
ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 8, June 2015

 CVR College of Engineering 45

Implementation Of Open Source IP based
Embedded System

 Y.Divya reddy
Department of EIE, CVR College of Engineering, Hyderabad, India

Email: divya.reddy037@gmail.com

Abstract—Embedded system plays an important role in
various industry applications. An embedded system is
consisting of software and hardware. The hardware platform
of conventional embedded system is typically based on IC
chips that have fixed resources. Besides, with the development
of FPGA, an emerging approach for designing embedded
system is implementing soft IP cores on FPGAs. Soft IP cores
are synthesizable hardware blocks described in HDL
language. Their source code can be either open or close to
public. For example, Open RISC 1200, is an open source 32-
bit RISC microprocessor. In addition, the increasing
complexity of embedded system forces software developers to
consider operating system support to reduce their workload.
Thus, in this paper, a prototype of open source IP based
embedded system with Linux is implemented on Atlys (Xilinx
Spartan-6) FPGA board and the goal is to evaluate if the
system is appropriate for industrial applications. The
hardware platform is ORPSOC, which is a reference SoC
design based on Open RISC 1200 processor. For software,
Linux operating system is installed. Furthermore, an
application executes on Linux is developed that reads the
output of an I2C compass sensor-LSM303DLM. With the
success of the application and the investigation of license
issues, the conclusion is drawn that open source IP based
embedded system with Linux is usable for industry. Although
comparing to conventional embedded system, the open source
IP based embedded system with Linux has following cons,
such as high product cost, basic-supported development
environment and more difficult software development if
Linux driver doesn’t support the hardware. However, its pros
are high flexibility and scalability, high software portability,
low software development difficulty and high reusability that
make it more suitable for industry usage.

Index Terms - embedded system, open source hardware,
Open RISC 1200, Linux

I. INTRODUCTION

The embedded system plays a more and more important
role in the world. It can be found in many applications for
industrial use, such as process control and monitoring
systems. The task for an embedded system is typically to
control the machine to function correctly. It can be said
that the industrial productivity is improved with
introducing embedded system. Differs from general
purpose computer, an embedded system is designed for a
dedicated task, which requires both hardware and software
operate appropriately. Normally, the embedded system
designed in conventional way is consisting of 3 layers as
shown in Figure 1. The hardware platform is a PCB board
containing a microcontroller and other peripheral ICs such
as on-board memory, Ethernet module and etc. The

software is the application code of the desired task
including hardware drivers.

Figure 1: Architecture of conventional embedded system

With the rapid development of semiconductor
technology, the capability of embedded system is
increasing over time to allow more complex task to be
performed. Thus, the embedded operating system support
becomes necessary. Figure 2 illustrates the architecture of
a conventional embedded system with Linux. The benefits
of introducing Linux are providing various hardware
drivers, communication protocols and management of
system resources that reduce the workload of software
developer significantly.

Figure 2: Architecture of conventional embedded system with Linux.

In addition, FPGA (Field Programmable Gate Array) is
an alternative for embedded design. It is well known as its
hardware re-programmable feature. With this advantage,
an emerging technology for achieving embedded system’s
hardware platform is using soft IP cores. The term IP refers
to intellectual property. Soft IP cores are the synthesizable
hardware blocks for FPGAs and described in RTL level. A
soft IP can be either a processor or other hardware modules
such as UART, ETHERNET and I2C controller. Designing
embedded system with soft IP cores is flexible and

DOI:10.32377/cvrjst0809

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 8, June 2015

46 CVR College of Engineering

configurable. At present, there are two leading-edge
commercial soft processors, Microblaze and Nios II,
supported by Xilinx and ALTERA. Besides, there are other
open source processors, such as Open RISC and LEON3.
Open IP cores inherit the advantages of soft IPs and are
open source to public, which means they are free, and
FPGA independent. Therefore, it is meaningful to
implement an open source IP based embedded system with
Linux to evaluate if it is compatible for industrial
applications. In this paper, the hardware platform is
ORPSOC (Open RISC Reference Platform System-On-
Chip), which is a reference, embedded system design
based on Open RISC soft processor. Then the Linux
operating system is installed and an application running on
Linux that reads the acceleration raw data from an I2C
compass sensor, LSM303DLM.

