
ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 9, December 2015

44 CVR College of Engineering

Parameterization of Pulses from Electromagnetic
Calorimeter Using ADC and FPGA

P. Rajashekar Reddy, Assistant Professor
CVR College of Engineering College, ECE, Hyderabad, India

Email: raju.sheker@gmail.com

Abstract— The main focus of this paper is data recording and

processing. It provides a calibration method for pulses
processed by ADCs. It uses some existing filters to achieve the
accurate parameters of pulses, and existing concept to do the
comparison among filters. This design method with a finite
state machine can be realized easily by FPGA. The high
precision and the ability of real time application were
validated. The FPGA implementation scheme is also
discussed in the paper.

Index Terms— Particle detector, EMC, FPGA, Pulse
parameters.

I. Introduction
In this paper, some generators will be used to simulate

the pulses from Electromagnetic Calorimeter (EMC)
detector. The PANDA experiment requires a multi-purpose
detector with an important component of a high resolution
Electromagnetic Calorimeter (EMC) which is applied to
measure the energy of particles. The PANDA detector
consists of a target spectrometer (TS) and a forward
spectrometer (FS). Those two spectrometers allow the
detector to cover a 4 solid angle and each of them
employs an EMC.

The paper is based on the development of FPGAs for
pulse detection and feature extraction. During pulse signal
transmission from the EMC to the FPGA, noise is added to
the signal and the signal to noise (S/N) ratio is decreasing.
It adversely affects the results of the experiment. One of
the goals of this paper is the development of digital data
filtration, to achieve a 13-bit amplitude dynamic range of
the system (8000:1) for real physical signals, while the raw
S/N ratio of an ADC/FPGA system is of the order of 11-
bit. Additionally the aimed time resolution for the
detected pulses should be of the order of 1 ns or less, while
the signal rise-time after amplification and shaping
amounts from 20 to 200 ns and the sampling frequency is
80MHz. Therefore, the other goal is to achieve the
robustness signal parameterization algorithms which are
applicable for the whole range of signal amplitudes.

II. Hardware and Software

Two of the main hardware units used in this work, an
Analog to Digital Converter (ADC) and an FPGA, are
placed on the same board. The ADC system is used to
detect the pulses from analog pulses. The hardware
structure needs a high performance analog to digital
converter. The requirements are as follows.

A.Amplitude Resolution: Since the range of energy
deposited in individual PbWO4 crystals is from 1 MeV up
to 8 GeV, a 14-bit ADC is used.

B.Time Resolution: The light pulses created by the crystals
have about 20 ns signal rise-time, and hence the ADC
should provide 160 MHz with 3 samples on leading edge.
But for light pulses which have the 200 ns integrated signal
rise-time, the ADC should provide 25 MHz with 5 samples
on leading edge.

C.Processing Power: Processing should be flexible and re-
programmable with a raw data buffer of 5-10us for each
channel. It can also do feature extraction and have external
configuration capability.

D. Inside The PANDA Detector: The maximum power
dissipation is not fully established but efforts to minimize
power consumption have been taken. It is better to have
lower sampling frequency and minimize processing power
redundancy.

According to the requirements above, a LTC-2175-14
ADC by Linear Technology is used. It is a 4-channel and
14-bit ADC with 125Msps sample rate and 127mW power
consumption. There are two FPGAs designed by
XILINX® XC5VLX50T, XC3S4000. In this
development, a XC5VLX50T FPGA is used. The most
important reason for not choosing a XC3S4000 FPGA is
that it needs additional components for data de-
serialization.

The XILINX® design tools including the ISE® Design
Suite and ChipScope Pro™ tools are used in this
development. The ISE® Design Suite supports both VHDL
(VHSIC Hardware Description Language) and Verilog
HDL (Hardware Description Language) for code writing.
VHDL is used here.

