
ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 8, June 2015

50 CVR College of Engineering

C Bounded Model Checker to Detect Unspecified
Expression in FreeRTOS

P.Venkata Gopi kumar
Department of EIE, VNR VJIET, Hyderabad, India

Email: gopikumar_pv@yahoo.com

Abstract—The Embedded systems are widely used in most
electrical devices. They are often complex and safety –critical.
Therefore their reliability is significantly important. Among
many techniques to verify a system, model checking models a
system into temporal logic and can be used to assert a desired
property on it. CBMC is a bounded model checker for ANSI-
C and C++ programs. In this paper , it is extended the CBMC
tool to check and automatically detect a C/C++ code
containing a form of un specified behaviors, like function
calla with arguments that exhibits side effects which might be
easily un noticed by the programmers. In addition, the code
can be configured properly to be used for Arm Cortex micro
softwares..

Index Terms—Embedded system, CBMC, RTOS, BMC.

I. INTRODUCTION

The majority of computer devices are embedded
systems. These days cell phones, cameras, home
appliances, robots, industrial machines, traffic lights,
trains, airplanes, and many other devices mainly contain an
integration of computer systems. Embedded systems are
often complex and safety-critical. As both their hardware
and software complexity are significantly increasing,
reliability moves into the center of attention and needs to
be tested properly.

Testing could be done in different stages, while
producing software and it is sometimes as complex and
time consuming as developing the software. Therefore, it is
more beneficial to find bugs at an early stage in software
development and provide valuable feedback for
developers, in order to find and fix such problems prior to
building up the next modules or even next release.
Sometimes bugs are due to a bad usage of a documented
library or API, because of not reading the whole manuals
or misunderstanding them. Another case could be not only
a programmer's mistakes but also by reason of using
complicated programming languages, like C/C++. In fact,
while C/C++ are the most widely used languages for
developing such systems, they are counted as highly prone
to errors. These errors might lead to very serious
consequences, including unpredictable and inconsistent
program behaviors, run-time errors and even system
crashes. Consequently effective detection of such errors is
necessary.

Many embedded system applications use a special
operating system called Real Time Operating System
(RTOS). FreeRTOS is an open source RTOS that is used
for embedded platforms such as ARM, Cortex-M3, AVR
and STM32. It is written mostly in C and offers a small
and simple real time operating system. It provides one

solution for many different architectures and development
tools and it is known to be reliable. In this paper, we use
FreeRTOS as a processor of targeting program which
might contain unspecified behavior.

For this purpose, we prepared a minimalist or simplified
model of the FreeRTOS API in form of a C library. For
achieving error detection goal, there are variable
verification techniques. Using formal methods are well-
known, which mathematically specify and verify these
systems. They give us a proper understanding of a system
and reveal inconsistencies, ambiguities, and
incompleteness that might otherwise go undetected [1].

One of the most widely used formal methods is model
checking, a technique that relies on building a finite model
of a system and checking if a desired property holds in that
model. Bounded Model Checking (BMC) techniques are
able to efficiently and statically detect the
possibility of run time exceptions in low-level imperative
code, i.e., due to erroneous use of pointers, arithmetic
overflows, or incorrect use of APIs. One of the most
successful tools for automatic verification that implements
the bounded model checking (BMC) technique, is the C
Bounded Model Checker (CBMC) used for ANSI-C/C++
programs. There is a class of defects that is detected by this
CBMC, while many other verification tools have not
unnoticed yet. For instance, among many features, we
emphasize more on its ability to check array bounds even
with dynamic size, pointer safety during conversion of
pointers from and to integers and user-specified assertions;
moreover it models integer arithmetic accurately, and is
able to reason about machine-level artifacts such as integer
overflow. In CBMC, any sort of checking appears as a
specification that comes to a boolean formula, which is
then checked for satisfy ability by using an efficient SAT
procedure. As a result, either a counterexample is extracted
from the output of the SAT procedure, in the case that the
formula is satisfiable, or if the formula is not satisfiable,
the program can be unwound more to determine if a longer
counterexample exists [2].

