid{"process name");
read file procistat;
read each field using the file pointer;
while cpu count is less than 5
read CPU usage for each core
store the values of CPU core usage data
increment count until it reaches number of cores

" & 5 s 8 8

CPLUx usage = time lapsed between reads - CPUx idle
Lme:

compare the loads o find the least loaded core

* assign the process (o this core using tasksel -p
Tovwesst_load, "process pid”

-

LG EFEELT L]

Figure 2 comparison of CPL usage

With this, as shown m figure 2 the load balancing
scheduler monitors the load on various CPU cores
continually, and assigns the desired process with its process
ID to the least loaded core. This ensures that the desired
process can be run continuously without waiting for the
CPLU.

IV. QuTPUT

A, Sratic Core Assignmen!

GUI program is run on the svstem, Browser, camera, and
media plaver have been given in the drop down list of the
program. Four buttons were provided to select any core
among O to 3. Once Browser was selected and is assigned
o core 1, the browser was switched and continually run on
core 1. The same was checked vsing top kernel command
from terminal application. Similarly core () was assigned to
Camera application. The buttons were also updated with
their number along with the assigned apphication, The ghitch
in the wvideo streaming disappearcd after the camera
application had the affinity with core 0. Hence it is proven
that applications which are non- threaded run better with
CPU affinity.

doi:10.32377/cvrjst1113

CWVR College of Enginecring 75

ISSN 2277 - 3916

CVR Iournal of Science and Technology, Volume 11, December 20016

|]
|
w
a
L+
o]
L]
[]

Flguu.‘ 3 Static core Assigniment

Figure 3 shows output of Static core assignment of
processes. [t shows browser process is running on core 1.

B. Dynamic Core Assignment

The main program was compiled vsing gec along with
other source files. Camera application, ‘cheese’ was taken
as the program that should be assigned dynamically to the
least loaded core, The cheese program was launched, and
then the load balancer program ‘task_switch' was also
launched in another terminal. The ‘task-switch’ program
started displaying the loads of various cores, and identified
the least loaded core. Camera application was assigned to
the least loaded core by changing the affinity mask, which
could be either 2, 4, or ¥ for core 1, 2, or 3 respectively.

The period of monitoring has been taken as three
seconds, and for every three seconds the terminal window
was updated with current load values of all cores, and
affinity mask was also updated accordingly. The same was
checked wsing top command running on another termimal.
The screen shots of the same were given below in figure 4.
All the cores were used efficiently with fine load balancing.

e l. BELEL FI

Figure 4 Dynamic Core Assignment
V. CONCLUSIONS

This paper mied to towch couple of enormous
possibilities to achieve optimal performance of a system,
bevond O35 kernel level scheduling. Also demonstrated that
the programs at application level may be used to enhance
efficiency of scheduling further using various monitoring
techniques and assignment methods. Further, considering
static and dynamic core assignments, to get the best of the
both worlds, an algorithm can be developed (o0 mix them,

and achieve in a single program, giving the user the control
to run the program.

REFERENCES

[1] Amdahl (1967} "Validity of the Single Processor Approach
to Achieving Large-Scale Computing Capabilities" fwww
insteecs berkeley eduw/'-n252 paper/Amdahl pdf

[2] LH. Anderson. Real-time scheduling on multicore platforms.
In Real-Time and Embedded Technology and Apphcations
Symposium, 2006,

[3] Raoben A Alfiers. Apparatus and method for improved CPLU
affinity in a multiprocessor system. hitp:
fhwww_poogle com'patents/TSST457T8

[4] 5 Brosky. Shielded cpus: real-time performance in standard
linux. In Linux Jowrnal, 2004,

[5] Knauverhase. Using os observations to improve performance
in multicore systems. In Micro [EEE, May 2008,

[SimonDerr,PaulMenage CPUSETS. httpo//http:eww kernel,
orgidoc/Documentation/cgroups/cpuscts. txi.

[71 “A survey of Multicore Processars”, Geolfrey Blake, Ronald
G. Dreslinski, and Trevor Mudge IEEE SIGNAL
PROCESSING MAGAZINE NOVEMBER 20049 1053-
SERROWIEEE

[8] “A High Performance Load Balance Strategy for Real-Time
Multicore Systems,”"The Scientific World Journal
Yolume 2004 (2014), Article 1D 101529, 14 pages.Keng-
Mao Cho, Chun-Wei Tsm, Yi-Shinan Chiu, and Chu-Sing
Yang

[9] “Chip Multi Processing sware Linux Kemel
Scheduler"Suresh Siddha Venkatesh Pallipadi, Asit
Mallick, 2006 Linux Symposium, Yolume Two Page MNos,
330)-340)

[10] “Multi-core and Many-core Processor Architectures”, A,
Wajda, Programming Many-Core Chips, DOT 10, 10074978-]-
4419-9739-5_2, ©5pringer Science+Business Media, LLC
2011, Page Mos.- 9 to 36

[E1] “A Study on Sewing Processor or CPU Affinity in Multi-Core
Architecture for Parallel Compating”, Internaticnal Towmal
of Science and Rescarch [SSN (Onling): 23 19-T064 W olume
4 Issue 5, May 2015, Page Nos.- 1987 - 1990

[12] "Parallel Task Scheduling on Multicore Platforms”,
Department of Computer Science,The University of North
Carolina at Chapel Hill,

[13] “Multi-core and Linux® Kernel JQmel Open Source
Technology center”, Suresh Sidhdha

[14] “Real-Time Scheduling on Multicore Platforms", Issue Dute:
04-07 April 2006 On pageds): 179 - 190 Print ISBN: 0-7605-
2516-4 doi: L1 I09RTAS. 200635 Date of Current
Wersion: 24 April 2006

[15] “The Linux Scheduler: a Decade of Wasted Cores™, MNice
Sophia, Justin Funston,

[16] "A Hierarchical Approach for Load Balancing on Parallel
Multi-core . Systems” La’ercio L. Pilla | Christiane Pousa
Ribeire . Daniel Cordeiro . Chao Mei . Abhinav Bhatele
Jpages 119-129

[17] “Benefits of Cache-Affinity Scheduling in Shared-Memory
Multiprocessors: A Summary,"Josep Torrellas, Andrew
Tucker, and Ancop Gupla Computer Systems Laboratory,
Stanford University, CA 943035, page Nos: 272-274

[18] White Paper Processor Affinity Multiple CPU Scheduling -
Movember 3, 2003

[19] Kmaucrhase. Using os observations o improve performance
i multieore systems, In Micro [EEE, May 2008,

76 CWVR College of Engineering

doi:10.32377/cvrjst1113