III. System Implementation Structure

Two main parts are needed here, which are the FPGA
programming and the implementation of the ChipScope™
Pro tool. The FPGA is in the core of the work and is
responsible for data de-serialization and analysis. The
whole structure is shown in Figure 1. In the FPGA part,
there are 5 modules. They are Digital Clock Manager,
Calibration, De-serialization, Filtration and
Parameterization, RAM and Histogram.
The Digital Clock Manager module is in charge of clocks. It takes

a 125MHz clock from an LMK0300 clock conditioner as
input. Then, it will generate new clocks

DOI: 10.32377/cvrjst0909

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 9, December 2015

 CVR College of Engineering 45

with other frequencies such as 200 MHz and 500MHz

to drive other modules by using internal phase-locked-loop
(PLL) schemes.

Figure 1: System Implementation Structure

The Calibration module is used to delay the digital
signals to get better sampling times in the FPGA. It is
controlled by the de-serialized frame signal. The signals
which are converted from ADCs are serial signals. The de-
serialization module is used to do de-serialization of those
serialized signals. Originally, the signals from ADCs
include frames and data are sent bit by bit which is
synchronized by a transmission clock. This module will
also gather bits into single frame and data. The Filtration
and Parameterization module contains different filters, for
instance, Moving Window De-convolution (MWD), Finite
Impulse Response (FIR) or Moving Average (MA) which
are used to reduce signal noise. This module is also
responsible for calculating the basic parameters for the
pulses including pulse width, rise and fall time, and
amplitude and so on. Histogram is used to check the
parameters such as amplitude and judge if the filters or
algorithms suit these pulses. A RAM is implemented
because it needs to store pulse data for statistical purposes.

IV. Signal Pre-Process

ADCs (Analog-to-Digital converters) convert analog
signals to digital signals after sampling. In order to transfer
the results to an FPGA, we use a serial protocol. The
FPGA also does sampling in order to get the digital
signals. However, the data received might be incorrect and
they also need to be de-serialized. In order to receive the
correct data, an IDELAY (Input Delay) primitive and a bit
slip circuitry in ISERDES (Input Serializer or De-
serializer) is used. The LTC-2175-14 ADC made by
LINEAR Technology [1] is used here. It has four channels
sampling concurrently. The data are transferred using
serial LVDS (Low Voltage Differential Signaling) in each
ADC channel. The serial LVDS outputs can be 1 or 2 bits
per line. Here a 2-Lane output mode is used. Figure 2
shows that an analog signal is transferred to 2 of 8 bits

digital signal (OUT#A and OUT#B) with a frame signal
(FR). ENC (Encode Input) is the sampling clock which is
125 MHz and DCO (Data Clock Output) is the output
clock which is 500MHz. The sample rate is 125Msps
(Million Samples per Second) and each sample implies 8
bits per lane. Therefore, there are 1Gbit (125M×8 bit)
transferred per second per lane.

Figure 2: Transmissions In One Of The Channels In One ADC

As shown in Figure 2, after a propagation delay (), a
new measurement is made and one serial data bit period
() is half of a DCO period. One serial data bit will be
transferred in the middle of the rising and falling edge of
DCO. It takes 8 and 4 DCO to transfer 8 bits per lane
and 16 bits per channel of the measurement. Each
transition of the DCO clock indicates a change in data,
commonly called Double Data Rate (DDR) protocol.

 A) Serial Data Received In The FPGA

The FPGA will receive the frame (FR in Figure 2) and
the output data (OUT#A and OUT#B in Figure 2) from the
ADC. The receiving frequency is identical to the output
clock of the ADC (DCO in Figure3) which is 500MHz. It
is also shown in Figure 2, that data from an ADC is 16-bit
serialized and the correct order is OUT#A: D13, D11…
D1, 0; OUT#B: D12, D10 … D0, 0. Basically the FPGA
should receive the same data in the correct order. However,
the FPGA can receive the wrong data since the clock for
FPGA to receive data does not synchronize with the clock
for ADC to send data.

Figure 3: Serial Data Received In The FPGA.

As shown in Figure 3, the FPGA starts to receive the data at D9
and D8 instead of D13 and D12, the FPGA receives the data in
incorrect order.

