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Abstract: In this article, we study the magnetohydrodynamics 
stagnation point flow for the upper-convected Maxwell fluid with 
the viscous dissipation and thermal radiation effects using the 
Cattaneo-Christov heat flux model. The flow equations are  
reconstructed and the obtained set of partial differential equations 
is then converted into an arrangement of nonlinear, coupled 
O.D.E. by utilising some reasonable similarity transformations. 
After this, the set of O.D.E. is solved by applying shooting method. 
Graphs and tables describe the behavior of physical parameters. 

 
Index Terms: Maxwell fluid; Viscous dissipation; Thermal 
radiation; Magnetohydrodynamics; Shooting method. 

I.  INTRODUCTION   

“The point in the flow field where the fluid's velocity is zero 
is called stagnation point”. The study of viscous, 
incompressible, fluid past a permeable plate or sheet has great 
importance in the field of fluid dynamics. During the past few 
decades, the work on stagnation point flow of an 
incompressible fluid past a permeable sheet has got significant 
importance because of its large number of applications in 
manufacturing industries. Some of the main applications are 
refrigeration of electrical gadgets by fan, atomic receptacles 
cooling for the duration of emergency power cut, solar receiver, 
etc. The study of two-dimensional (2D) stagnation point flow 
was first investigated by Hiemenz [1], whereas for getting the 
accurate solution, Eckert [2] extended this problem by adding 
the energy equation. In view of that Mahapatra and Gupta [3], 
Ishak et al. [4], and Hayat et al. [5] have studied the effects of 
heat transfer in stagnation point over a permeable plate. 

“The study of magnetic properties of electrically conducting 
fluids is known as Magnetohydrodynamics (MHD)”. The study 
of MHD fluid flow was first introduced by Swedish Physicist, 
Alfven [6]. The effect of  heat transfer in 
Magnetohydrodynamics flow of Jeffrey fluid model over a 
permeable plate is invested by Hayat et al. [7]. Mustafa et al. 
[8] inspected the Magnetohydrodynamics flow of Maxwell 
fluid with heat transfer.                                                                                    

The study of flow behaviour and heat transfer generated by 
means of stretching medium, has plenty of significance in 
numerous industrialized developments (e.g, in the process of 
rubber and plastic sheets manufacturing, upgrading the solid 
materials like crystal, turning fibers etc). The most widely used 
coolant liquid among them is water. In above cases, flow 
behavoiur and heat transfer investigation is of major importance 
because final product quality be determined to bulk level on the 
basis of coefficient of skin friction and heat transfer surface 
rate. Numerous investigators talked over different traits of 
stretching flow problem. Some of them are Crane [9], Chaim 
[10], Liao and Pop [11], Khan and Sanjayanand [12], and Fang 
et al. [13]. 

Viscous dissipation is unavoidable in case of flow field in 
high gravitational field. Viscous flow past a nonlinearly 
stretching sheet was deliberated by Vajravelu [18]. For external 
natural convention flow over a stretching medium, the impact 
of viscous dissipation was also studied by Mollendro and 
Gebhart [19], whereas the impact of viscous dissipation  and 
Joule heating on the forced convection flow with thermal 
radiation was presented by Duwairi [20]. 

In future, advancement in nano-technology is expected for 
making unbelievable changes in our lives. A very big number 
of researchers are working in this area due to its great use in the 
engineering and its linked areas. In the process of air cleaning, 
development of microelectronics, safety of nuclear reactors etc, 
thermophoretic magnetohydrodynamic flow of heat and mass 
transfer  consumes prospective uses. Choi [14] was the first who 
introduced the idea of “nanofluids” and presented the report on 
the heat transfer properties of nanofluids. The thorough 
explosure on thermophoretic flow was examined by Derjaguin 
and Yalamov [15]. Heat and mass transfer of MHD 
thermophoretic stream above plane surface was also studied by 
Issac and Chamka [16]. Thermophoresis effect on aerosol 
particles was investigated by Tsai [17]. In fluid temperature,   
no doubt, viscous dissipation produces a considerable ascend. 
This would happen because of change in kinetic motion of fluid 
into thermal energy.  
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Our prime objective is, we providing a review study of Shah 
et al. [21] and extend the flow analysis with viscous dissipation 
parameters. 

II.  MATHEMATICAL MODELING 

Consider the time independent, incompressible, two-
dimensional MHD, laminar, and steady state flow of a fluid past 
a semi-infinite stretching surfece. The geometry of the flow 
model is given in Figure 1. 

 
Figure 1. Geometry for the flow under consideration. 

