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Abstract— The main focus of this paper is data recording and 

processing. It provides a calibration method for pulses 
processed by ADCs. It uses some existing filters to achieve the 
accurate parameters of pulses, and existing concept to do the 
comparison among filters. This design method with a  finite 
state machine can be realized easily by FPGA. The high 
precision and the ability of real time application were 
validated. The FPGA implementation scheme is also 
discussed in the paper. 

 
Index Terms— Particle detector, EMC, FPGA, Pulse 
parameters. 

I. Introduction 
In this paper, some generators will be used to simulate 

the pulses from Electromagnetic Calorimeter (EMC) 
detector. The PANDA experiment requires a multi-purpose 
detector with an important component of a high resolution 
Electromagnetic Calorimeter (EMC) which is applied to 
measure the energy of particles. The PANDA detector 
consists of a target spectrometer (TS) and a forward 
spectrometer (FS). Those two spectrometers allow the 
detector to cover a 4  solid angle and each of them 
employs an EMC.  

The paper is based on the development of FPGAs for 
pulse detection and feature extraction.  During pulse signal 
transmission from the EMC to the FPGA, noise is added to 
the signal and the signal to noise (S/N) ratio is decreasing. 
It adversely affects the results of the experiment. One of 
the goals of this paper is the development of digital data 
filtration, to achieve a 13-bit amplitude dynamic range of 
the system (8000:1) for real physical signals, while the raw 
S/N ratio of an ADC/FPGA system is of the order of 11-
bit.      Additionally the aimed time resolution for the 
detected pulses should be of the order of 1 ns or less, while 
the signal rise-time after amplification and shaping 
amounts from 20 to 200 ns and the sampling frequency is 
80MHz. Therefore, the other goal is to achieve the 
robustness signal parameterization algorithms which are 
applicable for the whole range of signal amplitudes. 

II. Hardware and Software 

Two of the main hardware units used in this work, an 
Analog to Digital Converter (ADC) and an FPGA, are 
placed on the same board. The ADC system is used to 
detect the pulses from analog pulses. The hardware 
structure needs a high performance analog to digital 
converter. The requirements are as follows.  
 

A.Amplitude Resolution: Since the range of energy 
deposited in individual PbWO4 crystals is from 1 MeV up 
to 8 GeV, a 14-bit ADC is used. 

B.Time Resolution: The light pulses created by the crystals 
have about 20 ns signal rise-time, and hence the ADC 
should provide 160 MHz with 3 samples on leading edge. 
But for light pulses which have the 200 ns integrated signal 
rise-time, the ADC should provide 25 MHz with 5 samples 
on leading edge.  

C.Processing Power: Processing should be flexible and re-
programmable with a raw data buffer of 5-10us for each 
channel. It can also do feature extraction and have external 
configuration capability.  

D. Inside The PANDA Detector: The maximum power 
dissipation is not fully established but efforts to minimize 
power consumption have been taken. It is better to have 
lower sampling frequency and minimize processing power 
redundancy.  

According to the requirements above, a LTC-2175-14 
ADC by Linear Technology is used. It is a 4-channel and 
14-bit ADC with 125Msps sample rate and 127mW power 
consumption. There are two FPGAs designed by 
XILINX®   XC5VLX50T, XC3S4000. In this 
development, a XC5VLX50T FPGA is used. The most 
important reason for not choosing a XC3S4000 FPGA is 
that it needs additional components for data de-
serialization. 

The XILINX® design tools including the ISE® Design 
Suite and ChipScope Pro™ tools are used in this 
development. The ISE® Design Suite supports both VHDL 
(VHSIC Hardware Description Language) and Verilog 
HDL (Hardware Description Language) for code writing. 
VHDL is used here. 

