
ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 9, December 2015

26 CVR College of Engineering

Design of Digital Filters in FPGA using High Level
Synthesis

G Ravi Kumar Reddy, Assistant Professor.
CVR College of Engineering College, ECE, Hyderabad, India.

Email: ravigrkr@gmail.com

Abstract—This work is aimed at the high level synthesis of
FPGA based IIR digital filters using Vivado HLS produced
by Xilinx and HDL coder produced by Math works. The
higher layer model of the filter was designed in Vivado HLS,
MATLAB and simulink. Simulations, verification and
synthesis of the RTL code were done for both the tools.
Further optimizations were done so that the final design
could meet the area, timing and throughput requirements.
The resulting designs were later evaluated to see which of
them satisfies the design objectives specified. The present
work has revealed that Vivado HLS is able to generate more
efficient designs than the HDL coder. Vivado provides the
designer with more granularity to control scheduling and
binding, the two processes at the heart of HLS. In addition,
both tools provide the designer with transparency from
modeling up to verification of the RTL code. HDL coder did
not meet timing. Vivado HLS on the other hand met the
timing requirements.

Index Terms— FPGA, HDL, HLS, Synthesis, RTL, MATLAB,
IIR.

I.Introduction

Electronic products currently are composed of highly
complex designs in such areas as; communication, control,
medical, defense and consumer electronics. They feature in
applications such as digital signal processing (DSP),
communication protocols, soft processors etc. Many DSP
algorithms such as FFTs, FIR or IIR, which were
previously built using application specific integrated
circuits (ASICs) can be built on FPGAs with very high
flexibility. In addition, these devices offer better economic
prospects as compared to the ASICs. Consequently designs
that were previously implemented on ASICs have
experienced a move to the reconfigurable technology.
These designs have become increasingly complex and are
stretching the boundaries of device density, design
performance and device power consumption. It is always
the objective of designers to minimize costs by utilizing
device resources appropriately to meet design objectives.
In addition, given the shortened windows of design
development time, it is very important to hit the target for
the design objectives within the allocated time and
schedule. Many downstream problems can be avoided with
an appropriate methodology during the design flow. By
taking appropriate steps early in the design phase,
significant design productivity and minimized iterations
can be achieved. It is therefore important to utilize tools
that offer a good design methodology and provide proper

estimates of project viability, cost and design closure early
in the design phase [8].

In the applications of ABB HVDC (High Voltage
Direct Current), voltage and current measuring IO-units in
the Modular Advanced Control for HVDC system
(MACH) [9] perform digital filtering of analog signals
after analog to digital conversion. The filtering in the
digital domain is done by Digital Signal Processors (DSP)
and / or Field Programmable Gate Arrays (FPGA). An
efficient way for filter designing is using VHDL (Very-
high-speed integrated- circuits Hardware Description
Language). When filters are implemented in FPGAs, the
corresponding VHDL-code is usually written at Register
Transfer Level (RTL) which is thereafter synthesized into
logic gates. This means that the filter architecture and
characteristics need to be determined before the
implementation is done. Also, once the implementation is
done, an architectural change on the filters may cause a
large impact on the implementation, and may result in a
change of most of the RTL-code.

There is plenty of High Level Synthesis (HLS) tools
available for FPGA design on the market today e.g. HDL
coder tool, Vivado HLS tool, Catapult e.tc. An HLS tool
usually takes in a higher level language description, for
example in C, C++, MATLAB /Simulink or System-C and
then based on directives, translates the high level code into
RTL-code which can then be synthesized into logic gates.
With this methodology, one can easily make changes in an
algorithm and/or directives, and have the tool
automatically regenerate the RTL-code.

II. FPGA design Overview

The Field-Programmable Gate Array (FPGA) is a
Prototype device that can be programmed after
manufacturing. Instead of being restricted to any
predetermined hardware function like an application
specific integrated circuit (ASIC), an FPGA allows a
designer to program functions and product features, adapt
it to new standards, and reconfigure the hardware
technology for specific applications even after the product
has been installed in the field-hence the name "field-
programmable". The FPGA configuration is generally
specified using a hardware description language (HDL).
FPGAs can be used to implement any logical functions that
ASICs perform. In addition, the ability to update the
functionality after shipping offers advantages for many
applications as compared to the ASICs. Specifically

DOI: 10.32377/cvrjst0906

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 9, December 2015

 CVR College of Engineering 27

FPGAs offer the following advantages as compared to the
ASICs.

FPGAs contain programmable logic components called
"logic blocks or Logic elements", and a hierarchy of
reconfigurable interconnects that allow the blocks to be
"wired together" - somewhat like many changeable logic
gates that can be inter-wired in many different
configurations. Logic blocks can be configured to perform
complex combinational functions, or merely simple logic
gates like AND and XOR. In most FPGAs, the logic
blocks also include memory elements, which may be
simple flip-flops or more complete blocks of memory as
shown in figure 1. Unlike previous generation FPGAs
using I/Os with programmable logic and interconnects,
today's FPGAs consist of various mixes of configurable
embedded SRAM, high-speed transceivers, high-speed
I/Os, logic blocks, and routing [5] .

