
E-ISSN 2581 –7957 CVR Journal of Science and Technology, Volume 16, June 2019
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst1608

ASIC Implementation of Various Sorting
Techniques for Image Processing Applications

Malleswari Akurati
Asst. Professor, CVR College of Engineering/ ECE Department, Hyderabad, India

Email: malli.akurati@gmail.com

Abstract: The direct implementation of parallel algorithms
in hardware is possible with the help of current VLSI
technology. The process of arranging the items systematically is
known as Sorting. Different meanings of sorting are: ordering:
items arrangement in a sequence ordered by using some
criterion; categorizing: similar property items grouping. The
latest VLSI model analyses the complexity of time. The novel
model makes a distinction between “processing” circuits and
“memory” circuits; the latter are less important since they are
denser and consume less power. This paper addresses the
design and analysis of various sorting algorithms, and its VLSI
implementation based on a sorting network. The various
sorting algorithms are Sinking sort, Merge sort and Library
sort; all the three sorting algorithms are compared in terms of
area, power and timing with a complete comparison table.
Mainly these types of sorting algorithms are used in a real time
system; signal processing, image and video processing
applications. All the blocks were designed using Verilog HDL,
simulated using ncvlog simulator, synthesized in cadence-RTL
Compiler and finally implemented in ASIC Encounter using
GPDK 45nm technology libraries.

Index Terms: Sinking sort, Merge sort, Library sort, RTL
compiler and ASIC encounter.

I. INTRODUCTION

 In order to obtain high throughput [1] rate, current
computers perform several operations simultaneously. Here
both the I/O operations and the multiprocessors several
computing operations are done concurrently. Such design
has to connect various parts of system together (ALU,
memory and processor) with a high speed data transferring
units. Generally cross-bar switching is used for this, but for
large number of inputs (m X n matrix) requires large
hardware and power. This paper describes the fast ordering
networks. As the new generation computing systems are
having high performance, the basic elements like Algorithm-
structured chips are helpful for better performance.

� While fabricating the VLSI circuit, the cost
effective factors like silicon area places an
important rule.

� The circuit area always depends on the logic size
and also the architecture modularity;

� The main parameter which effects the network is
the circuit speed;

� When talking about different types of sorting
algorithms [3], the other parameters like area of the
chip and sorting time are also need to be
considered.

� Here various sorting techniques are discussed and
compare them in various aspects like time, area,
power and complexity;

The major contribution of this paper is to describe the
basic approach of VLSI sorting device. The main aim is to
reduce the complexity in all aspects.

II. SORTING TECHNIQUES

A. Introduction
In ASICs, there are more traditional approaches to

perform sorting to achieve high throughput and low latency.
Sorting networks became more popular and impressive due
to the following reasons. First one is pairs are not required
for branch type instructions i.e. loop instructions. The other
one is due to the concept of instruction level parallelism.
Mainly, these types of networks are performed when their
data size or bus width size is less. Mostly in Intel or Pentium
processors, these types of networks generally use Vector
primitives which have been studied from distributive
computing[10].The circuit is mainly designed using
horizontal intersection or inter connective wires and vertical
elements. i.e. comparators. Knuth notation is mainly used
and focused to design each element in the
comparator[3].The unsorted elements are applied at the left,
one element per wire as shown in Figure 1. It describes
various sorting techniques separately by its pictorial
representation. The extreme right side of the design
represents sorted output. Compare and swap stages of the
network are connected through intermediate wires. m-bit
number of sorted elements of data are transferred through
the intermediate wires. The two element sort is performed to
the compared elements in which the smaller values left on
the right side and the larger values left on the lower side.