We extended the CBMC tool to check and automatically
detect C/C++ code containing one form of unspecified
behavior in the C/C++ standard which might go easily
unnoticed by the programmers. According to the C/C++
standard, the order in which the arguments to a function
are evaluated is unspecified and it depends on many factors
like the argument type, the architecture, the platform and
the compiler. The standard dictates that a C/C++
implementation may choose the order in which the
function arguments are evaluated. It is the programmer's
task to take care of them and make sure that the program

DOI:10.32377/cvrjst0810

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 8, June 2015

 CVR College of Engineering 51

does not depend on the order of evaluation. However, there
is a warning flag in C/C++ compiler like GNU, -
Wsequence-point, which warns about code that may have
unspecified semantics because of violations of sequence
point rules in the C and C++ standards. However, the
current approach is suboptimal and many complicated
cases are not diagnosed by this option. For instance,
through this flag, the side effect among the array indexes
are not evaluated precisely. If two indexes are expressions
that might get same value at some point in the code, the
flag is not able to detect this case.

Eventually, it is provide capability for proposed CBMC
extension to be run on applications written in FreeRTOS,
added an option to the CBMC front-end to verify if a given
C/C++ code contains no such kind of side effects in
arguments of each function and warn the programmer if
there is any evaluation order dependency in the code..

This paper presents a study to develop a method and an
automated tool for automatic detection of software defects.
The target programs are written using the FreeRTOS real-
time operating system, compiled by the ARM Micro-
controller Development Kit (MDK-ARM) and executed on
ARM Cortex micro-controllers. The starting point of this
work was the existing bounded model checker CBMC. We
extended CBMC to be able to model check C code for
ARM Cortex micro-controllers and automatically detects
software defects in FreeRTOS softwares such as general C
faults like function calls with arguments that exhibit side
effects. It covers any kind of expressions containing
variables, structures, classes, arrays and arithmetic
operators over them. Moreover, we consider sequence
points which force the compiler to evaluate the expressions
in predefined order such as || , &&, ?: and comma. For
evaluating the result, we compared our modified CBMC
with the original CBMC and Coverity verification tool[15],
[16] and GNU Compiler Collection (GCC) using -
Wsequence-point flag. The result shows that the extended
CBMC has the ability to check more unspecified behavior
than the other three tools. Next, author prepared a
minimalist model of the FreeRTOS API in the form of a C
library, in order to support detection of defects that might
happen in FreeRTOS software specific to the MDK-ARM
compiler and explained why it is essential.

II. EXISTING MODEL CHECKERS

In this section chapter, we briefly introduce important
concepts and tools that are used in this work. Verification
is a procedure of evaluating if a system meets a
specification or imposed requirements. To verify a system,
among many formal methods, model-checking and
theorem proving are well-known. They are mainly used to
analyze the system based on its specification for certain
properties.

Model checking requires building a finite model of a
system, It checks whether a desired property holds in that
model. There are several ways to model check C code such
as Bounded Model Checking (BMC), model checking with
predicate abstraction using a theorem prover, model
checking with predicate abstraction using a SAT solver
and translation of the C code into a model of an existing

standard model checker [3]. The common property in all
these techniques is an abstracted program with a finite state
space that is gained from transformation of the system.
Finiteness is required because the model checking
algorithm should go through all states.

Bounded Model Checking, as the name suggests, does
this transformation by unwinding possibly infinite
constructs a finite number of times, for example, it
executes while loops n times, where n is a limiting upper
bound. A tool that implements bounded C model checking
is CBMC. It is able to find a suitable n in most cases.
However, if it does not succeed, there is a possibility for
users to provide their own upper bound to be used by
CBMC. In such a case, CBMC cannot guarantee that the
user-provided upper bound is long enough to not miss any
errors and that no longer counter-example is available.
This is the case, where CMBC can only find errors and not
prove correctness [3]. The advantage of model checking
over theorem proving is that model checking can be used
to check if a system is completely specified or to verify
modules or partial specifications. It is completely
automatic and fast and contributes useful information of
system's correctness. The model checker will either
terminate with answer true indicating that the model
satisfies the specification or give a counterexample
execution that shows why the specification is not satisfied,
which can be useful while debugging is shown in
Figure 1 [4].

