
ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 13, December 2017

MUTAWEB-Mutation Testing Tool for Servlet
based Web Applications

S.Suguna Mallika1, Samuel Vineeth2, Rohith Rangaraju3 and Shabana Begum4

1Assoc. Professor, CVR College of Engineering/CSE Department, Hyderabad, India
suguna.kishore@gmail.com

2,3,4 B.Tech. Students, CVR College of Engineering/CSE Department, Hyderabad, India
2samuelvineethcool@gmail.com, 3rangaraju963@gmail.com, 4shabbz.45@gmail.com

Abstract: Mutation testing of web applications requires more
sophistication and newer operators for greater efficiency to
detect defects early in the testing cycle. A plethora of mutation
testing tools are available for performing mutation testing.
However for performing mutation testing of web applications
there is only one tool available which is also available for web
applications developed using Java Server Pages. The tools are
also not addressing defects related to session management,
cookie management while the logical, relational, operators and
their corresponding mutant code are being tested. In the
current work, an endeavour to implement some novel mutation
operators pertaining to servlet based web applications has been
made and a simple tool to implement some of the novel
operators has been made successfully. This work will certainly
assist the web application testers in quickly realising some key
defects pertaining to session management and cookie
management which might have been otherwise overlooked by
the developers given the faster release cycles of the web
applications.

Index Terms: mutation testing, web applications, testing tool,
session management, cookie management.

I. INTRODUCTION

 Mutation testing is one of the testing techniques which is
based on seeding mistakes into the code at known points and
thereby observing the results of the test cases run. If the
output is as expected with the original code, then it is
indicative of a slip in the original code as the output is
supposed to deviate from the expected result. If the output
does not deviate from the expected result, then the mutated
code which is called the mutant is said to be live otherwise
dead. Dead mutants direct us towards a flawless code
whereas a live mutant signifies a buggy code. To assure that
the code is buggy, a retest of the code with an increased
input sample data is performed, of which the results are
further analysed. Suppose the results are found deviating
from the expected results despite the increased sample data,
then a back tracking is performed to analyse the buggy code
and derive at the root cause for the defect [1].

 Mutation testing can also be employed in testing the web
applications, which are difficult to test in contrast to the
standalone applications given the aspects of web application
development like heterogeneity of development
environment, cross platform deployment, browser
incompatibility et.al. [2]. For performing mutation testing of
web applications defining some operators for various
possible defects that can be unearthed is done in earlier
works where approximately 150 operators are proposed in
various works for testing of applications [10]. Around 5

operators are implemented in the current work for testing of
web applications.

There are many tools which perform mutation testing on
various standalone applications. Applications like MuClipse,
PIT, Jumble, etc., perform mutation testing on Java
programs and applications like Cosmic ray and Mutpy does
the same on python programs. But there are less number of
tools which apply mutation process on web based
applications .A tool which performs mutation testing on Java
based applications (Servlets and JSPs) was proposed. This
tool checks the status of mutation process by comparing log
files which are generated by the tool. However, not all
mutation operators generate log files. After applying
mutation and running the updated application, the difference
can be directly seen on the output (Webpages). For
applications where applying mutation does not show any
difference in the output, then log files before and after
mutation are generated and both log files are compared to
tell whether the mutant is live or not.

Section II provides a discussion on some of the existing
mutation testing tools and their key features. Section III
discusses the five novel mutation operators implemented as
part of this MUTAWEB for testing web applications.
Section IV provides conclusions and a peek into the future
enhancements possible with this work.

II. RELATED WORK

Various tools were earlier proposed and implemented for
mutation testing of different applications [2, 3, 4, 5, 6, 7, and
10]. A total of 6 tools were taken into study for the
development of MUTAWEB, the summary of which is
presented here.

A. MuClipse tool

It is a mutation testing tool for java language. It can only
mutate java based classes. It is a plug-in .To use this tool
first it should be installed in eclipse. It provides a user
interface in which different mutation operators are displayed
in the form of check boxes. After choosing them, these
operators will be applied on the existing java code (this is
called mutating code). Junit is used here to run the tests on
original code and mutated code. Muclipse compares both the
results and if the results are same then the mutant is alive or
else mutant is killed. Muclipse maintains the mutant score
and displays them to the tester [5].

CVR College of Engineering

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 13, December 2017

B. Judy tool

It is a mutation testing tool that supports only java
language. It is a command line tool. This tool also covers all
the branches in a given lines of code. From generation of
byte code to execution of mutants, all can be done by this
tool. Junit is used to run the tests for both original and
mutated code. This was developed by Madeyski and Radyk
[6].

C. WebMuJava

It is web mutation testing tool. It is an extension to
Mujava. This tool was developed by Upsorn
Praphamontripong, Jeff Offutt, Lin Deng, and JingJing Gu.
This tool mutates Servlets and jsps. The mutated files are
compiled and included in webapp and then the web app is
tested. The tests for normal testing are completely different
when compared to this mutation testing. Here the tests are
created manually in the form of requests and these were
stored using htmlunit, selenium, jwebunit. After that, these
tests are applied automatically on the web application and
the output is compared every time to generate the mutation
score (Which is no of mutants killed to the total no of
mutants inserted) [3].