DOI: 10.32377/cvrjst0909

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 9, December 2015

46 CVR College of Engineering

Figure 4: Serial Data Received In The FPGA

Moreover, within the FPGA, the clock does not
synchronize with the frame and the receiving data either.
The FPGA can start to receive the data on the boundary
between two data as show in Figure 4.

B) IDELAY And IDELAYCTRL

In order to solve the problem of the sampling time, the
IDELAY (Input Delay element) and the IDELAYCTRL
(IDELAY tap delay value Control) primitives from
Virtex®-5 will be applied capturing the frame and bits
from two-lanes correctly before de-serializing using
ISERDES. The IDELAY primitive is a digitally controlled
analog delay line as shown in Figure 5.

Figure 5: IDELAY primitive [2]

C) Data De-serialization

The outputs of the ADCs are serialized data and
the FPGA cannot directly use these data. Therefore,
before analyzing the data, an input serial-to-parallel
data converter should be employed in doing de-
serialization of the frame and the data that come from
each ADC.

D) Checksum & Aligning

The FPGA can start to receive data at any time, and it
causes two problems as shown in Figures 3 and 4. In order
to solve the first problem, the de-serialized frame (FR in
Figure 3 is serialized frame) is used as a checksum. The
checksum function returns a value to determine if the bit
slip function should be performed. If this frame which is
still 8 bits after de-serialization is equal to “11110000”, the
checksum function returns 0, and it means the bit slip
function will not be enabled. Otherwise, the checksum
function returns 1 and enables the bit slip function to align
the bits. The frequency of the clock for the checksum

function is 125 MHz, because the decision should be made
for every 8-bits frame. But the checksum function checks
the frame every 4 clocks, in order to give a time for the bit
slip function in ISERDES to do the aligning. In Figure 3 as
an example, the FR is “11000011”, but not “11110000”. In
this case, the checksum function returns 1 in the first clock.
Then, the bit slip function will be performed to do the
aligning in the next three clock times. Checking and
aligning one to be repeated until the checksum function
returns 0.

E) Calibration

Figure 4 only shows the received data from one of the
channels of the ADC. Here each channel has two lanes,
each ADC has 4 channels and there are 4 ADCs, totaling
32 lanes. Therefore, all the data which are received from
the ADCs should be as shown in Figure 6. If the FPGA
starts to receive data at position 2 in Figure 6, the
checksum function can return 0 and the aligning will be
enabled, but the received data can still be incorrect since it
is close to the noise. This is the second problem.

Figure 6: Worst Case Of Sampling

The theoretical maximum eye opening is 1ns per lane.
All lines are sample-clocked with one clock signal and the
goal is to sample all data lines in the middle of the eye
(position 4 in Figure 6), where the signal has the highest
distance from noise. In order to reach the goal, a state
machine is introduced, since the checksum and aligning are
not enough.

F) Filtering

A pulse must be filtered in order to significantly reduce
the noise. There are a lot of filters in the world applied in
this field. But we would like to compare them in such a
way that we know which one is better to use in our case.
Finite Impulse Response (FIR) Filter, Moving Average
(MA) and Moving Window Deconvolution (MWD) is used
here for comparision. In order to measure the precision of
amplitude estimations from different filters, a normal
distribution table or a histogram of amplitudes will be
created and analyzed. The histogram is a graphical
representation of the distribution of data. It is an estimate
of the probability distribution of a continuous variable.
Histograms are used to plot the density of data and get the
probability density function of the underlying variable.

DOI: 10.32377/cvrjst0909

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 9, December 2015

 CVR College of Engineering 47

F
igure 7: Examples of histogram [3]

For example in Figure 7, after running for a number of
times, a graph where the frequencies are located around 0
is the one similar to a normal distribution. The more
samples the testing has, the more precise the distribution
will be. Here the estimation precision of amplitudes from
different filters will be measured. The goal is to create and
analyze the normal distribution table or histogram of
amplitudes from different filters.