Figure 1: The model-checking approach

In theorem proving, a system and all desired properties
are revealed mathematically in formulas. This is given by a
formal system, which defines a set of axioms and a set of
inference rules. Then all properties that should be held by
the system are being proved from the axioms of the system
by applying the inference rules. It is essentially, a process
of proving a property from the axioms of the system. In
contrast to model checking, theorem proving concerns
infinite state spaces and proves these domains by structural
induction techniques. Theorem proving mainly requires
interaction with a human and humans might yield
invaluable vision into the system and properties for being
proved and it makes the process slow and sometimes error
prone [1].

III. C BOUNDED MODEL CHECKER (CBMC)

CBMC is an open source model checker that uses
bounded model checking technique to verify C or C++
programs. C/C++ files names are given to it as command

DOI:10.32377/cvrjst0810

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 8, June 2015

52 CVR College of Engineering

line arguments. Similar to other compilers, it integrates all
definitions and functions from each file but instead of
making the binary code, it produces a goto-program of the
program. The goto-programs are simplified C/C++
programs, which contain program's information such as
variable's data type, any type casting and library functions,
in a structured way and are represented in the form of
Control Flow Graphs (CFG). In goto-programs, each
variable is assigned once and it is done by renaming in
each case, this transformation is called Static Single
Assignment (SSA).

In next step, a CNF is generated from this intermediate
symbolic code and is passed to a SAT solver. SAT solver
checks this equation's validness and it gives a counter-
example trace when it fails. This shows that a bug is found
in the program [2]. Considering the real time behavior of
embedded systems, loop constructs are limited in number
of iteration. CBMC verifies such finite upper run time
bounds by unwinding all loops and checks if enough
number of iterations are set in order to prove the absence
of errors[2]. CBMC also provides set of keywords, which
can be used to aide CBMC with more information about
the program. These keywords can be used for program
instrumentation. The program instrumentation is a
procedure to verify some properties of the code.
CPROVER_assert(expr) and CPROVER_assume(expr)
macros are examples of these keywords. The former can be
used to check any condition (expr) with the same logic for
assertions in the usual ANSI-C expression logic. When
CBMC encounters this keyword, it tries to generate a
formula to check assertion failure. The generated formula
is verified using SATsolvers. If the formula is satisfiable
then assertion fails and CBMC generates error and
produces counter-example showing possible trace of error.
The latter macro, CPROVER_assume(expr), is used to
restrict non-deterministic choices made by the program and
it reduces the number of program traces that are considered
and allows assume-guarantee reasoning [5].

CBMC also supports pointers, arrays, structures,
floating point operations and function pointers. There are
other tools like BLAST [6] and Extended Static Checker
for Java (ESC/Java)[7]. BLAST is a software model
checker for C programs. Like CBMC, it checks that
software satisfies behavioral properties of its interfaces and
it uses counterexample-driven automatic abstraction
refinement to construct an abstract model, which is model
checked for safety properties. However, the advantage of
CBMC over BLAST is that CBMC can also be used to
verify consistency of hardware designs with a functional
specification (written as C program). It can verify modules,
and not only whole programs and it treats recursive
functions and has GUI. ESC/Java tool also attempts to find
common run-time errors at compile time but in Java
programs. It is based on simplify theorem prover using
SAT checking and translates code to SSA, and then into
verification conditions. ESC/Java supports assume-
guarantee reasoning that are on methods and method calls,
whereas in CBMC assume-guarantee statements can
appear in any place in the program.

IV. FREE RTOS OPERATING SYSTEM

Real time systems often run on special operating
systems. A Real Time Operating System (RTOS) provides
facilities to programmers such as process execution,
predictability, data structures, and mechanisms for inter-
process communication. FreeRTOS is used to develop real
time systems for embedded devices. FreeRTOS is designed
to be small and simple. The kernel itself consists of few C
files. To make the code readable, easy to port, and
maintainable. It is written mostly in C, but there are a few
assembly functions included where needed (mostly in
architecture specific scheduler routines). FreeRTOS
provides methods for multiple threads or tasks, mutexes,
semaphores and software timers [8]. The fast execution,
low overhead, configurable scheduler, co-routine supports,
trace support
and very small memory footprint are key features of
FreeRTOS.