II. OPEN SOURCE HARDWARE

The commercial soft IP cores such as Microblaze and
Nios II are leading a revolution of embedded system
design; they are high performance, well supported and
flexible. However, they are not open source and FPGA
dependent that means the designers only has the right to
use them in their embedded design and the implementation
of soft IP cores is only possible on specific vendor’s
FPGAs. In software world, open source software is
becoming popular. The “open source” means “freedom”
that everyone has the right to modify it and derived works
are allowed under the condition that the developers should
pass on the freedom to others. This causes a great success
of open source software such as Linux operating system. In
hardware world, modern silicon chip is typically built from
silicon “intellectual property” (IP), written in a hardware
description language. Fabless design houses may never
produce a chip themselves—one of the largest and best
known is ARM in Cambridge, whose processor IP is built
by other companies into one billion chips ever month. That
IP costs the same amount to produce, whether it goes into
one chip or one billion.

A. Open RISC processor and ORPSOC
Open RISC CPU architecture, one of the flagship

projects of opnecores.org is a well-known open source
processor. Open RISC 1200 processor is an
implementation of Open RISC 1000 processor family.
Figure 3 shows the architecture of Open RISC 1200 CPU.

The Open RISC 1200 CPU is a 32-bit scalar RISC with
Harvard micro architecture, 5 stage integer pipeline, virtual
memory support (MMU) and basic DSP capabilities. The
MMU enables the capability of running an operating
system. Supplemental facilities include debug unit for real-
time debugging, high-resolution tick timer, programmable
interrupt controller and power management support[2].
This processor can be synthesized and downloaded onto
Altera and Xilinx FPGAs and supports embedded real time
operating systems such as Linux, µLinux and OAR
RTEMS real time operating system. For software
development, tools are available that allow developers to
compile programs written in C/C++, Java and Fortran to
run on the Open RISC processor [1].

Figure 3: Open RISC 1200 CPU architecture

ORPSOC (Open RISC Reference Platform System-on-
Chip) is a reference system-on-chip design that is primarily
for Open RISC based embedded system testing and
development. And it is also the hardware platform of this
thesis that contains an Open RISC 1200 processor and
several peripherals. The interconnections between CPU
and peripherals are using Wishbone interface, which have
been configured already. In ORPSOC’s source code, there
are make file scripts to generate FPGA configuration bit
stream for particular FPGA boards, such as selected Atlys
FPGA board in this paper.

B. Linux user space and kernel space

Linux is a successful open source operating system that
is widely used in embedded systems as a platform for
executing applications. It manages the resources of an
embedded system that the software developer can focus on
application code on a high-level abstraction view without
being involved in hardware driver development if the
embedded system performs a complex task. In Linux,
memory is divided into two spaces, one is user space, and
the other one is kernel space. Figure 4 shows the
relationship between user space and kernel space.

The top is user space where applications execute, while
the kernel space is an exclusive space only for kernel
running. The kernel has the highest authority to access all
resources in an embedded system, such as memory and
devices. And it should be as stable as possible to prevent
any undesired errors happening and coordinates processes.
By contrast, user space has less authority that it can’t
access the data in kernel space directly. The data transition
between user space and kernel space is via system call
interface.

Figure 4: user space and kernel space

DOI:10.32377/cvrjst0809

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 8, June 2015

 CVR College of Engineering 47

Once a user application invokes a system call to access a
particular hardware, the kernel handles it with
corresponding device driver. A C library is responsible for
implementing system calls. Usually it is GNU C Library
(glibc). However, GNU C Library is not compatible for
embedded Linux due to it is a large library. To quote from
Ulrich Drepper, the maintainer of GNU libc: "...glibc is not
the right thing for [an embedded OS]. It is designed as a
native library (as opposed to embedded). Many functions
(e.g., printf) contain functionality which is not wanted in
embedded systems." 24 May 1999[3]. Thus, another C
library, µClibc is introduced as shown in Figure 4. µ means
micro while C stands for controller. And µClibc is the
short of “the microcontroller C library”. As the name it
indicates, the µClibc is intended to support embedded
systems that provide as much functionality as possible in a
small amount of space.

III. SYSTEM IMPLEMENTATION

In this paper, the usability, license issues, pros and cons
of open source IP based embedded system with Linux are
investigated via a case study. The case is to develop an
application runs on Linux that reads acceleration raw data
from an I2C compass sensor-LSM303DLM. The hardware
platform of this case is ORPSOC with I2C controller
enabled.