V. Parameterization

The parameterization is implemented after filtering the
pulse. The general parameters of the pulse include pulse
amplitude, pulse width, pulse arrival time etc. The shape of
the pulse is shown in Figure 8 with rise and fall time, The
amplitude is not so stable due to the influence of noise.
The pulse parameter definitions are provided as follows
[4]. The Pulse Amplitude (PA in Figure 8) is the difference
between the maximum value and the minimum value of the
pulse. Pulse Rise Time (PRT in Figure 8) is the interval
between the 10% and 90% amplitude points on the leading
edge. The Pulse Fall Time (PFT in Figure 8) is the interval
between the 10% and 90% amplitude points on the trailing
edge. The Pulse Width (PW in Figure 8) is the interval
between leading and trailing edge medians. The specified
and displayed value is that obtained with fastest edges,
essentially equal to the interval from the start of the
leading edge to the start of the trailing edge. The Pulse
Integral (PI in Figure 8) is the sum of the differences
between the value of pulse and the minimum value of
pulse during the sampling time.

Figure 8: Pulse Waveform And General Parameter Definitions

A) Baseline

Baseline is an important element for calculating the
pulse parameters. The baseline will shift over time, and
therefore, in order to calculate the most accurate pulse
parameters, the baseline should be calculated continuously.
However, it is difficult to find the baseline for the pulse
because there is too much noise around the baseline rather
than a fixed value. Moreover, as each sample is read into
the FPGA, the first step is to determine if the sample is part

of an event or a sample of the baseline. If the sample is
part of an event pulse, it should not be included in the
baseline calculation. To exclude samples of an event pulse,
a baseline window [5] giving a range of the baseline with
upper and lower limits will be calculated instead of a
single baseline.

Figure 9: Baseline Window

If a sample is inside the baseline window, it is
determined to be part of the baseline; otherwise it is
assumed to be part of an event pulse. The baseline window
keeps track of how many samples have been inside and
how many have been outside the window. Initially, the
value of the upper baseline is 2 ADC least significant bits
(LSB) and the lower baseline is 0 ACD LSB. If the
following 64 samples are larger than the value of the upper
baseline, both the upper and lower limits of baseline
window will be increased by one ADC LSB. If the
following 64 samples are smaller than the value of the
lower baseline, both the upper and lower limits of the
baseline window will be decreased by one ACD LSB. Or if
512 samples have been inside, the window is contracted by
one ADC LSB. Likewise, if there are 64 samples outside,
the baseline window is expanded by one ADC LSB. The
upper and lower limits of the baseline window will be
increased or decreased a lot in the beginning, because the
baseline window is far away from the pulse. Once the
samples get inside the baseline window, contraction or
expansion will happen a lot. In order to simplify the
control, the three counters (above, below or inside the
baseline window) only reset when 64 or 512 are reached
respectively. The window expands faster than it contracts
because there are more baseline values than pulse values.
In this data set, the ratio is about 4:1. Figure 9 illustrates an
example of a baseline window (the upper limit of baseline
window is in light green and lower limit of baseline
window is in dark green).

B) Threshold

A threshold is used to separate the pulse from the
baseline. It is almost the same as the upper limit of the
baseline window. The difference between them is that after
the pulse rises and crosses the upper limit of the baseline
window, the upper limit will increase until the pulse goes
down and crosses again, but the threshold should be kept at
the same value until the pulse and upper baseline cross
again. This case gives a better and more accurate value to
calculate the amplitude. The amplitude will be calculated

DOI: 10.32377/cvrjst0909

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 9, December 2015

48 CVR College of Engineering

by the maximum value of the pulse and the threshold (A in
Figure 10) instead of the maximum value of pulse and the
upper limit of the baseline window (A’ in Figure 10).

Figure 10: Threshold

Figure 11 shows that the length between two intersection
points created by a pulse and the threshold (TH1) are the
arrival time of the pulse rising edge (t1) and the arrival
time of the pulse falling edge (t2). All of the parameters
will be calculated during the pulse width PW’.