In C and C++ standards, the order of evaluating
expressions is expressed by concept of sequence points. A
sequence point shows which part of the expression is
executed before and which one after it. Therefore, a partial
ordering occurs between executions of different sides. For
instance, sequence points could be after the first operand of
operators &&, || and ?:, in a function call after evaluation
of its arguments but before executing the
function body and in many other specific cases.

V. UNSPECIFIED SIDE EFFECTS

In this section, it is describe how evaluation of function
arguments could be seen as one of the common defects in
C/C++. Both expressions give evaluation and defects in
formal semantic. In the last part of this chapter, it is
explained our algorithm used and show how these side
effects in function arguments are detected. As it mentioned
earlier, bugs could occur due to bad usage of the
documented rules of programming languages. This is quite
common in C/C++ programs. Sometimes programmers
forget to check if their codes are specified by the standard.
More specially if the code has portable behavior and they
can count on it. Our focus is on how this could be issued in
evaluation of function arguments.

A. Undefined Behavior

Behavior, due to use of a non-portable, erroneous data
or program construct, where the standard imposes no
requirements for them. An example of undefined behavior
is the behavior on integer overflow. Behavior, where each
implementation documents how the choice is made and the
language provides a documentation describing its
characteristics and behavior. An example of
implementation-defined behavior is size of integer where
the implementation must have only one definition for
every place in the program.

B. Unspecified Behavior

Behavior, where a set of allowable possibilities is
defined but it is not deterministic. The standard enforces
no further requirements and the implementation is not
required to document which option is chosen in any

DOI:10.32377/cvrjst0810

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 8, June 2015

 CVR College of Engineering 53

occurrence. For example, the compiler can choose different
possibilities in different places, where the cases could even
happen in the same program. Moreover, from the C
standard specification, we mark the following cases that
are not specified in the language [11]: Use of an
unspecified value, or other behavior where the
International Standard provides two or more possibilities
and imposes no further requirements on what is chosen in
any instance. An example of unspecified behavior is the
order in which the arguments to a function are evaluated
(§3.4.4) The order in which sub-expressions are evaluated
and the order in which side effects take place, except as
specified for the function-call (), &&, ||, ?:, and comma
operators (§6.5).

The order in which the function designator, arguments,
and sub-expressions within the arguments are evaluated in
a function call (§6.5.2.2) According to the C++ standard
[9], the order in which the arguments to a function are
evaluated is given as an example of unspecified behavior.
In fact, it depends on many factors like the argument type,
the called function's calling convention, the architecture
and the compiler. On an x86, the Pascal evaluates
arguments left to right, whereas in the C/C++ calling
convention it is right to left. Therefore, programs, which
run on multiple platforms should take the calling
conventions into account to skip any surprises, side effects
or crashes. The standard dictates that a C/C++
implementation may choose in which order, function
arguments are evaluated. To be in the safe side, the
program itself should not depend on the order of evaluation
of side effects and shall not use parameters of a function in
default argument expressions, even if they are not
evaluated. By the following examples, we intend to clarify
this common unspecified case according to
the standard. Consider the function test:

void test(int arg1, int arg2, …);
Assume that somewhere in the program there is a call like:

int i = 0;
test(i++, i, ...);

How or in which particular order, different environments
evaluate the arguments, is so important that even this
simple function call can behave differently from one to
other. For instance, test(1, 1, …), test (1, 0, …) or even test
(0, 0, …) yeild possible results.
The second case is when arrays are involved; the index
expressions come to center of attention.

int a[2] = {0, 1};
int i = 0;
test(a[i] ++, a[i], …);

But more interesting example is when we have different
indexes of an array:

int a[2] = {0, 1};
int i = 0;
int j = 0;
test(a[i] ++, a[j], …);

In this case, from the syntax point of view, a[i] is not a[j].
However, they might point to the same location of memory
when i and j hold same value. In addition, next example
shows that the sequence point rule could effect these
unspecified cases:

int i = 0;
test(..., i++ || i , ...);

The || operator is a sequence point and forces the
compiler to evaluate its left and right operands in a
specified order; then there is no unspecified behavior in
this example. Therefore, it may be necessary to warn the
user, if evaluation of arguments of any particular function
lead to unspecified behavior due to expressions with
possible side effects. However, the original CBMC allows
all side effect operators with their respective semantic.
Moreover, regarding the ordering of evaluation, CBMC
uses a fixed ordering of evaluation for all operators. It
believes, while such architecture dependent behavior is
still valid in ANSI-C programs, showing these cases are
not desirable [5].Furthermore, we saw these side effect
warnings as a demand and added this option to CBMC
front-end, to verify that a given C/C++ code contains no
side effects in arguments of its functions. In the following
section, we present a formalization of argument expression
through precise description of the C/C++ language
interface.