D. Cosmic-ray

It’s a mutation testing tool in python. It is an Open source
command line tool which is not fully developed, and
contributions through GitHub are in progress. This tool
mostly mutates the code at AST (Abstract Syntax Tree) level.
Developed by Austin Bingham, a founding director of Sixty
North, a software consulting, training, and application
development company Mutpy offers a new range of

mutation operators for the testing of python programs in an
efficient manner [9].

E. Mutpy

It is a mutation testing tool in python desktop applications
and also web applications (DJANGO WEB
DEVELOPMENT FRAMEWORK FOR PYTHON). This
tool supports unit test module, and generates reports which
can be human readable format. This Mutpy tool does not
provide any user interface. It is a command line based tool.
At present this tool supports 27 mutation operators [7].

F. Jumble tool

It is a mutation testing tool which mutates the code a byte
code level. This tool works faster as it will work under
bytecode level. This tool supports JUnit to perform tests on
java classes. This tool returns mutation score and no of
mutants for which the tests failed for the user for analysis.
This tool does not return the mutants for which the tool
passed. Jumble was developed in 2003-2006 by a
commercial company Reel Two [4].

G. PIT tool

It is a mutation testing tool developed by Coles. It is open
source tool. This tool generates mutants quickly. There are 4
phases: mutant generation, test selection, mutant insertion,
and mutant detection. Like jumble tool pit also performs
mutation at bytecode level. Tool is used as a command line
tool as well as an eclipse plugin. The latest version of PIT
released is 1.1.4 [8].

A summary of the tools under study is presented in the
Table 1 highlighting the language in which each tool is
developed and the languages supported by each tool.

TABLE 1
SUMMARY OF TOOLS UNDER STUDY

S no. Tool Name Language Developed Language Supported references
1 MuClipse Java Java [5]
2 Judy Java Java [6]
3 WebMuJava Java Web applications [3]
4 Cosmic-ray Python Python, Django [9]
5 Mutpy Python Python [7]

6 Jumble Java Java byte code [4]
7 PIT Java Java [8]

III. IMPLEMENTATION

In the present work, 5 operators have been incorporated
and tested with mutating the web application to demonstrate
the error discovery.

Initially, the web application under test should be placed
in the folder where the testing tool is present. Its web.xml is
updated with the files of the application. The main page of
the application is executed. Here, the file to be mutated is
given as input and the type of mutation operator is to be
selected. Some operators require generation of log file
before mutation and a section for doing the above process is
provided. The log file generation code is inserted into the
file and the updated application has to be executed in order
to write log code into a log file. Then another section which

CVR College of Engineering

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 13, December 2017

also takes input as a file name and type of operator is
provided which now applies mutation and also modifies the
logger code inserted previously. The application is executed
again in order to generate another log file. A point to be
noted is that the file name and the type of operator selected
before and after applying mutation must be the same. After
both the log files are generated, a servlet code which
compares the contents of both log files is executed. The
status of the mutation is displayed (Live or dead). After this,
the contents of both log files are cleared. Before mutation is
applied, a copy of that file is created and after executing the
log checking servlet, the contents of mutated file are
updated with its original contents.

Some operators do not require log file generation and the
results of mutation can be seen in webpages. The application
where the change is likely to be seen is to be noted down
manually. Then after applying mutation operator, the
updated application is re executed and the differences are
written to a log file. Comparing both those web pages
manually, we can say whether the mutant is alive or not.
Again, the mutated file contents are updated with its original
contents. This is the basic and overall working of MutaWeb
tool.

A. DSID: Session Invalidation Function Deletion
When a user logs out from an application, the session

information of the user has to be destroyed. So if anyone
tries to open the profile url even after logging out, the server
will redirect the user to the login page. This operator will
delete the method which performs the session invalidation
process. This is a security constraint where applications
opened in public area networks are prone to these problems
if the session operations are not handled correctly. Figure 1
shows the the rendering of profile page of a sample
application under test. Figure 2 refers to the rendering of the
profile page requesting the user to re login as the session is
expired. Figure 3 refers to the rendering of the same page
which is unexpected after the introducing the mutated code.

Figure 1. Profile before logout and before applying mutation

Figure 2. Profile after logout and mutation applied

Figure 3. Profile after logout and after applying mutation

B. DACD (AddCookie Method Deletion):
Cookies are used for storing information like username,

password, session ID, etc. All these are stored in the form of
key value pairs. Once a Cookie table is created, objects of
any name can be created and that can modify, add and delete
cookie table contents. So an operator which deletes a
method which adds cookie information into cookie table is
implemented.