Figure 11: Pulse Width

The pulse amplitude (PA) is the most important
parameter to describe the pulse waveform. The
measurement of PA directly affects the measurement of
other parameters. For instance, in order to measure the
Pulse Rise Time and the Pulse Fall Time, the PA should be
measured first. Here we start to search for the PA from
point t1 as shown in Figure 11. For each clock time, a
variable whose initial value is 0 will be compared with the
current value of the amplitude (the difference between
pulse and threshold). The variable will be replaced by the
current amplitude if it is smaller than current amplitude,
otherwise, there will be no change. When t2 is achieved,
the search will stop and the variable will be returned as the
PA. The calculation of pulse rise time (PRT) and pulse fall
time (PFT) are similar to the PA calculation. If the current
amplitude is equal to the variable, the PRT will be
increased by one. Otherwise, if current amplitude is
smaller than the variable, the PFT will be increased by one.
There are no changes when they are equal.A rough value
of the pulse width (PW’ in Figure 11) can easily be
measured by starting up a counter at t1 and increasing it by
1 each clock cycle. The return value of the counter at t2 is
PW’. However, the real PW is the time interval between

two points which are the intersection between the pulse
and TH2. Threshold TH2 is half of the pulse amplitude.
Therefore, it is difficult to define TH2 before the PA has
been measured. There are two methods to calculate PW.
One is, saving all of the values with time during PW’, then
searching the memory and calculating after the amplitude
has been calculated. Another is, using the amplitude of
previous pulse as reference to define TH2, and then doing
a similar calculation of PW’. The first method gives a more
accurate value but wastes memory space. The second
method is used because the input pulses will not be
changed for a period of time and the measurements are
similar during this time. For each clock cycle during PW’,
the current values (amplitudes) will be accumulated. The
sum of those values is the pulse Integral (PI).

VI.Testing

The histograms obtained by using a Xilinx in-chip

logic analyzer (ChipScope Pro™) for later analysis,
MATLAB, a numerical computation, visualization, and
programming environment will be used to do the
comparison among histograms. This is hard to do in real
time.. The Full Width at Half Maximum (FWHM) value as
criteria will be calculated from the histograms by using
MATLAB.

A) Full Width at Half Maximum

Criteria should be set for measuring the accuracy of
amplitudes calculated from different filters. In this paper,
the full width at half maximum (FWHM) [6] which is a
parameter given by the difference between the two extreme
values of the independent variable at which the function
reaches half its maximum value will be used as the
criterion. The smaller the FWHM is, the better the filter is.
The best case is when FWHM equal to 1. The
measurement of FWHM is similar as PW as shown in
Figure 9, but the difference is that FWHM is calculated in
post processing and PW is calculated in real time. The
value x in Figure 12 represents amplitude. The function
f(x) represents the frequency distribution of achieved
amplitudes within 65525 times of the experiment. Each
function will be traversed twice here. The maximum value
of time for the first time achieved by keeping the larger
value during traversal. The second time, the FWHM is
calculated by starting a counter when the value is larger
than half of the maximum value and finishing it when the
value is smaller than half of the maximum value

Figure 12: Full Width at Half Maximum

VII Analysis
The comparison among different filters is based on the

FWHM values which are achieved from 8 different pulses,

DOI: 10.32377/cvrjst0909

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 9, December 2015

 CVR College of Engineering 49

both single-humped pulse and double-humped pulse with
four different amplitudes (2mV, 10mV, 50mV and
500mV). Each pulse with different filters will be tested 20
times and the average values of the FWHM will be
calculated for analysis as shown in Figure 13(a) and (b).
Figure 13(a) illustrates that FWHM values of MA are
much lower than MWD, which means MA is much better
and more stable than MWD here.

