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Abstract— In this paper, the leakage-based variant of the 
Least Mean Mixed Norm (LMMN) algorithm, the leaky 
Least Mean Mixed Norm (LLMMN) algorithm, is derived. 
The proposed algorithm will help mitigate the weight drift 
problem expe-rienced in the conventional Least Mean 
Square (LMS) and Least Mean Fourth (LMF) algorithms. 
The aim of this paper is to derive the LLMMN adaptive 
algorithm and perform the transient analysis using the 
energy conservation relation framework. Finally,  
simulation results are carried out to support  the theoretical 
findings, and show improved performance obtained through 
the use of LLMMN over the conventional LMMN algorithm 
in a weight drift environment.  
 
Index Terms—Adaptive filters, weight drift, leaky least 
mean mixed norm. 

I.  INTRODUCTION   

In our everyday life the Adaptive filters are used in a 
variety of areas such as plant modelling or system 
identification, noise cancelation and adaptive 
equalization, to name a few. The theory about adaptive 
filters, advantages and applications are widely described 
in the literature [1]. 

The LMF algorithm outperforms the LMS in non-
Gaussian noise environments. Another example of 
adaptive filter algorithms is the leaky Least Mean Square 
(leaky LMS) algorithm [4]. This leaky LMS algorithm 
was first introduced to overcome the weight drift problem  
in LMS adaptive filters. The LMF algorithm also suffers 
from the weight drift problem under the same conditions 
as LMS algorithm,. The LMMN algorithm [5] is found to 
provide a better performance in both Gaussian and Non-
Gaussian environments than either LMS or the LMF and 
hence the LMMN algorithm will behave identically in 
such a scenario. Therefore, in this paper, a new variant of 
the LMMN is introduced which overcomes the weight 
drift instability from occurring using the leakage 
technique. 

In this paper, the leaky LMMN algorithm is derived 
and its transient analysis is carried out using energy 
conservation concept [1] and the conditions for the mean 
and mean square stability of the algorithm are also 
derived. 

 

 

II. THE LEAKY LEAST MEAN MIXED NORM 
ALGORITHM UPDATE RECURSION 

 The output of an FIR channel of length M in the 
presence of an additive noise can be written as follows 
[1]: 

0k k ky u w n= +
                                                  (1)

 

where ku  is a zero mean stationary input process with  

variance 2
uσ , { }kn is a stationary noise process with zero 

mean and variance 2
nσ , and ow is weight vector for M 

taps impulse response for unknown input. 
 
In the case of the LMMN algorithm, the cost function 

to be minimized is given by [5] 
2 4( ) [ ] (1 ) [ ]LMMN n nJ w E e E eδ δ= + −              (2) 

withα being the mixing parameter andne is the error 

between the output of the unknown system and the 
adaptive filter and is defined as 

n n n ne y u w= −
                                                  (3)

 

The LMMN cost function is modified and leakage 
parameterα is introduced to obtain the proposed method 
same way as was done for the leaky LMS [1]. Therefore, 
the cost function that we wish to minimize is given as 

2 2 4( ) || || { [ ] (1 ) [ ]}n nJ w w Ee Eeα δ δ= + + −
                (4)

 

The corresponding update equation of the leaky 
LMMN is then 

2
1 { (1 ) }n n n n nw w e e uµ δ δ+ = + + −

                  (5)
 

The LMMN update equation is obtained for 0α = in (5) 

and µ  is the step size. 

 
III. PERFORMANCE ANALYSIS OF THE LEAKY 

LMMN ALGORITHM 
 

   In this section, the proposed leaky LMMN algorithm is 
analyzed in both the mean and the mean-square sense 
using the frame work of fundamental energy relation. 
Consequently, all the assumptions applicable for long 
filters are employed. In addition, the following 
assumptions are used: 
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A1 The noise sequence{ }nv is i.i.d. with zero odd order 

moments and variance 2 2[ ]v nE vσ =  

A2 The sequence nv  is independent of ,j ku w  for all j, 

k. 

A3 The regressor ju are i.i.d Gaussian random vectors 

with covariance matrix [ ] 0.T
u n nR E u u= >  

A4 The random variables ,n n nd u andv have zero means. 

  The mean and mean square stability conditions are 
derived and learning curves are constructed to calculate  
MSD and EMSE. 