III. System Implementation Structure 

Two main parts are needed here, which are the FPGA 
programming and the implementation of the ChipScope™ 
Pro tool. The FPGA is in the core of the work and is 
responsible for data de-serialization and analysis. The 
whole structure is shown in Figure 1. In the FPGA part, 
there are 5 modules. They are Digital Clock Manager, 
Calibration, De-serialization, Filtration and 
Parameterization, RAM and Histogram. 
The Digital Clock Manager module is in charge of clocks. It takes 

a 125MHz clock from an LMK0300 clock conditioner as 
input. Then, it will generate new clocks 
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with other frequencies such as 200 MHz and 500MHz 

to drive other modules by using internal phase-locked-loop 
(PLL) schemes.   

 
Figure 1: System Implementation Structure 

The Calibration module is used to delay the digital 
signals to get better sampling times in the FPGA. It is 
controlled by the de-serialized frame signal. The signals 
which are converted from ADCs are serial signals. The de-
serialization module is used to do de-serialization of those 
serialized signals. Originally, the signals from ADCs 
include frames and data are sent bit by bit which is 
synchronized by a transmission clock. This module will 
also gather bits into single frame and data. The Filtration 
and Parameterization module contains different filters, for 
instance, Moving Window De-convolution (MWD), Finite 
Impulse Response (FIR) or Moving Average (MA) which 
are used to reduce signal noise. This module is also 
responsible for calculating the basic parameters for the 
pulses including pulse width, rise and fall time, and 
amplitude and so on. Histogram is used to check the 
parameters such as amplitude and judge if the filters or 
algorithms suit these pulses. A RAM is implemented 
because it needs to store pulse data for statistical purposes. 

IV. Signal Pre-Process 

ADCs (Analog-to-Digital converters) convert analog 
signals to digital signals after sampling. In order to transfer 
the results to an FPGA, we use a serial protocol. The 
FPGA also does sampling in order to get the digital 
signals. However, the data received might be incorrect and 
they also need to be de-serialized. In order to receive the 
correct data, an IDELAY (Input Delay) primitive and a bit 
slip circuitry in ISERDES (Input Serializer or De-
serializer) is used. The LTC-2175-14 ADC made by 
LINEAR Technology [1] is used here. It has four channels 
sampling concurrently. The data are transferred using 
serial LVDS (Low Voltage Differential Signaling) in each 
ADC channel. The serial LVDS outputs can be 1 or 2 bits 
per line. Here a 2-Lane output mode is used. Figure 2 
shows that an analog signal is transferred to 2 of 8 bits 

digital signal (OUT#A and OUT#B) with a frame signal 
(FR). ENC (Encode Input) is the sampling clock which is 
125 MHz and DCO (Data Clock Output) is the output 
clock which is 500MHz. The sample rate is 125Msps 
(Million Samples per Second) and each sample implies 8 
bits per lane. Therefore, there are 1Gbit (125M×8 bit) 
transferred per second per lane. 

 
Figure 2: Transmissions In One Of The Channels In One ADC 

As shown in Figure 2, after a propagation delay ( ), a 
new measurement is made and one serial data bit period 
( ) is half of a DCO period. One serial data bit will be 
transferred in the middle of the rising and falling edge of 
DCO. It takes 8  and 4 DCO to transfer 8 bits per lane 
and 16 bits per channel of the measurement. Each 
transition of the DCO clock indicates a change in data, 
commonly called Double Data Rate (DDR) protocol.  

 A) Serial Data Received In The FPGA  

The FPGA will receive the frame (FR in Figure 2) and 
the output data (OUT#A and OUT#B in Figure 2) from the 
ADC. The receiving frequency is identical to the output 
clock of the ADC (DCO in Figure3) which is 500MHz. It 
is also shown in Figure 2, that data from an ADC is 16-bit 
serialized and the correct order is OUT#A: D13, D11… 
D1, 0; OUT#B: D12, D10 … D0, 0. Basically the FPGA 
should receive the same data in the correct order. However, 
the FPGA can receive the wrong data since the clock for 
FPGA to receive data does not synchronize with the clock 
for ADC to send data. 