Usually cookie information is not displayed on the
webpages. The user of that web application might not the
difference in the content displayed before and after applying
this DACD mutation operator. In this case, log files are
introduced. Two log files are created, one for storing
information before applying mutation and the other one for
storing information after mutation operation is applied. The
contents of both the log files are compared and its status is
displayed. If contents of both the log files are same then we
say mutant is alive else mutant is dead.

C. DHBR (HTTP Boolean Replacement):
When a session is created, usually a session variable with

the username or ID is set. After the user clicks logout, the
session is destroyed and the session variable’s value is set to
null. The parameter to this session creation or accessing
method is a Boolean operator. This operator will invert the
Boolean parameter in the method and run the mutation
process. In both the cases, this method will try to access the
current session. The difference comes after this step. If the
parameter is true, then it will create a new session if a
current session does not exist. If the parameter is false, then
it will not create a new session even if a current session does
not exist.

CVR College of Engineering

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 13, December 2017

In any part of the application, the session maybe accessed
by using the session creation or accessing method. So when
we modify the Boolean variable from false to true and if that
session variable is accessed, then its value is set to null.
Here, the difference can be seen in the output (webpages)
and there is no need of any log file concept.

Figure 4. Profile before Mutation

Figure 5. Profile after Mutation

D. DFIR (Forward Include Replacement):
In Web Applications, redirecting to other pages is a

common feature. However, the control is not transferred to
the redirected web page. Transferring the control feature is
provided by the RequestDispatcher class in Servlets. When
“include” attribute is used for redirecting to other webpage,
and then the control is transferred to the called webpage and
after its execution gets over, the control is returned back to
the called webpage. So all the statements after the method
call are executed. In the case of usage of “forward” tag, the
control is not returned back to the called webpage but all the
statements are after the method call are not executed. The
statements related to response objects are not executed as
control is transferred to the other webpage.

This operator will invert “include” to “forward” and test
the application whether it is working well with the
redirection of pages and transfer of control operations.
Figure 6 and Figure 7 show the rendering of the login page
with and without the mutated code.

Figure 6.Login before Mutation

Figure 7.Login after Mutation

E. DRDUR (RequestDispatcher RLReplacement):
Like action string in html form tag and

responseObject.sendRedirect method are used for
redirecting to other pages, RequestDispatcher also does the
same thing but provides an additional feature to transfer
control to other webpage. However, the developer should
also check whether the program sent a request to the correct
expected webpage. So this operator will apply mutation in
such a way that it will replace an existing URL in the
RequestDispatcher with another URL. Figures 8 and 9
demonstrate the testing of requeste dispatches method.

Figure 8. Servlet Redirection before Mutation

CVR College of Engineering

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 13, December 2017

Figure 9. Servlet Redirection after Mutation

IV. CONCLUSIONS

The above mutation operators are focussed on the
session and cookie management of servlets. The tool
developed could serve as a first hand aid to showcase some
of the overlooked errors in the code as soon as the testing
commences. However there is scope for inclusion of some
more operators pertaining to servlet based web applications
and the efficiency of operators to be measured against
conventional testing strategies.

There is a scope for improvement of the tool to make
it working dynamically online rather than like a standalone
tool which is currently the need of the industry.

REFERENCES

[1]. M R Woodward, Mutation testing its origin and evolution,
Information and Software Technology, Volume 35, No 3,
March 1993.

[2]. Yuan-FangLi, Paramjit K.Das, DavidL.Dowe. “Two decades
of Web application testing—A survey of recent advances”. In-
formation Systems 43 (2014) 20–54.0306-4379 &
2014Elsevier.

[3]. Upsorn Praphamontripong, Jeff Offutt, “Applying Mutation
Testing to Web Applications”, ICSTW '10 IEEE Proceedings
of the 2010 Third International Conference on Software Test-
ing, Verification, and Validation, April 2010 pages 132-141.

[4]. Sourceforge, “Jumble” http://jumble.sourceforge.net/, 2007.
[5]. B.H. Smith and L. Williams, “An Empirical Evaluation of the

Mujava Mutation Operators,” in Proceedings of the 3rd work-
shop on Mutation Analysis(MUTATION ’07), published with
the proceedings of the 2nd testing. Academic and Industrial
Conference Practice and Research Techniques (TAIC PART
’07). Windsor, UK: IEEE Computer Society, 10-14 Septem-
ber 2007, pp. 193-202.

[6]. L. Madeyski, N. Radyk, “Judy - a mutation testing tool for
java “ IET Software, Volume 4, Issue 1, Feb. 2010.

[7]. Mutpy, https://bitbucket.org/khalas/mutpy
[8]. PIT, “http://pitest.org/”
[9]. Cosmic Ray, “https://github.com/sixty-north/cosmic-ray”.
[10].Upsorn Praphamontripong, Jeff Offutt, Lin Deng, “An Expe-

rimental Evaluation of Web Mutation Operators”, IEEE Ninth
International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), April 2016.

CVR College of Engineering