Figure 1. Sinking Sort, Library Sort and Merge Sort

E-ISSN 2581 –7957 CVR Journal of Science and Technology, Volume 16, June 2019
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst1608

B. Time Complexity
By comparing various sorting algorithms, the choosing of

prescribed sorting algorithms or network for a dedicated
application makes the network simpler. The throughput of a
sorting network is analyzed mainly due to the timing factor
of the algorithm. The Robustness of a network reflects the
relative throughput and it is usually given in the form of
notation Big-D. Here, D represents the network Robustness
and p represents the size of the pair of the network. Table I
represents and gives a basic idea about the robustness of
multiple sorting networks.

TABLE I

COMPLEXITIES OF VARIOUS SORTING ALGORITHMS

Types of

sorts

Time Complexity

Average Best Worst

Sinking Sort D(p^2) D(p^2) D(p^2)
Selection Sort D(p^2) D(p^2) D(p^2)
Library Sort D(p^2) D(p) D(p^2)
Merge Sort D(p log(p)) D(p log(p)) D(p

log(p))

 C. Sinking Sort
It is a simple sorting algorithm. The other name of

sinking sort is Bubble sort. This is also referred to as
Comparison sort as it compares smaller and larger elements
in the list. In this type of sorting, it continuously goes
through the sorting list, where each pair of the adjacent list
is compared. If they are in the correct order, it would not
change the list and if the order is wrong, the items will be
swapped. The same process is repeated until the items are in
the same order. i.e. until further swapping is not required.
The advantage of this type of sorting technique is very
simple and the drawback is slow and practically not useful
for most of the problems compared to insertion sort.
Practical implementation of bubble sort is possible when the
input is generally in sorted order but may usually have some
out-of-order elements nearly in position. [5]

Algorithm
Procedure sinking sort (S: sortable elements list)
p=length (S)

repeat
 swapped = false
 for k=1 to p-1 inclusive do
 if S[k-1]> S[k] then
 swap (S[k-1], S[k])
 swapped =true
 end if
 end for
 until not swapped
end procedure

Among all the sorting algorithms, sinking sorting is the

simplest one in understanding and implementation point of
view. But even compared to the Library sort, it is inefficient

as the efficiency decreases adequately due the complexity of
D (p2)

D. Library Sort
 The other name of Library sort is Insertion sort. Always
iteration is done on one input element, and growing a sorted
output list. In this type of sorting, one element is removed
from the input data at each iteration and after finding the
location of the current element it places the element in that
respective position within the given sorted list[6]. This
process is repeated until there are no such elements to sort.
The current value is always compared with the largest value
in the sorted list. The position always depends on whether
the element is smaller or larger. If the elements value is
small, it searches for its correct position and places it in the
particular place within the sorted list. Otherwise it ignores
that element and moves to the next element [6].

Algorithm
Based on the insertion sort algorithm only, the proposed

sorting is done. In this algorithm, always it searches for the
correct position of elements and it inserts all the input
elements in the correct order. The pseudo-code
representation of this algorithm is as follows:

Algorithm
Function Insert Sort

 for each unsorted C{
 k=0;
 while (k<p) and (C>M[k])) {
 M[k]=M[k+1];
 k=k+1;
 }
 [k-1]=C;}
end function;

The vector M whose length is infinite is considered and
the input data is entered into this vector. But generally it is
not possible. So that the option deletion have to be used [8].
Every time, the smallest value in that list is eliminated,
meanwhile [9], the data which is going to be deleted should
be indicated by the outer input signal.

 E. Merge Sort
 A Merge sort follows divide and conquer algorithm
conceptually and the working procedure of it is as follows:

1. The unsorted list is divided into p sub lists and each
sub list containing one element (only one element
list is taken and sorted).

2. Every time it combines sub lists so that new sorted
list is generated until there is only one sub list left
in the given list [7].