 

 
Figure 3: Serial Data Received In The FPGA. 

As shown in Figure 3, the FPGA starts to receive the data at D9 
and D8 instead of D13 and D12, the FPGA receives the data in 
incorrect order. 
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Figure 4: Serial Data Received In The FPGA 

Moreover, within the FPGA, the clock does not 
synchronize with the frame and the receiving data either. 
The FPGA can start to receive the data on the boundary 
between two data as  show in Figure 4. 

B) IDELAY And IDELAYCTRL 

In order to solve the problem of the sampling time, the 
IDELAY (Input Delay element) and the IDELAYCTRL 
(IDELAY tap delay value Control) primitives from 
Virtex®-5 will be applied capturing the frame and bits 
from two-lanes correctly before de-serializing using 
ISERDES. The IDELAY primitive is a digitally controlled 
analog delay line as shown in Figure 5. 

 
Figure 5: IDELAY primitive [2] 

C) Data De-serialization 

The outputs of the ADCs are serialized data and 
the FPGA cannot directly use these data. Therefore, 
before analyzing the data, an input serial-to-parallel 
data converter should be employed in doing de-
serialization of the frame and the data that come from 
each ADC. 

D) Checksum & Aligning  

The FPGA can start to receive data at any time, and it 
causes two problems as shown in Figures 3 and 4. In order 
to solve the first problem, the de-serialized frame (FR in 
Figure 3 is serialized frame) is used as a checksum. The 
checksum function returns a value to determine if the bit 
slip function should be performed. If this frame which is 
still 8 bits after de-serialization is equal to “11110000”, the 
checksum function returns 0, and it means the bit slip 
function will not be enabled. Otherwise, the checksum 
function returns 1 and enables the bit slip function to align 
the bits. The frequency of the clock for the checksum 

function is 125 MHz, because the decision should be made 
for every 8-bits frame. But the checksum function checks 
the frame every 4 clocks, in order to give a time for the bit 
slip function in ISERDES to do the aligning. In Figure 3 as 
an example, the FR is “11000011”, but not “11110000”. In 
this case, the checksum function returns 1 in the first clock. 
Then, the bit slip function will be performed to do the 
aligning in the next three clock times. Checking and 
aligning one to be repeated until the checksum function 
returns 0.  

E)  Calibration  

Figure 4 only shows the received data from one of the 
channels of the ADC. Here each channel has two lanes, 
each ADC has 4 channels and there are 4 ADCs, totaling 
32 lanes. Therefore, all the data which are received from 
the ADCs should be as shown in Figure 6. If the FPGA 
starts to receive data at position 2 in Figure 6, the 
checksum function can return 0 and the aligning will be 
enabled, but the received data can still be incorrect since it 
is close to the noise. This is the second problem.  

 
Figure 6: Worst Case Of Sampling 

The theoretical maximum eye opening is 1ns per lane. 
All lines are sample-clocked with one clock signal and the 
goal is to sample all data lines in the middle of the eye 
(position 4 in Figure 6), where the signal has the highest 
distance from noise. In order to reach the goal, a state 
machine is introduced, since the checksum and aligning are 
not enough. 

F)  Filtering 

A pulse must be filtered in order to significantly reduce 
the noise. There are a lot of filters in the world applied in 
this field. But we would like to compare them in such a 
way that we know which one is better to use in our case. 
Finite Impulse Response (FIR) Filter, Moving Average 
(MA) and Moving Window Deconvolution (MWD) is used 
here for comparision. In order to measure the precision of 
amplitude estimations from different filters, a normal 
distribution table or a histogram of amplitudes will be 
created and analyzed. The histogram is a graphical 
representation of the distribution of data. It is an estimate 
of the probability distribution of a continuous variable. 
Histograms are used to plot the density of data and get the 
probability density function of the underlying variable. 
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F
igure 7: Examples of histogram [3] 

For example in Figure 7, after running for a number of 
times, a graph where the frequencies are located around 0 
is the one similar to a normal distribution. The more 
samples the testing has, the more precise the distribution 
will be.  Here the estimation precision of amplitudes from 
different filters will be measured. The goal is to create and 
analyze the normal distribution table or histogram of 
amplitudes from different filters.  