 
Here Cattaneo-Christov heat flux model is under 

consideration. Along O −axis, a constant magnetic field of 
strength �& is applied perpendicular to P −axis. Further its is 
supposed that the induced magnetic field is negligible. It is 
supposed that boundary layer approximations are appropriate to 
the governing equations considered by Renardy for “Maxwell 
fluid models”. By making use of boundary layer 
approximations, the arrangement of representing PDEs like 
continuity, momentum and energy equations can be expressed 
as follows: 
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where � and Z are the components of velocity along the P and 
O directions respectively. Moreover, V! denotes the relaxation 
time, e denotes the fluid's density, �& is constant magnetic field,  
n  be the electric conductivity constant, kinematic viscosity is 
denoted by o, �f is the specific heat, fluid temperature is p, rs 
is the radiative heat flux. According to Christov , we have  
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On abolishing r from Eqs. (3) and (4), we have 
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where M denotes the fluid velocity, VJ is the relaxation time and 
thermal diffusivity is denoted by α. Also, the radiative heat flux 
rs, by using the Rosseland approximation for radiation, can be 
written as 
rs = A�`∗

��∗
X��

X[
              (6) 

where n∗and "∗stand for the Stefan-Boltzmann constant and 
coefficient of mean absorption. 
“Expansion of p� about p�  by making use of Taylor's series 
is”: 
p� = p�

� + ���
�

!!
(p − p�)! + !J��

H
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(p − p�)J + J���
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Disregarding the higher order terms,     
 p� = p�

� + 4p�
�(p − p�) 

⇒ X��

X[
= 4p� X�

X[
               (8) 

Using (8) in (6) and the differentiate w.r.t. O, we get 
Xij
X[

= − !�`∗��
�

��∗   XH�
X[H             (9) 

The boundary conditions for the above system of PDE are 
 

�

� = �,     Z = 0,     p = p�(P), �  O = 0 
 

� → 0,          p → p�, ��  O = ∞
    

�         (10) 

III.  DIMENSIONLESS FORM OF THE MODEL  

Now, we introduce similarity transformations or 
(dimensionless variables) Shah et al. [21] which are useful in 
transforming the PDEs Eqs. (1) - (3) into the ODEs along with 
the boundary conditions Eqs. (8). 

� = � �
kY

(O),             �(�) = �A��
��A��

,  

� = ���(�),     Z = − !
J

��k
Y

(� − ���)        (11) 

where the prime represents derivative w.r.t �, p� and p� are the 
ambient and constant fluid temperature at wall respectively and 
� is the dimensionless temperature. The set of corresponding 
ODEs is: 
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                           (13) 
The boundary conditions for the governing ODEs are 
�(�) = 0, ��(�) = 1, �(�) = 1,   �  � = 0.            (14) 
  ��(�) ⟶ 0, �(�) ⟶ 1,    �    � = ∞.         (15) 
In Eqs. (12) - (13), ¦ is the Deborah number, �� is the Prandtl 
number, ¡ is the magnetic parameter, radiational parameter is 
I, ¤� is the Eckert number and  § is the non-dimensional 
thermal relaxation time parameter. Some important 
dimensionless parameters are formulated as 
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IV. NUMERICAL  SOLUTION 
 

As system of Eqs. (12) - (15) with the associated boundary 
conditions is coupled and nonlinear, so approximate solution 
cannot be found directly. For this we use the numerical 
technique i.e., the shooting method along with Adams-Moultan 
method. By making use of this technique, we convert the 
system of higher order ODEs into the system of first order 
ODEs. 
���� = !

JA�°H ��¦��J��� + 2¦2������ − ��!! + 2¡��        (17) 

��� = �Ls
��±:A�Ls¢°H �3§����� − ��! − 2¡¤���J − ¤����J  

                   (18) 

subject to boundary conditions 

 ��(�) = 1 , �(�) = 0 at � = 0, ��(∞) → 0, as � → ∞,      (19) 

�(�) = 1 at  � = 0;  �(�) → 0, as � → ∞         (20)  

Let us use the notations  

� =  O!, � = O� 

Further denote 

�� = O!
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� = O´, ��� = O´

� .  
  

The system of first Order ODEs along with the boundary 
conditions becomes 
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For solving above system numerically, we replace the domain 
[0, ∞], by the bounded domain [0, ��] where �� is some 
suitable real number. In the above system of equations we have 
 O�(�) and  O´(�) at � = 0 i.e., � and  are missing conditions 
and are to be chosen such that 
OJ(��, �, ) ≈ 0  and  O�(��, �, ) ≈ 0. 

Finally, the choice of �¸¹Y = 16 was more than enough for 
end condition. The convergence criteria is choosen to be 
successive value agree up tp 2 significant digites. 

V. RESULT AND DISCUSSION 

This section aims to investigate the numerical impacts of 
different parameters such as Prandtl number ��, non-
dimensional thermal relaxation time parameter § , Deborah 
numbers ¦, Eckert number ¤�, magnetic parameter ¡ and 
radiational parameter I displayed graphically and tablularly. 
The computations are worked out for different values of the 
effects of magnetic parameter ¡, Eckert number ¤�, Prandtl 
number ��, Deborah number ¦ and non dimensional thermal 
relaxation time parameter § and also discussed the effects of  
various physical parameters on velocity and temperature 
profiles. 

The impact  of various parameters like, Magnetic 
parameter, Radiational parameter, Eckert number, Prandtl 
number, radiational parameter is discussed graphically. In 
Table 1 and 2 numerical values for temperature gradient 
−��(0) and velocity −���(0) are calculated for different 
physical parameters. 