Figure 13 (a): FWHM values for single-humped pulses with different

filters

Figure 13(b): FWHM values for double-humped pulses with different

filters

The FWHM values of the combination of MA and
MWD is among the three. The stability of MA & MWD is
better than MWD but worse than MA. As shown in both
Figure 13(a) and (b), with the increase of amplitudes, the
values of FWHM become larger and larger, and all the
filters become more and more volatile. A double-humped
pulse means two values of amplitude are received from
each test. The FWHM values of it should be double the
value of single-humped pulse with one value of amplitude.
From the comparison between Figures 13(a) and (b), it is
easy to see that the values of FWHM in (b) are almost
double of the values of FWHM in (a). Therefore, it means
the stabilities of filters will not be influenced by whether
they are single-humped pulses or double-humped pulses.

VIII. Results and Conclusion

The investigations provide a calibration method for pulses
processed by an ADC. They use some existing filters to
achieve the accurate parameters of pulses and existing
concept to do a comparison among filters. The FPGA
implementation is also discussed. The investigations have
a realistic significance in the high energy physics,
especially in particle analysis. The main achievements are
embodied in the following aspects.
(1) Introduced a calibration method for achieving an
accurate digital signal after the analog signal is converted
and serialized by ADC and serialization. This design
method with a finite state machine can be realized easily

by FPGA. The high precision and the ability of real time
application were validated.

(2) Combined two existing filters, MWD and MA. MWD
filter can avoid signal overlaps and make the measurement
of amplitudes of double-humped pulses to become easier.
The MA filter reduces the effect of noise on the accuracy
of measured parameter and increases the S/N ratio.

(3) Provided measuring methods for different parameters
which are also suitable for real time measurements. The
most important parameter is the amplitudes of pulses.
Accumulated the values of amplitudes and returned
histograms with software ChipScope Pro™.

(4) Calculated the FWHM for each histogram and
compared different filters with FWHM. All of the back-
end processing was done in MATLAB. After multiple
testing, the MA filter holds the highest stability, MWD
filter holds the lowest, and the combination of them is in
between. However, it is difficult for measuring double-
humped pulses by only using MA. Therefore, the
combination of MA and MWD is the best choice when
measuring double-humped pulses, and it is enough use MA
when measuring single-humped pulse waves.

(5) Selected an XC5VLX50T FPGA, and illustrated the
structure of a developed board. The whole implementation
procedure and part of pseudo codes are also given.

There is room for improvement with regard to the
filters. By using both MA and MWD, one can easily
achieve parameters in both single-humped pulses and
double-humped pulses, but with an increase of the
amplitudes of the pulses, the stability of MWD is
decreasing a lot, and the stability of the combination of
MA and MWD also decreases a lot. Future investigations
should focus on finding filters which are more efficient and
easy to realize in FPGA. Kalman filtering for example,
which is an optimal estimator and a widely applied concept
in time series analysis, can be used for future
implementation. It is known as linear quadratic estimation
and it is an algorithm that produces a statistically optimal
estimate of the unknown state of the dynamic system from
noisy data taken at discrete real time [7].

REFERENCES

[1] LTC2175-14, “14-Bit, 125Msps Low Power Quad ADCs”
Linear Tech-nology Corporation.

[2] Virtex-5 Libraries Guide for HDL Designs. XILINX®;
UG621 [Inter-net]. 2009 Sep 16 [Cited 2014 Apr 21].

[3] File:Cumulative vs normal histogram.svg [Internet].
Wikipedia, the free encyclopedia. [Cited 2014 Apr 21].
IEEE Standard Pulse Terms and Definitions. IEEE Std 194-
1977. 1977; 1–23.

[4] Haselman M, Hauck S, Lewellen TK, Miyaoka RS. “FPGA-
based pulse parameter discovery for positron emission
Tomography” Nuclear Science Symposium Conference
Record (NSS/MIC), 2009 IEEE [Internet]. IEEE; 2009
[Cited 2014 Apr 21]. p. 2956–61.

[5] Weisstein EW. “Full Width at Half Maximum rom Wolfram
Math-World [Internet]. [Cited 2014 Apr 21].

Chui CK, Chen G. Kalman “Filtering with Real-Time
Applications” Springer Science & Business Media; 2008.
241 p.

DOI: 10.32377/cvrjst0909