The work flow for implementing this case is shown as
following:
1. Set up the development environment includes Xilinx

ISE for hardware synthesis and GNU tool-chain for
software compilation.

2. Generate FPGA configuration bit stream of ORPSOC
with I2C controller enabled.

3. Install u-boot.
4. Setup TFTP server and NFS server.
5. Build Linux image and install it through TFTP

protocol.
6. Load the application software via NFS protocol to

Linux to test the usability of whole system.

If the application is working, then the usability is
proved. License issue is surveyed with interpreting license
of each component involved in this thesis. And then check
out if the usage of each component offends the rules. Pros
and cons are obtained by comparing with the previous
knowledge of conventional embedded system.

A. Prototype of open source IP based embedded system
with Linux

1) The whole system is implemented on Atlys FPGA
board including a Xilinx Spartan-6 FPGA chip[7].

2) The USB to JTAG interface is used to program SPI
FLASH. The SPI FLASH image contains ORPSOC
bit stream for configuring FPGA and binary image of
the program that will be executed. In this thesis, the
program is u-boot, which is a bootloader for further
Linux installation.

3) The interaction interface between user and the board
is via UART console.

4) Another host computer acts as TFTP and NFS server.
The TFTP server is for transferring Linux image to
Atlys board and NFS server is for loading
applications to Linux.

5) I2C slave device is a compass sensor, LSM303DLM.

B. Generate ORPSOC with I2C controller enabled

In the source code of ORPSOC, there is a specific folder
contains RTL source code and makefile scripts for Atlys
board. The I2C controller is a soft IP core that should be
added into ORPSOC by connecting it to Wishbone
interface. However, it has been connected already and
disabled as default in a top-define file “orpsoc-defines.v”,
which is for configuring functions of ORPSOC. Thus,
uncommenting the code “`define I2C0” will enable the I2C
controller in ORPSOC[8]. Then the next step is assigning
the signals of I2C controller to PMOD socket developed by
Digilent for peripheral connection[4]. The I2C interface
requires 4 wires to communicate properly; they are Vcc,
GND, clock line SCL and data line SDA. In ORPSOC, the
names of SCL and SDA signals are “i2c0_scl_io” and
“i2c0_sda_io” gained from top-design file “orpsoc_top.v”.
Figure 5 shows the PMOD interface on Atlys board and
signal assignment[4].

Figure 5: PMOD and I2C signal assignment.

SCL and SDA signals are assigned to Pin3 and Pin4 by
editing user constraint file (ucf). The carrier board of I2C
slave LSM303DLM has a level-shifter circuit that makes it
compatible for PMOD 3.3V system. At last, the hardware
platform ORPSOC is generated with the help of makefile
scripts[5]. A bit stream for configuring FPGA can be
achieved after the synthesis, mapping, place and route
steps are finished. Figure 6 shows the block diagram of
ORPSOC. The blue blocks are default settings, and the red
I2C controller is the one enabled in top-define file.

Figure 6: Block diagram of ORPSOC with I2C controller enabled

DOI:10.32377/cvrjst0809

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 8, June 2015

48 CVR College of Engineering

C. U-boot

Generally, GDB (GNU Project Debugger) is taking the
responsibility of loading and debugging the software.
However, the Xinlinx USB Platform Cable couldn’t be
detected by GDB. Thus, an alternative should be found to
load the software onto the platform. The approach is u-
boot. U-boot refers to universal bootloader, is a primary
and powerful bootloader used in embedded systems that
eases the procedure of loading Linux image or other
application images. The u-boot can only fix the problem of
loading software, whereas it can’t be a perfect replacement
of GDB because software can hardly debug with u-boot.
The installation of u-boot is to generate a SPI FLASH
image that contains the FPGA configuration bit stream and
the u-boot binary image.