A.  Mean Behaviour 

Defining the weight error vector nw as follows: 

nnw c w= −
�

                                                             (6)
 

Results in following update equation 
2

1 (1 ) [ (1 ) || || ]T
n n n n nw w c u e eµα µα µ δ δ+ = − + − + −

� �

         (7) 
taking the expectations on both sides and using the 
assumptions, we get 

2
1[ ] (1 ) [ ] [ [ (1 )|| || ]]T

n n n n nEw Ew c Eu e eµα µα µ δ δ+ = − + − + −
� �

   (8)                  

To solve 2[ [ (1 ) || || ]]T
n n nE u e eδ δ+ − , we will make 

use of above assumptions to solve the equation: 
 

2 3

2

[ [ (1 ) || || ]] [ ] (1 ) [ ]

{ 3(1 )( )} [ ]

T T T
n n n n n n n

nv

E u e e E u e E u e

RE w

δ δ δ δ

δ δ σ ζ

+ − = + −

= + − +
�

    (9)         

                                                                                 

Using (9) in (8), we get 
2

1[ ] [ [ ( 3(1 )( ) )]] [ ]n nvE w I I R E w cµ α δ δ σ ζ µα+ = − + + − + +
� �

(10)                                                                            
Where ζ is defined as 

2[ ( )]aE e nζ =
                                                        (11)         

 

The range of step-size values for which nw
�

remains 
bounded is given as  

2
max

2
0

[ 3(1 )( ) ( )]v R
µ

α δ δ σ ϑ λ
< <

+ + − +
                   (12)

 

Where max( )Rλ is the largest eigen value of R. 

B. Behavior of Mean Square Error  

 
    In this section the performance of the leaky LMMN 

algorithm in the mean-square sense is analyzed. The 
assumption used is that the adaptive filter is long enough 
to justify the following: 

A5 The norm of the input regressor 2(|| ||)nu  can be 

assumed to be uncorrelated with 6
ne

 

1) Error and Performance Measures:  
 

We are interested in studying the time-evolution and 

the steady-state values of 2[|| || ]nE w and 2[ ( )]aE e n  

which give the EMSE and the MSD, respectively. 
For some symmetric positive definite weighting matrix 
A, the weighted a priori estimation error is defined as 

2( )a n ne n u Aw=
                                                   (13) 

the standard a priori estimation error is obtained when A 
= I from the above equation as, 

( ) ( )a a n ne n e n u w∑= =
                                         (14)     

 

It is easy to see that the estimation error,ne , and the a 

priori estimation error, ( )ae n , are related via 

( )n a ne e n v= +
                                                   (15)  

Thus, using A3 and (14), the EMSE can be set up as 
follows: 

2 2[ ( )] [|| || ]n a n RE e n E wζ = =                                   (16) 
 

2) Time evolution of the weighted 

variance 2[|| || ]n AE w : 

 
 In this section, the time evolution of the weighted 

variance 2[|| || ]n AE w  is derived for the leaky LMMN 

algorithm using the framework of fundamental weighted-
energy conservation relation. Thus, by using (8) and (14), 
one can arrive at: 

2 2 2 2
1

2

[|| || ] (1 ) [|| || ] || ||

( ) 2 (1 ) [ ( ) ( )]

2 [ ]

n n

U a a G

T
n

E w E w c

tr R H E e n e n H

c JE w

µα µα
µ µ µα
µα

+ ∑ ∑ ∑

∑

= − +

+ − −

+ ∑

% %

%

    (17) 

Where 
2[ { [ 3(1 )( )] }]vJ I I Rµ α δ δ σ ζ= − + + − +

         (18)  

The transient behavior of the weighted 

variance 2[|| || ]E w ∑  is shown above for any constant 

weight matrix∑ . Proper choice of the weight matrix∑  
gives various performance measures. Now depending 
upon the correlation of the input the analysis is further 
divided into two parts. 

 
3) Transient Analysis 

  When the input data is correlated, i.e., R is a non-diagonal 
matrix, different weighting matrices will appear on both sides 
of the equation. Therefore, we again resort to the technique 
given in [1]. At the end, we get 
 

1

1 1 2

1[w ] 0 [w ]

nn n

n n

n n

Fw w

A AF F

E J E

+

+

+

    = +    
    1424314243 14243

 

Where 1 2, , n nF F A andL
given as 
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[|| w || ]

[|| w || ]

[|| w || ]

.
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.