Algorithm

 It divides input array in two halves, calls itself for the
two halves and then merges the two sorted halves. The
merge function is used for merging two halves. The merge
(arr, 1, a, q) is key process that assumes that arr [1..a] and

E-ISSN 2581 –7957 CVR Journal of Science and Technology, Volume 16, June 2019
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst1608

arr [N+1..q] are sorted and merges the two sorted sub-arrays
into one. [7, 8]

Merge sort(arr [],1,q)
If q>1
Find the middle point to divide the array into two halves:
 Middle a= (1+q)/2.
Call merge sort for first half:
 Call merge sort (arr, 1 ,a).
Call merge sort for second half
 Call merge sort (arr,a+1,q)
Merge two halves sorted in step 2 and step 3
 Call merge (arr,1,a,q)
Merge Sort is a recursive algorithm and time complexity can
be expressed as following recurrence relation.
T (p) = 2T (p/2) + D (p).
The above recurrence can be solved either using Recurrence
Tree method or Master method. It falls in case II of Master
Method and solution of the recurrence is D (p log p). [9]
Time complexity of Merge Sort is D(p log p) in all 3 cases
(worst, average and best) as merge sort always divides the
array in two halves and take linear time to merge two halves.

III. IMPLEMENTATION AND RESULT
ANALYSIS

 A. Sinking Sort

 Figure 2 (a), (b). RTL Schematic and ASIC Implementation of Sinking
 Sort

 B. Library Sort

 Figure 3 (a), (b). RTL Schematic and ASIC Implementation of Library
 Sort

Figure 4. Top Level Design of Library Sort

 C. Merge Sort

Figure 5 (a), (b). RTL Schematic and ASIC Implementation of

Merge Sort

 Figure 6. Top Level Design of Merge Sort

 Section III mainly deals with the Implementation and
Result Analysis of various sorting techniques. The HDL
language used and tools used are mentioned below.
HDL Language Used: Verilog HDL
Simulation Tool: Ncvlog Simulator
Synthesis Tool: RTL Compiler
Physical Design Tool: ASIC Encounter
Figure 2(a), (b) represents the RTL Schematic and ASIC
Implementation of Bubble Sort. It is very flexible to design
on an IC due to its sorting network. Figure 3(a),(b) describes
the implementation of Library sort based on its sorting
technique. Internally Library sort consists Mod-4 counter to
count the number of moves or paths of the respective node
in the network which is shown in the figure 4. Figure 5 (a),
(b) gives implementation results of Merge Sort. Merge sort
internally consists of Mod-3 counter to count the number of
elements replaced or eleminated from the sorting newtork
respectively as shown in the figure 6. All the sorting
networks are taken in the form of m * n matrix only to have
equal distribution in the network. Timing of the network is
calculated interms of nanoseconds and power is calculated

E-ISSN 2581 –7957 CVR Journal of Science and Technology, Volume 16, June 2019
 P-ISSN 2277 – 3916 DOI: 10.32377/cvrjst1608

interms of nanowatts and area is explained and derived
interms of cells which are occupied on an IC. The Table II
gives the comparative analysis of various sorting techniques
i.e., Sinking Sort, Library Sort and Merge Sort in the
respective aspects such as Area, Timing and Power. Power
analysis is furthur calculated interms of Internal Power,
Switching Power and leakage power. Compared to all the
above mentioned Sorting Techniques [9] Merge Sort will be
more efficient in all the aspects and it is most preferred.
Arrangement or ordering of elements in the network will be
performed very fastly compared to Sinking sort, Selection
Sort and Library Sort.

IV. COMPARISON BETWEEN SORTING
TECHNIQUES

A. Area, Speed and Complexity

� To compare different VLSI algorithms and
architectures for sorting, it is of great interest to
take a look at the lower bounds of area or speed, in
the sense that, cannot solve a given VLSI problem
using less than a lower bound of silicon area, or
less than in a given amount of time. Because of the
trade-off between area and speed, it is also
important to consider lower bounds of the product
ST, or of ST2 .

� Computational Complexity [10](worst, average and
best behavior) in terms of the size of the list (p).
For typical serial sorting algorithms, good behavior
is D(p log p), with parallel sort in D(log2p), and bad
behavior is D(p2). Ideal behavior for a serial sort is
D(p), but this is not possible in the average case.
Optimal parallel sorting is D(log p). Comparison
based sorting algorithm need at least Ω(p log p)
comparisons for more inputs.