 
For visualizing the effects of different parameters on velocity 

��(�) and temperature profile �(�), graphs are plotted below. 
In every one of these estimations, we have considered  § =
0.5, �� = 0.72, ¡ = 0.1, ¦ = 0.5, I = 0.23 and ¤� =  0.1. 
Figure 2 determines the impact of magnetic parameter ¡ on 
dimensionless velocity ��(�). The graphical demonstration 
shows that for the increasing values of magnetic parameter ¡, 
there is decrease in the velocity profile. It happens for the reason 
that Lorentz force which decreases the horizontal flow risen by 
rising the magnetic parameter ¡. Figure 3 is the graphical 
representation which shows the temperature profile for the 
various values of magnetic parameter ¡. By this graph, it is 
observed that the effect of magnetic parameter ¡ on velocity 
and temperature profile is opposite. From Figure 4, it can be 
seen that by increasing the value of Eckret number ¤�, 
temperature profile also increases. The effect of radiational 
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parameter I on dimensionless temperature �(�) is represented 
in Figure 5. In this graph it is observed that on increasing the 
value of radiational parameter I, temperature profile �(�) also 
increases. So, the rate of heat transfer decreases with increase 
in radiational parameter I, and because of which temperature 
profile increases. In Figure 6, the influence of non-dimensional 
thermal relaxation time parameter § on temperature profile 
�(�) is shown. This graph represents that on increasing the non-
dimensional thermal relaxation time parameter § , value of 
temperature profile �(�) decreases, because of this fact that 
when non dimensional thermal relaxation time parameter  
increases results decreases in time of deformation which causes 
the decrease in temperature of fluid. Figure 7 shows the 
influence of Deborah number ¦ on velocity profile ��(�). For 

the increasing values of Deborah number ¦ , velocity increases 
near the plate while in the rest portion of the boundary layer it 
diminishes for expanding ¦. From Figure 8, it can be seen that 
by the increase in Deborah number ¦, temperature profile �(�)  
increases. Figure 9 illustrates the difference of temperature 
�(�) for different values of the Prandtl number ��. It is 
perceived that the temperature decreases, for the increasing 
values of Prandtl number. Decrease in thermal boundary layer 
comes across when �� is larger and decrease in the thermal 
diffusivity causes rise in the Prandtl number. In this way 
increment in �� diminishes diffusivity and the variety in 
thermal characteristics increments. 

 
 

TABLE I. 
VALUES OF THE REDUCED NUSSELT NUMBER −��(0) ,FOR DIFFERENT VALUES OF  ��, §, ¦, ¡, ¤� and I. 

 

¼½ ¾ ¿ À ÁÂ Ã −Ä�(Å) 
0.72 0.5 0.5 0.1 0.1 0.23 0.20963440 
0.3      0.10691930 
0.5      0.15225160 
0.7      0.20440960 

 0.2     0.21996200 
 0.3     0.21646850 
 0.4     0.21303090 
  0.2    0.22867970 
  0.5    0.20963430 
  0.7    0.20664860 
   0.3   0.17987930 
   0.5   0.15613890 
   0.7   0.13709520 
    0.5  0.13016200 
    0.9  0.05068963 
    1.1  0.01095345 
     0.3 0.19704990 
     0.7 0.14891000 
     1.8 0.10241040 

  
TABLE II. 

COMPARISON OF  −���(�) WHEN �� = 0.72, § = 0: 5, ¤� = 0: 1 and I = 0.1. 
 

¼½ ¾ ¿ À ÁÂ Ã −Ç��(È) 
      Present Value S. Shah et al [21] 
0.72 0.5 0.2 0.1 0.1 0.23 0.51593330 0.5169288 

  0.5    0.48199610 0.4822495 
  0.7    0.45818500 0.45824237 
   0.1   0.48199610 0.4822495 
   0.3   0.64494780 0.6450524 
   0.5   0.78028870 0.7803249 
   0.7   0.89726330 0.8972758 
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Figure 2. Dimensionless Velocity vs ¡  
 

 
 

Figure 3. Dimensionless Temperature vs ¡  
 

 

 

 

 

 

 
 

Figure 4. Dimensionless Temperature vs ¤�  
 

 
 

Figure 5. Dimensionless Temperature vs I  
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Figure 6. Dimensionless Temperature vs §  
 

 
 

Figure 7. Dimensionless Velocity vs ¦  
 

 
 

Figure 8. Dimensionless Temperature vs ¦  
 

 

 
 

Figure 9. Dimensionless Temperature vs ��  
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VI. CONCLUSIONS 

Conclusions which are obtained: 
 

diminish in velocity and increment in temperature. 
 

� Increase in Deborah number ¦ temperature 
increases, while the velocity decreases in the 
horizontal direction. 

 
� Temperature profile rises while extending the 

radiation parameter and a same effect of Eckert 
number is seen on the temperature field. 

 
� On temperature profile Prandtl number has 

decreasing effects. 
 
 

� Velocity filed �� decreases for increasing values of 
¦. 
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� Because of strong Magnetic parameter ¡ it causes 