[|| w || ]

[|| w || ]

M

M

n

n R

n R

n

n R

n R

E

E

E

A

E

E

−

−

 
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 
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2

1

2

22

23

2

2

|| c ||(R)

|| c ||tr(R )

|| c ||tr(R )

. .

. .

. .

tr(R ) || c ||M

R

R

n U

M

R

tr

L Hµ µα

−

  
  
  
  
  
 = + 
  
  
  
  
                            (20) 

2

2

1

2 .

.

.

T

M

I

R

R

F c J

R

µα

−

 
 
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 
 
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 
 
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                                              (21) 
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Where  

2
1 (1 )k µα= −

                                                    (22) 

2 2 (1 )HGk µ µα= −
 

2 2 2 6 4(1 ) 2 (1 )U v v vH M Mµ δ σ µ δ ξ µδ δ ξ= + − + −  the 

first and second entries of the state vector 1nw +  show the 

development of 2[|| || ]nE w  and 2[ ( )]aE e n . The 

learning curve of the filter then becomes 
2 2 2[e (n)] E[e (n)]a vE σ= +

                               (23)   

B. Mean Square Stability 

One of the conditions for the mean square stability of 
the leaky LMMN algorithm to be convergent, is obtained 

from the block structure of kF  as shown in (20-21). To 

obtain the mean square stability of the leaky LMMN the 

same approach of mean convergence on the step size is 
used as shown in (12). 

1
max 1 2

1
0

(G G )
µ

λ −< <
                                     (24) 

Where 1
max 1 2(G G )λ −  is the largest eigenvalue of 

1
1 2G G− with 

*
1 2( I H B)GG α= +

                                               (25)   
*

2G ( I 2H B)Gα α= +
 

Where in from above equations 

0 1 2 1

0 1 0 0 0

0 0 1 0 0

0 0
B

0

0 0 0 0 1

M Mp p p p− −

 
 
 
 

=  
 
 
 

− − − −  

L

L

O O O L

M M O O O

L

L L      (26) 
and 

 
* 23(1 ){ }G vH δ δ σ ϑ= + − +  

 For the proposed method to converge in both the mean 
and mean square sense (12) and (24) are combined the 
condition obtained is 

1
1 2

*
max

*
max

max

max

(R)2
,

(R) 4

1
,

G

G

G G

H

H

otherwise

λα
α λ

µ

λ
−

 
> + =  

 
  

               (27) 

 

IV. Experimental Results 

The simulations are based on a system identification 

setup where the regression vectornu  is a Gaussian vector 

with filter of length 5. 
The weight drift process is carried out in the same way 

as was done in [7]. With a filter vector of  

[0.7071 0.7071]T− and regressor vector [0.5, 0.5]± −  

and choosing it to be equal probable making input matrix 
as singular, the proposed algorithm is compared with the 
LMMN in a weight drifting environment. The output and 
the quantization noise are grouped together and modeled 

as a Gaussian vector with mean of [0.49, 0.49]T−  and a 

variance of 310 .The adaptive filter coefficients and the 
regressors are set to 10 quantization bits with a step size 
of 0:0156 and the product of the step size and the leakage 
factor was set at 0:002. By taking the infinite norms of 
the updated weight vectors the experiment is run 

over 410  samples.. 
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Figure 1. Comparison of LMMN and Leaky LMMN in a weight drift 

environment. 
 

  The above Fig(1) shows that the parameter drift 
causes the adaptive filter weights to blow up while in the 
case of the leaky LMMN they remain bounded. 
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Figure 2. MSE learning curve of the LLMMN in Gaussian noise 

environment for white data 
 

The white Gaussian data was used with the step size 
0.01 and leakage factor is 0.001 to compare the 
theoretical findings with the simulation result, while the 
number of trials set at 500 and number of samples were 
104.  The randomly generated normalized system weight 
vector with the number of taps set at 5 is taken and the 
Gaussian with variance 0.1 was chosen. The  Fig. 2 
shows a good match between the theoretical and 
simulation results. 

CONCLUSIONS 

  In this paper, a new adaptive algorithm, the leaky 
LMMN algorithm, is presented. The expressions were 
derived for the transient analysis of the algorithm and  
also derived the conditions for the mean and mean square 
stability. Monte Carlo simulations were performed which 
match well with the theoretical values. Finally, the 
advantage of the leaky LMMN over the conventional 
LMMN in a weight drift environment is also shown.  
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