V. Parameterization 

The parameterization is implemented after filtering the 
pulse. The general parameters of the pulse include pulse 
amplitude, pulse width, pulse arrival time etc. The shape of 
the pulse is shown in Figure 8 with rise and fall time, The 
amplitude is not so stable due to the influence of noise. 
The pulse parameter definitions are provided as follows 
[4]. The Pulse Amplitude (PA in Figure 8) is the difference 
between the maximum value and the minimum value of the 
pulse. Pulse Rise Time (PRT in Figure 8) is the interval 
between the 10% and 90% amplitude points on the leading 
edge. The Pulse Fall Time (PFT in Figure 8) is the interval 
between the 10% and 90% amplitude points on the trailing 
edge. The Pulse Width (PW in Figure 8) is the interval 
between leading and trailing edge medians. The specified 
and displayed value is that obtained with fastest edges, 
essentially equal to the interval from the start of the 
leading edge to the start of the trailing edge. The Pulse 
Integral (PI in Figure 8) is the sum of the differences 
between the value of pulse and the minimum value of 
pulse during the sampling time. 

 
Figure 8: Pulse Waveform And General Parameter Definitions 

A) Baseline 

Baseline is an important element for calculating the 
pulse parameters. The baseline will shift over time, and 
therefore, in order to calculate the most accurate pulse 
parameters, the baseline should be calculated continuously. 
However, it is difficult to find the baseline for the pulse 
because there is too much noise around the baseline rather 
than a fixed value. Moreover, as each sample is read into 
the FPGA, the first step is to determine if the sample is part 

of an event or a sample of the baseline. If the sample is 
part of an event pulse, it should not be included in the 
baseline calculation. To exclude samples of an event pulse, 
a baseline window [5] giving a range of the baseline with 
upper and lower limits will be calculated instead of a 
single baseline.  
 

 
Figure 9: Baseline Window 

If a sample is inside the baseline window, it is 
determined to be part of the baseline; otherwise it is 
assumed to be part of an event pulse. The baseline window 
keeps track of how many samples have been inside and 
how many have been outside the window. Initially, the 
value of the upper baseline is 2 ADC least significant bits 
(LSB) and the lower baseline is 0 ACD LSB. If the 
following 64 samples are larger than the value of the upper 
baseline, both the upper and lower limits of baseline 
window will be increased by one ADC LSB. If the 
following 64 samples are smaller than the value of the 
lower baseline, both the upper and lower limits of the 
baseline window will be decreased by one ACD LSB. Or if 
512 samples have been inside, the window is contracted by 
one ADC LSB. Likewise, if there are 64 samples outside, 
the baseline window is expanded by one ADC LSB. The 
upper and lower limits of the baseline window will be 
increased or decreased a lot in the beginning, because the 
baseline window is far away from the pulse. Once the 
samples get inside the baseline window, contraction or 
expansion will happen a lot. In order to simplify the 
control, the three counters (above, below or inside the 
baseline window) only reset when 64 or 512 are reached 
respectively. The window expands faster than it contracts 
because there are more baseline values than pulse values. 
In this data set, the ratio is about 4:1. Figure 9 illustrates an 
example of a baseline window (the upper limit of baseline 
window is in light green and lower limit of baseline 
window is in dark green). 