In this section, a formal semantics of expression
evaluation is presented. The Structural Operational
Semantics (SOS) is used in this project, which is a set of
rules for giving a formal semantics of expression. It
basically defines the behavior of a program in terms of
behavior of its parts and provides a structural view on
operational semantics; in my opinion this structure is easy
to follow. An SOS rule is in the form of:

assumption , requirement
conclusion (name)

where the assumption is a pre-condition of an expression
before its evaluation and requirement shows under which
domain this assumption is hold.

Although this simplified grammar of expressions is not
fully matched to C/C++ languages, it covers most main
types of operators with clear syntax similarity to C/C++.
For the sake of simplicity, the similar operators are skipped
in this grammar but it is easily extendable without extra
complexity.

int_expr ::= var_access |
int_expr bin_opr int_expr |
int_expr seqpoint_opr int_expr|
var_access ::= int_var |
int_var++ |
array_access |
array_access++
int_var ::= x
array_access ::= a[int_expr]
bin_opr ::= + | - | * | / | = = | <
seqpoint_opr ::= || | &&

C) Algorithm of Evaluation Order Side Effect

There are several constraints on how to evaluate
expressions in C/C++ language standard. As mentioned
before, the most significant one is that “between the
previous and next sequence point an object shall have its
stored value modified at most once by the evaluation of an
expression. Furthermore, the prior value shall be accessed
only to determine the value to be stored” [ISO90, x6.3].
Violation of this constraint might result in unspecified

DOI:10.32377/cvrjst0810

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 8, June 2015

54 CVR College of Engineering

behaviors. In this part, we present our algorithm for
checking it and we explain how we determine the existence
of the side effect in evaluation order of the arguments to
any function.

The action of side effects happen by changing the
memory. Therefore, it is important that while evaluating
certain expression, any pairs of read and write over certain
memory location are seen as a potential side effect.
Principally, operators like assignments, increment
or decrement are counted as write operators. For instance,
in the following function’s arguments, there are a few read
and write pairs. Your goal is to simulate the usual
appearance of papers in a Journal Publication of the CVR
College. We are requesting that you follow these
guidelines as closely as possible.

VI. IMPLEMENTATION

This section shows briefly the modifications made to
CBMC tool to be able to find possible unspecified
behaviors in a given source program.

A. CBMC

The argument side effect checking, described in chapter
4, is implemented using C++ programming language. The
source code is checked out from subversion (SVN)
repository http://www.cprover.org/svn/cbmc/

We used the trunk version for windows in this thesis. In
order to reduce the amount of work required to set up a
Visual Studio project for CBMC and the associated tools, a
script is used which automates this process. The script is
available in the CBMC SVN trunk in the directory
"scripts" and is called "generate_vcxproj". It could be
configured by following command in a bash shell, e.g.,
provided by cygwin. ./generate_vcxprojThe command
reads the Makefiles and automatically generates project
files for cbmc, gotocc and goto-instrument, and we can
access them through Visual Studio. The project files come
with filter definitions that order the source files according
to the (top-level) sub directories they are in.

Note that the flex and bison tools and the irep_id
conversion tool still need to be run manually as mentioned
in the compiling hint document.