In ORPSOC, there is a ROM module written in Verilog

language, which acts like a read-only memory. The ROM
includes a bootloader program to load the software that is
located in SPI flash. Therefore, the ROM and the
bootloader are combined to be a bootrom. After the Atlys
board is powered on, the FPGA will be configured and the
u-boot is copied from SPI flash to external DDR2 RAM to
start execution with the help of bootrom[6]. In addition, a
block of 4 bytes should be added to the head of u-boot
binary image that informs the bootloader in ROM how
many bytes should be copied to RAM. In order to load
Linux image through TFTP (Trivial File Transfer
Protocol), the network parameters of u-boot and host
computer should be set properly to build a LAN (Local
area network) as shown in Table 1. The Ethernet MAC
(Media Access Control) address can be random as long as
it is valid if the system is only for experimental use.
Moreover, the network speed of host computer should be
configured to 100Mbps or below it because 100Mbps is the
maximum connection speed supported by Ethernet MAC
IP core in ORPSOC[4].

Table 1: Network parameters of u-boot and host computer

 U-boot Host computer

Ethernet
MAC address

00:12:34:56:78:9a Assigned by
manufacture

Local IP
address

192.168.2.6 192.168.2.2

Network
mask

255.255.255.0 255.255.255.0

Gateway IP
address

192.168.2.1 192.168.2.1

Server IP
address

192.168.2.2 -

D. TFTP and NFS server

TFTP (Trivial File Transfer Protocol) is a simple file
transfer protocol without any authentication. Because of its
simplicity, it is implemented with less consumption of
memory. TFTP server helps transfer Linux images from
host computer to the RAM of Atlys board.

The setup procedure of TFTP server is shown below:

1. Install the required packages: tftp, xinetd, tftpd

2. Create a folder for storing images that will be transferred
to u-boot. And more important, the folder and the files in
it should be configured as everyone can access it.

3. Create a file named “tftp” under “/etc/xinetd.d” path,
which is the configuration file for tftp server. Start the
service. NFS is defined as Network File System. A NFS
server can be mounted on any device supports NFS
protocol. Using NFS server during testing avoids
copying applications to target board, thus the debugging
procedure becomes convenience.

The steps for configuring NFS server is shown below:
1. Install the necessary components: portmap, nfs-kernel-

server
2. Edit the file “/etc/exports” to add the entry will be

shared.
3. The same as TFTP server, the shared folder and the files

it contains should be configured accessible for everyone.
4. Start NFS server and portmap.

E. Building Linux kernel

Before building Linux kernel, a DTS (device tree) file
should be created at first. When Linux is booting up, it is
necessary for Linux to know what hardware resources the
board has. Thus, the device tree plays this role. Device tree
is a data structure that describes the hardware and it is
passed to Linux kernel by the bootloader. Then the Linux
kernel can configure the hardware and work appropriately.
The device tree for Atlys board is derived from the one for
OpenRISC simulator located in Linux kernel source code.
Firstly, the clock frequency and memory size should be
corrected to 50MHz and 128MB. And then the I2C
controller node can be added according to an example of
I2C controller description for device tree gainedfrom
Linux’s opencores I2C driver. Appendix C shows a
complete device tree for this case. For Linux kernel, the
I2C device interface support and I2C hardware driver for
opencores are attached via “menuconfig”, which is a tool
for selecting the features of Linux kernel. Then the binary
image of Linux kernel can be generated by the GNU tool-
chain for Linux development. More than that, the image
should be modified to a bootable image for u-boot with the
tool “mkimage” provided by u-boot. U-boot refers to
universal bootloader, is a primary and powerful bootloader
used in embedded systems that eases the procedure of
loading Linux image or other application images.

IV.RESULTS

A. Usability

The application reads sensor output successfully that
proves the Open source IP based embedded system with
Linux is usable for industry. Although the application in
this thesis is just to read output from an I2C sensor, but its
success demonstrates that the open source IP based
embedded system with Linux is usable. With the help of
various open source IP cores and Linux drivers, it is
possible to develop more complex embedded system for
industry usage.

DOI:10.32377/cvrjst0809

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 8, June 2015

 CVR College of Engineering 49

B. Pros and cons

Table 2 is a comparison between open source IP based
embedded system with Linux and conventional embedded
systems. The open source IP based embedded system with
Linux refers to the one whose hardware platform is
ORPSOC having Linux installed.