B) Threshold 

A threshold is used to separate the pulse from the 
baseline. It is almost the same as the upper limit of the 
baseline window. The difference between them is that after 
the pulse rises and crosses the upper limit of the baseline 
window, the upper limit will increase until the pulse goes 
down and crosses again, but the threshold should be kept at 
the same value until the pulse and upper baseline cross 
again. This case gives a better and more accurate value to 
calculate the amplitude. The amplitude will be calculated 
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by the maximum value of the pulse and the threshold (A in 
Figure 10) instead of the maximum value of pulse and the 
upper limit of the baseline window (A’ in Figure 10). 

 

 
Figure 10: Threshold 

Figure 11 shows that the length between two intersection 
points created by a pulse and the threshold (TH1) are the 
arrival time of the pulse rising edge (t1) and the arrival 
time of the pulse falling edge (t2). All of the parameters 
will be calculated during the pulse width PW’. 
 

 
Figure 11: Pulse Width 

The pulse amplitude (PA) is the most important 
parameter to describe the pulse waveform. The 
measurement of PA directly affects the measurement of 
other parameters. For instance, in order to measure the 
Pulse Rise Time and the Pulse Fall Time, the PA should be 
measured first. Here we start to search for the PA from 
point t1 as shown in Figure 11. For each clock time, a 
variable whose initial value is 0 will be compared with the 
current value of the amplitude (the difference between 
pulse and threshold). The variable will be replaced by the 
current amplitude if it is smaller than current amplitude, 
otherwise, there will be no change. When t2 is achieved, 
the search will stop and the variable will be returned as the 
PA. The calculation of pulse rise time (PRT) and pulse fall 
time (PFT) are similar to the PA calculation. If the current 
amplitude is equal to the variable, the PRT will be 
increased by one. Otherwise, if current amplitude is 
smaller than the variable, the PFT will be increased by one. 
There are no changes when they are equal.A rough value 
of the pulse width (PW’ in Figure 11) can easily be 
measured by starting up a counter at t1 and increasing it by 
1 each clock cycle. The return value of the counter at t2 is 
PW’. However, the real PW is the time interval between 

two points which are the intersection between the pulse 
and TH2. Threshold TH2 is half of the pulse amplitude. 
Therefore, it is difficult to define TH2 before the PA has 
been measured. There are two methods to calculate PW. 
One is, saving all of the values with time during PW’, then 
searching the memory and calculating after the amplitude 
has been calculated. Another is, using the amplitude of 
previous pulse as reference to define TH2, and then doing 
a similar calculation of PW’. The first method gives a more 
accurate value but wastes memory space. The second 
method is used because the input pulses will not be 
changed for a period of time and the measurements are 
similar during this time. For each clock cycle during PW’, 
the current values (amplitudes) will be accumulated. The 
sum of those values is the pulse Integral (PI). 

VI.Testing 

 
The histograms obtained by using a Xilinx in-chip 

logic analyzer (ChipScope Pro™) for later analysis, 
MATLAB, a numerical computation, visualization, and 
programming environment will be used to do the 
comparison among histograms. This is hard to do in real 
time.. The Full Width at Half Maximum (FWHM) value as 
criteria will be calculated from the histograms by using 
MATLAB. 

A) Full Width at Half Maximum  

Criteria should be set for measuring the accuracy of 
amplitudes calculated from different filters. In this paper, 
the full width at half maximum (FWHM) [6] which is a 
parameter given by the difference between the two extreme 
values of the independent variable at which the function 
reaches half its maximum value will be used as the 
criterion. The smaller the FWHM is, the better the filter is. 
The best case is when FWHM equal to 1. The 
measurement of FWHM is similar as PW as shown in 
Figure 9, but the difference is that FWHM is calculated in 
post processing and PW is calculated in real time. The 
value x in Figure 12 represents amplitude. The function 
f(x) represents the frequency distribution of achieved 
amplitudes within 65525 times of the experiment. Each 
function will be traversed twice here. The maximum value 
of time for the first time achieved by keeping the larger 
value during traversal. The second time, the FWHM is 
calculated  by starting a counter when the value is larger 
than half of the maximum value and finishing it when the 
value is smaller than half of the maximum value 