This project file is helpful for debugging and building
with MSBuild. For windows platform, CBMC still requires
the pre-processor cl.exe, which is part of Visual Studio and
the path to cl.exe must be part of the PATH environment
variable of your system. The trunk is structured in a similar
fashion to a compiler. It contains language specific
frontends with limited syntactic analysis, intermediate
format and a back-end tool for processing this format. Like
a compiler, it takes the names of .c/.cpp files as command
line arguments, then it translates the program and merges
the function definitions from the various .c/.cpp files, just
like a linker. But instead of producing a binary for
execution, it performs symbolicsimulation of the
program[13]. Here, we outline the trunk project but only
the important directories with files that get modified, for
the sake of clarity.
/trunk

/src
All source codes are located in this directory and they are
separated into different sub directories, such as, /analyses,
/cbmc, /goto-programs, etc.
/goto-programs
Contains the transformation program of the source code to
an intermediate representation of C/C++ which is language
independent. All converting methods are located here, and
our new support is mostly added as a goto-program.
/cbmc
The first full application is this directory. Here, the front
ends (ansi-c, cpp, gotoprogram or others) are used to create
a goto-program, goto-symex to unwind the loops the given
number of times and produce and equation system It then
uses solvers to find a counter-example.
/goto-cc
It is a compiler replacement that just converts C/C++
programs to goto-binaries. It is supposed to be dropped
into an existing build procedure in place of the compiler
Thus, it emulates flags that would affect the semantics of
the code produced. Which set of flags are emulated
depends on the naming of the gotocc/ binary. If it is called
goto-cc then it emulates GCC flags, goto-arm cc emulates
the ARM compiler, goto-cl emulates VCC and goto-cw
emulates the Code Warrior compiler. The output of this
tool can then be used with cbmc[13].
/goto-instrument
The goto-instrument is the top level control for the
program. It could be used as a skeleton of new project.
This directory contains a number of tools that are used in a
goto-program. One can either modify it or perform some
analysis. Here the command line is parsed to see which
option is desired by user. It supports the following checks:
--no-assertions ignores user assertions
--bounds-check adds array bounds checks
--div-by-zero-check adds division by zero checks
--pointer-check adds pointer checks
--arguments-check* adds argument order checks
* not available in original CBMC
/analyses
It makes a list of all checks that should be analyzed (e.g.
options taken as arguments by command line parsing).
/doc
The html and pdf versions of the source code
documentation explaining the above directories more
detailed [13]. We also need a SAT solver (in source).
MiniSat2 is recommended by CBMC and it could be
downloaded from: http://minisat.se/downloads/minisat-
2.2.0.tar.gz

B. CBMC Extension

To design the argument-checker that was discussed in
Chapter 4, we add a module to goto_programs directory.
Knowing some of the basic concepts might be useful here,
such as, each function is a list of instructions, each of
which has a type (one of 18 kinds of instructions), a code
expression, a guard expression and potentially some targets
for the next instruction. Our module checks each
expression while it is being converted to an intermediate
format referred to as goto-binaries or goto-programs. In

DOI:10.32377/cvrjst0810

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 8, June 2015

 CVR College of Engineering 55

conversion level,CBMC has a technique to adjust the code
to standard definition in some special cases and prevent
some side effects by cleaning expressions like && || ?:
comma (control dependency), ++ --, compound
assignments, object constructors like arrays, string
constants, structures and function calls. It actually rewrites
the expression in a way that the standard specified.
However, as we like to check expressions with more
sensitivity, we need to do it before any cleaning to ensure
nothing is missed or basically converted. In this regard, we
make a list of identifiers of arguments list for each
function. Each identifier represents a variable used in
arguments in a function.

VII. EVALUATION AND CASE STUDY

This section summarizes the result of model-checking
performed some codes containing undefined behavior in
their argument list of functions. Experimented with the
same code with desired dependency among a function's
arguments through Coverity 7.0, GCC 4.8.2 and our
modified CBMC.

The case code contains two types of dependency among
arguments For clarity, injected them in separate functions.

 int a = 0;
 int c = a;
 size_t order[3] = {1, 2, 3};
 get_order(order[a], order[c]++);
 get_order(order[a], order[a++]);

After testing the code by the mentioned tools, it is
observed that all three tools are able to detect some sort but
not all kinds of evaluation order dependencies in both
functions arguments. In this test code, line 17 is reported in
all three compiling ways as evaluation order violation due
to a pair of read and write operations over variable a.
Similarly, experienced more dependencies in variables of
expressions with no array memories and all these tools
found them successfully. However, in different type of
dependencies the result was not the same; For example, in
this code, in line 16, when indexes a and c of array order is
read and written respectively, Coverity and GCC are not
able to check whether these indexes hold same value and if
the same location of memory is going to be processed or
not.