Table 2: A comparison between open source IP based embedded system
with Linux and conventional embedded systems

 Open IP
based
embedded
system with
Linux

Conventional
embedded
system
without
Linux

Conventional
embedded
system with
Linux

Product cost High Low Low

Development
environment

Basic-
supported

Well-
supported

Well-
supported

Flexibility and
scalability

High -
Only Linux

has
scalability

Software
Portability

High Low High

Software
development

difficulty

Low (except
the case if

hardware is
not

supported by
Linux
driver)

Normally is
high,

depends on
the vendor’s

support

Low (except
the case if

hardware is
not

supported by
Linux driver)

Reusability High - -

The conventional embedded system refers to the one

whose hardware platform is based on IC chips with fixed
resources, such as AVR32 and ARM architecture.
Developers can choose to install Linux on it or
not.Obviously, the pros of open source IP based embedded
system with Linux are high flexibility and scalability, high
software portability, low software development difficulty
and high reusability. Whereas the cons are high product
cost due to the higher price of FPGA chips, basic-
supported development environment and more difficult
software development if Linux driver doesn’t support the
hardware.

V. CONCLUSIONS

In this paper, a prototype of open source IP based
embedded system with Linux is presented. A successful
application reading the output of acceleration raw data
from an I2C compass sensor-LSM303DLM is developed
as well, which proves the usability of such an embedded
system. Moreover, the investigation of licenses indicates
the implementation doesn’t offend the rules of GPL and
LGPL and developing proprietary software on the system
is valid. Hence, companies are allowed to develop and sell
the embedded systems without providing their source code
to users or public. Comparing to conventional embedded
systems, although the open source IP based embedded
system with Linux has some disadvantages such as: high

product cost, only basic-supported development
environment, and more difficult software development if
Linux driver doesn’t support the hardware. However, it
has: high flexibility and scalability, high software
portability, low software development difficulty and high
reusability.

Open source IP based embedded system with Linux is
hard for beginners to start with and the application
development for Linux takes time to learn. However, once
the developer handles them well, the time to develop an
embedded system will be decreased significantly because
the lower software development difficulty of Linux user
space. Moreover, when the function of such an embedded
system is changed, a total re-design of the embedded
system can be avoided due to it is flexible, scalable and
reusable. In addition to function change, the work of
function migration can be reduced because of the high
software portability and reusability. Hence, the open
source IP based embedded system with Linux is more
suitable in industrial usage.

REFERENCES

[1] Jason G. Tong, Ian D. L. Anderson and Mohammed A. S.
Khalid, “Soft-Core Processors for Embedded Systems”,
2006 International Conference on Microelectronics, Dec.
2006, pp.170-173

[2] Younghoon Bin, Kwangmyong Kang, Hyungjun Kim,
Hongkyun Jung, Kwangki Ryoo, “The Development of SoC
Platform for Embedded System Applications”, 2007
International Conference on Convergence Information
Technology, Nov. 2007, pp.2286-2291

[3] Lihong Lian, Xiaochao Li, Fen Xiao, Donghui Guo, “Design
and implementation of a debugging system for OpenRISC
processor”, 2008 2nd International Conference on Anti-
counterfeiting, Security and Identification, Aug. 2008,
pp.368-371.

[4] Jiesheng Wei, Ling Wang, Feng Wu, Yibo Chen, Long Ju,
“Design and implementation of wireless sensor node based
on open core”, 2009 IEEE Youth Conference on Informtion,
Computing and Telecommunication, Sept. 2009, pp.102-
105.

[5] Faroudja, A. ; Izeboudjen, N. ; Titri, S. ; Sahli, L. ; Louiz, F.
; Lazib, D, “Hardware/Software development of a System on
Chip platform for VoIP application”, Microelectronics, Dec.
2009, pp.62-65

[6] Mehdizadeh, N. ; Shokrolah-Shirazi, M. ; Miremadi, S.G,
“Analyzing fault effects in the 32-bit OpenRISC 1200
microprocessor”, 2008 Third International Conference on
Availability, Reliability and Security, March 2008, pp.648-
652

[7] Castillo, J. ; Huerta, P. ; Lopez, V. ; Martinez, J.I, “A secure
self-reconfiguring architecture based on open-source
hardware”, 2005 International Conference on
Reconfigurable Computing and FPGAs, Sept. 2005, pp.7
pp.-10

[8] Younjin Jung, Ok Kim, Byoungyup Lee, Hongkyun
Jung, Kwangki Ryoo, “SoC platform design with
multi-channel bus architecture”, 2008 International
SoC Design Conference, Nov. 2008, Vol.03,
pp.III-48-III-49

DOI:10.32377/cvrjst0809