 
Figure 12: Full Width at Half Maximum 

VII Analysis 
The comparison among different filters is based on the 

FWHM values which are achieved from 8 different pulses, 
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both single-humped pulse and double-humped pulse with 
four different amplitudes (2mV, 10mV, 50mV and 
500mV). Each pulse with different filters will be tested 20 
times and the average values of the FWHM will be 
calculated for analysis as shown in Figure 13(a) and (b). 
Figure 13(a) illustrates that FWHM values of MA are 
much lower than MWD, which means MA is much better 
and more stable than MWD here.  

 
Figure 13 (a): FWHM values for single-humped pulses with different 

filters 

 
Figure 13(b): FWHM values for double-humped pulses with different 

filters 

The FWHM values of the combination of MA and 
MWD is among the three. The stability of MA & MWD is 
better than MWD but worse than MA. As shown in both 
Figure 13(a) and (b), with the increase of amplitudes, the 
values of FWHM become larger and larger, and all the 
filters become more and more volatile. A double-humped 
pulse means two values of amplitude are received from 
each test. The FWHM values of it should be double the 
value of single-humped pulse with one value of amplitude. 
From the comparison between Figures 13(a) and (b), it is 
easy to see that the values of FWHM in (b) are almost 
double of the values of FWHM in (a). Therefore, it means 
the stabilities of filters will not be influenced by whether 
they are single-humped pulses or double-humped pulses. 

VIII. Results and Conclusion 

The investigations provide a calibration method for pulses 
processed by an ADC. They use some existing filters to 
achieve the accurate parameters of pulses and existing 
concept to do a comparison among filters. The FPGA 
implementation is also discussed. The investigations have 
a realistic significance in the high energy physics, 
especially in particle analysis. The main achievements are 
embodied in the following aspects.  
(1) Introduced a calibration method for achieving an 
accurate digital signal after the analog signal is converted 
and serialized by ADC and serialization. This design 
method with a finite state machine can be realized easily 

by FPGA. The high precision and the ability of real time 
application were validated.  

(2) Combined two existing filters, MWD and MA. MWD 
filter can avoid signal overlaps and make the measurement 
of amplitudes of double-humped pulses to become easier. 
The MA filter reduces the effect of noise on the accuracy 
of measured parameter and increases the S/N ratio.  

(3) Provided measuring methods for different parameters 
which are also suitable for real time measurements. The 
most important parameter is the amplitudes of pulses. 
Accumulated the values of amplitudes and returned 
histograms with software ChipScope Pro™.  

(4) Calculated the FWHM for each histogram and 
compared different filters with FWHM. All of the back-
end processing was done in MATLAB. After multiple 
testing, the MA filter holds the highest stability, MWD 
filter holds the lowest, and the combination of them is in 
between. However, it is difficult for measuring double-
humped pulses by only using MA. Therefore, the 
combination of MA and MWD is the best choice when 
measuring double-humped pulses, and it is enough use MA 
when measuring single-humped pulse waves.  

(5) Selected an XC5VLX50T FPGA, and illustrated the 
structure of a developed board. The whole implementation 
procedure and part of pseudo codes are also given.  

There is room for improvement with regard to the 
filters. By using both MA and MWD, one can easily 
achieve parameters in both single-humped pulses and 
double-humped pulses, but with an increase of the 
amplitudes of the pulses, the stability of MWD is 
decreasing a lot, and the stability of the combination of 
MA and MWD also decreases a lot. Future investigations 
should focus on finding filters which are more efficient and 
easy to realize in FPGA. Kalman filtering for example, 
which is an optimal estimator and a widely applied concept 
in time series analysis, can be used for future 
implementation. It is known as linear quadratic estimation 
and it is an algorithm that produces a statistically optimal 
estimate of the unknown state of the dynamic system from 
noisy data taken at discrete real time [7]. 
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