In contrast, the modified CBMC is able to detect it.
Figure 3 shows that modified CBMC found this possible
violation. Moreover, CBMC creates a counter example
trace which is a program trace that ends in a state which
violates the property (a==c). andFigure shows the GCC
4.8.2.

Figure 2: GCC 4.8.2

Figure 3: Modified CBMC

VIII. CONCLUSIONS

In this work, author extended the CBMC to verify real-
time programs run on FreeRTOS operating system and
MDK-ARM firmware and specially found some possible
unspecified behaviors. The targeting program might
contain unspecified behaviors, such as, when evaluation
order of arguments to a function are not defined by the
standard as it depends on many factors like the argument
type, the called function's calling convention, the
architecture and the compiler. This dependency among
expressions could lead to non deterministic behavior of a
system and causes serious issues. For this purpose, a
method is prepared to detect such an unspecified behavior
by extending available tool named CBMC and we
equipped a FreeRTOS API to be able to utilize this
modification. The CBMC tool was easy to extend and
working with it was simple and instructive as it is an open
source tool and supported by valuable tutorial and full
documentation. Its good reputation and being a notable
tool for testing C/C++ programs motivated us to add more
supports into it.

In conclusion, it is observed that, the proposed tool
worked well at detecting a wide range of different
dependencies in expressions of a function's arguments,
including direct access to memory locations or through
array indexes. As future work, it could support expressions
containing such dependencies, when the pointers of same
memory location are involved. It is very similar to cases
with arrays that are already included. Further, the current
code checks these unspecified behaviors specifically
among arguments of any function in a program. The same
method can be extendable to check them in any
expressions in the whole program.

REFERENCES

[1] E. Clarke and J.M. Wing. Formal methods: State of the art
and future directions. ACM Computing Surveys (CSUR),
28(4):626-643, 1996.

[2] D. Kroening. The cbmc homepage.

http://www.cprover.org/cprovermanual/ Introduction.shtml,
April 2013.

[3] B. Schlich and S. Kowalewski. Model checking C source

code for embedded systems. International Journal on

DOI:10.32377/cvrjst0810

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 8, June 2015

56 CVR College of Engineering

Software Tools for Technology Transfer. Volume 11, pp
187-202, July 2009.

[4] E. Clarke. Model checking. In Foundations of Software

Technology and Theoretical Computer Science, pages 54-
56. Springer, 1997.

[5] E. Clarke and D. Kroening. Ansi-C bounded model checker

user manual. Technical report, Technical report, School of
Computer Science, Carnegie Mellon University, 2006.

[6] B. Dirk, H. Thomas A., J. Ranjit and M. Rupak. The

Software Model Checker Blast. International Journal on
Software Tools for Technology Transfer 9 (5-6): 505–525,
2007.

[7] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J. B.

Saxe and R. Stata. Extended static checking for Java. In
Proceedings of the Conference on Programming Language
Design and Implementation, pages 234--245, 2002.

[8] R. Barry. FreeRTOS Reference Manual - API Functions and

Configuration Options, Real Time Engineers Limited, 2009.

[9] P. Becker, Working Draft, Standard for Programming

Language C++, http://www.openstd.
org/jtc1/sc22/wg21/docs/papers/2005/n1905.pdf , 2013.

[10] Warningoptions, http://gcc.gnu.org/onlinedocs/gcc/Warning-

Options.html, 2013.

[11] Bruno R. Preiss (1998). Expression Trees. Retrieved

December 20, 2010.

[12] R. Barry. Using the FreeRTOS Real Time Kernel - a

Practical Guide, generic CORTEX
M3 edition. 37

[13] M. Brain, M. Tautschnig. Beginner's Guide to CPROVER.
March 2014.

[14] Vijay D’Silva, Daniel Kroening, Georg Weissenbacher. A

Survey of Automated Techniques for Formal Software
Verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 27,
no. 7, pp. 1165–1178, July 2008.

[15] The Coverity® 6.6 Deployment Guide, 2003-2013 Coverity,
Inc.

[16] Coverity 7.0 Checker Reference, 2004-2014 Coverity,

Inc.38

DOI:10.32377/cvrjst0810