B. Comparison Table
TABLE II.

COMPARISON OF SINKING SORT, LIBRARY SORT AND MERGE SORT IN
TERMS OF SETUP TIME, HOLD TIME, AREA AND POWER FROM THE ANALYSIS

OF ASIC IMPLEMENTATION.

Parameters Bubble
Sort

Insertion
Sort

Merge Sort

Timing
Analysis

Slack
(ns)

7923 7464 5184

Total Area
Top

Module
1254
Cells,
2678.89
area

937 Cells,
1951.79
area

1000 Cells,
2302.69

area

Total Power

Internal
Power

50.8644% 49.4750% 57.1171%

Switching
Power

49.1194% 50.4689% 42.8407%

Leakage
Power

0.0463% 0.0561% 0.0422%

V. CONCLUSIONS

This paper gives the importance of SoCs /ASICs to
accelerate ordering. It presents the various ways to fabricate
sorting networks on ASICs and briefly explains the on-die
resource utilization. For synchronous fally-pipelined

implementation, the flip-flop and LUT utilization of a circuit
shows more impact and complexity on the hardware. In the
aspect of multi core systems, ASIC shows how the data can
be accessed internally at each coprocessor stage. This paper
also gives various types of data processing operations where
ASICs have multiple advantages i.e. parallelism-pipelining
and low latency. Many ways are discussed in which ASICs
/SoCs can be embed into a large system so that the
performance can be increased rapidly. This type of approach
leads to high performance on ASICs in terms of efficiency
and latency. Moreover, the main agenda is to achieve high
performance of the network. It is challenging to maintain
this performance, once the hardware implementation of the
algorithm is integrated into a full system. Next to raw
performance, these experiments also show that ASIC brings
additional advantage in terms of power consumption.
Because of these things, ASIC plays an important role in
heterogeneous - core architectures. The work reported in this
paper is to incorporate the capabilities of ASICs into data
processing engines in an efficient manner.

REFERENCES

[1] C.D.Thompson, ”A complexity theory for VLSI,”
Ph.D,dissertation CMU-CS-80-140, computer science
department,Carnegie-MellonUniversity, Pittsburgh,PA,August
(1980).

[2] D. E. Muller and F .P. Preparata, ”Bounds to complexities of
networks for sorting and for switching,” J.Ass. Computer
Mach.,vol. 22, pp.195-201, Apr. 1975.

[3] Ajai, M.,Komlos, J. and Szemeredi, E. (1983) , “Sorting in
clog n parallel steps,” Combinatorica, 3, 1-19

[4] Bildari, G. and Preparata, F.P. (1985). “A minimum area
VLSI network for O(log n) time sorting, ”) IEEE
Transactions on computers, C-34,336-343.

[5] Batcher, M. E. (1968), “Sorting networks and their
applications,” Proceedings of AFIPS Conference, pp.307-
314

[6] D. E. Knuth, “The Art of computer programming,” Vol. 3:
Sorting and Searching,” Reading, MA:Addison-Wesley,1973

[7] S. Todd, “Algorithm and hardware for a merge sort using
multiple processors,” IBM J. Res.Develop., vol. 22, pp. 509-
517, Sept. 1978

[8] J. Vuillemin, “A combinational limit to the computing power
of VLSI circuits,” IEEE Trans. Comput., vol. C-32, pp. 294-
300, Mar. 1983.

[9] L. E. Winslow and Y. C. Chow, “Parallel sorting machines:
Their speed and efficiency,” in Proc.AFIPS 1981 Nat.
Comput. Conf., Fall , pp. 163-165, 1981

[10] A. C. Yao, “Some complexity questions related to distributive
computing,” in Proc. I lth Annu. ACMSymp. Therory
Computt., pp. 209-213, May 1979

