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Abstract — In this paper, we are concerned with the 

oscillation properties of third order nonlinear differential 
equations of the form 

0,0)()()()())()()(( 1111 xyxpxyxqxyxrxr  

Some new sufficient conditions which ensure that every 
solution oscillates or converges to zero are established. The 
obtained results extend the result known in the literature for 
=1. Some examples are considered to illustrate our main 

results. 
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I.  INTRODUCTION 

In this section we study the properties of oscillatory 
solutions of non linear differential equations of third order 

0,0)()()()()()()( 1
111 xyxpxyxqxyxrxr      

(1.1) 

Where )(),(),( xqxpxr are continuous functions, 

with 0)(xr  on the interval aaI ,,  and 

 is positive and is a ratio of two odd integers {this 

provides that if )(xy  is a solution so does )(xy }.      A 

nontrivial solution of (1.1) is said to be oscillatory if it has 
zeros for arbitrarily large values of the independent 
variable, otherwise it is said to be nonoscillatory. In the 

linear case with 1and 1)(xr , the properties of 

oscillatory solutions are discussed in Hanan [01], Lazer 
[02] and Swanson [03]. The associated nonlinear equations 

with 1)(xr are the subject discussed by Waltman [04], 

Heidal [05], Gragus and Venko [06], N.Parhi and S.Parhi 

[07] have discussed the equation (1.1) with 0)(xq  in 

the form 0)()()(111 xyxpxy
                                         

(1.2) 
 
Also the behavior of solutions of the 

equations 0)()()()()()()( 111111 xyxrxyxqxyxpxy
       

(1.3) 
was considered for oscillation, non oscillation and 

asymptotic behavior by L.Erbe [08] via a second order 
equation.  

In the discussion of the oscillatory solutions of  (1.1) 
made in the chapter no recourse has been taken to second 
order equations as well as no change of variables 
incorporated. The results obtained generalize many 
theorems mentioned in the above references. To the best of 
our knowledge nothing is known regarding the qualitative 
behavior of Equation (1.1) until now. 

II. MAIN RESULTS 

In this section we present the existence of oscillatory 

solutions of (1.1) with ,0)(,0)( xqxp positive 

and is a ratio of the odd integers and established that under 

certain integral conditions any solution of (1.1) which has 

an initial zero is oscillatory. 
 

2.1 THEOREM: Let )(),(),( xrxqxp are real valued 

continuous functions on ,aI with 

 0)(xr 0)(,0)(,0)( 1 xqxqxp
             

(2.2) 

 )()( 1 ICxr  and 
)(

)(1

xr

xr
Lim
x

 exists                    (2.3) 

x sx

dudsup
sr

ds

sr

ds
BA 0)(

)()(
                 

(2.4) 

 for sufficient large x, where A and B are constants and  

is positive and quotient of two odd integers, then any 

containable solution of (1.1) which has zero on I is 

oscillatory. 
 

PROOF: Let y(x) be a solution of (1.1) which does not 

oscillate and let 00x be the largest zero of y(x), that 

is 0)( xy for all 0xx . Since )(xy  is also a 
solution of (1.1), we may assume without loss of generality 

that there 1x exists such that for 
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all 0)(,1 xyxx and 

0)(1 xy for ),( xx for some . 

Let ).( ,12 xx dividing (1.1) by y and 

integrating from x2 to x, we get 
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(2.5)

 
Integrating by parts yields 
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(2.6) 
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0 , for sufficient large x where 
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Suppose that 0)(1 xy  for all 2xx . Since 0)(xy  

for all 0xx    , it follows from (2.6) that 0)(1 xy  for 

sufficiently large x  and this contradict the assumption. 

 

Thus there exists a 23 xx  such that 0)( 3
1 xy . We 

Shall now show that  0)( 0xy  together 

with 0)( 3
1 xy will contradict the positivity of )(xy   

for all 0xx  and hence establish the theorem. 

Multiplying (1.1) with )(xy and integrating from 0x   

to x , we get,  

x

x

x

x

dssysysqdssysryr

00
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(2.7) 
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                                                                                     (2.9) 

We get 
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           (2.10)

 

Since 

0
2

)()(
)]([;0)(;0)(

2

0
1

0
2

0
1

0

xyxr
xyGxyxy

 
and  

0)(()())()(
2

1)]}([{ 121
xyxxyxq

dx

xyGd

                
(2.11)

 

We see that )]([ xyG is strictly increasing and vanishes 

whenever )(xy has a double zero. Using this fact and also 

since 0)( 3xy and 0)( 3
1 xy we conclude that 
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3 xyxq > 0.                     (2.12)

 

 

But since )]([ xyG  is strictly increasing, it follows 

from (2.12) that .0)( 3
11

xy Also we observer that 

)(xy cannot vanish more than once in ,3x for, 

otherwise suppose that there exists a 

34344 &,, xxxxx w
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(2.13) 

Since )]([ xyG  is strictly increasing. 

In order that the above inequality may be satisfied 

we should 

have .0)( 4
1 xy but 0)(,0)( 4

11
4

1 xyxy impl

y that there is a maximum at 4x which is a contradiction, 

since there cannot be a maximum without passing through 

a minimum. Hence 0)(1 xy for 3xx and 

)(lim xy
x

exists. 

The rest of the proof is discussed in the following three 

cases that depend on the sign of ).(11 xy
 

 

CASE (i):- Let 0)(11 xy eventually. Then 

)(xy becomes eventually negative and this is a 

contradiction. 
 

CASE (ii):- Let .0)(11 xy Then since 0)(1 xy  for 

3xx  we have )(lim xy
x

and  
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(2.14) 

which is contradiction the fact that )]([ xyG  is strictly 

increasing. 
 

CASE (iii):- If )(11 xy changes sign for arbitrarily large 

x then for 0 , there exists a sequence nx , for 

arbitrarily large values of x ,for which 

,0)(1
nxy and also another sequence 

........., 2211 sxsxsn of the values if 

x ,where )(1 xy has relative maxima with 

0)(1
nxy and .0)(11

nsy Since )(lim xy
x  

exists and 0)(1 xy , .0)(suplim 1
n

x
sy

 
 
Thus we have  
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(2.15) 
Using (2.1), (2.2) for arbitrarily large values of s . 

This implies that 

0
)(

)]([
lim

2
n

n

n sr

syG
.                                  (2.16) 

This is again contradiction to the fact that )]([ xyG  is 

strictly increasing.  

This completes the proof of the theorem. 
 

Example: 
The equation  

0)(2)()( 3

1

3

2

3

1
1111

yCosxSinxxxyxy                   

(2.17) 
satisfies the conditions of the theorem (2.1).Hence the 

solutions are oscillatory. In fact )()( CosxSinxxxy   is 

one of the solutions, which is oscillatory. 

III. CONCLUSION 

The requirement that the solutions (1.1) must have an 

initial zero on I is essential to obtain the conclusion. With 

1)(,)(,1)( xpxxqxr and 1on ,0 , the 

equation (1.1) becomes  
 

0)()( 1111 yxxyxy
                                     

(2.18) 

The conditions (2.1), (2.2) are satisfied. The condition 

(2.3) is verified as follows. 
t
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2
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ttBA as t . 

But the equation (2.18) is a 1C equation and all 1C  

equations have non-oscillatory solutions. 
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