Figure 1: Modern FPGA Architecture

III.Filter Realization

As a general rule, linear time-Invariant (LTI) systems
can be classified into either finite impulse response (FIR)
or infinite impulse response (IIR) depending on whether
their operations have finite or infinite response duration.
Additionally, depending on the application and hardware,
the filtering operation can be organized to operate either as
a single block or as a sample by sample process. With
block processing, the input signal is considered to be a
block of many samples. Essentially the block is filtered by
convolving it with the filter input, and the output is also
obtained as a block of samples. In cases where the input is
very large, it can be broken down into multiple blocks,
filtered and then the output blocks pieced together again.
This can be implemented by ordinary convolution or fast
convolution algorithms.

In the sample processing case, the input samples are
processed one at a time as they arrive at the input. In this
scenario the filter operates like a state machine by utilizing
the current sample together with current internal state of
the filter to compute the current output sample. It also
updates the current internal state in preparation for
processing of the next sample. This paper expounds on the
concepts of the sample by sample processing technique to

develop a high level language (HLL) for a filter used in an
instrumentation application on the MACH 2 platform.

In general FIR filters have an impulse response ()
that extends over a finite duration interval say 0 ,
and is identically equal to zero elsewhere i.e. { 0, 1, 2,
… , 0, 0, 0, 0, … }. M is referred to as the order of the
filter and the impulse response coefficients [0, 1, 2] are
referred to as filter coefficients. In general the filter
equation for the FIR filters is given by

M

mnxmhny
0

)()()(

or, explicitly as

)()2()1()()(210 Mnxhnxhnxhnxhny M

 Thus the I/O equation is obtained as a weighed sum of
the present input sample and the past M samples. IIR filters
on the other hand have the impulse response () that
extends over an infinite duration defined over the infinite
interval 0 . In general the equation for IIR filters is
given by

0

)()()(mnxmhny

Or, explicitly as

)2()1()()(210 nxhnxhnxhny

This I/O equation is not computationally feasible since
practical systems cannot deal with an infinite number of
terms. Therefore, practical implementations normally
restrict their attention to a subclass of IIR filters in which
the infinite number of filter coefficients { 0, 1, 2, … }
are not chosen arbitrarily, but rather they are coupled to
each other through constant coefficient linear difference
equations. With this subclass of IIR filters, their I/O
equation can be rearranged as a difference equation
allowing the efficient recursive computation of the output

(). Practical implementations are normally concerned
with filters that have impulse responses () that satisfy
the constant-coefficient difference equations of general
type:

)()()(
1

inbinhanh
L

i

i

M

i

i

The convolution equation can be written as:

)()()(
1

inxbinyany
L

i

i

M

i

i

Or, explicitly as

LnMnnMnMnnn xbxbxbyayayay 1102211

And in general one can think of FIR filters as a special
case of IIR filters whose recursive terms are absent i.e.

0,,, 21 Maaa .

DOI: 10.32377/cvrjst0906

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 9, December 2015

28 CVR College of Engineering

This paper is concerned with IIR filters since the current
design implementation is an IIR filter. The equivalent
transfer function of the IIR filter can be represented as;

M

M

L

L

zazaza

zbzbzbb
zXzYzH

2
2

1
1

2
2

1
10

1
)()()(

For a second order filter, the general form of the transfer
function is

2
2

1
1

2
2

1
10

1
)()()(

zaza

zbzbb
zXzYzH

In addition, filters can be realized in different ways
such as:1) Direct form, 2) Canonical form and 3) Cascade
form. The IIR filter for which this investigation is
performed is a cascade of seven second order sections,
realized in direct form II (canonical form). The design is
targeted for the 45nm low power process technology
FPGAs which are optimized for cost, power, performance
and most efficient utilization of low-power copper process
technology [1]. The filter is targeted for use in the voltage
and current measuring IO-units in the MACH control
system that performs digital filtering of signals after analog
to digital conversion. The system of equations (difference)
for the second order section of the filter are shown as

)()1(

)()1(

)()()()(

)()()(*)(

01

12

221100

22110

ndnd

ndnd

ndbndbndbny

ndandanxgainnd

The cascade realization form of a general second order
function assumes that the transfer function is the product of
such second order transfer functions as shown above. In
general any transfer function that can be factored into
second order filters with real valued coefficients.

1

0 2
2

1
1

2
2

1
101

0 1
)()(

k

i
ii

iiik

i i
zaza

zbzbb
zHzH

The current design is of order 14 and therefore, since the
cascade is of second order sections, then = 7.

6

0 2
2

1
1

2
2

1
106

0 1
)()(

i
ii

iii

i i
zaza

zbzbb
zHzH

The design upon which the first evaluation of the tools

is made is the second order section of the filter as shown in
the diagram in figure 2. This filter is an anti-aliasing filter
that is placed between the DSP and the ADC. The ADCs
sample at approximately 500 kHz whereas the filter
outputs to the DSP run at a configurable rate depending on
the measuring board. Typical values could be 50, 100 or

125 kHz. This is the fundamental reason why the anti-
aliasing filter is needed between the DSP and the ADCs.
The design of the filter is such that all the coefficients and
internal states (delay registers), are stored in RAM. The
coefficients and decimation parameter of the filter (g0, a1,
a2, b0, b1, b2, ds) are configurable externally by the DSP
and it is therefore possible to change the characteristics of
the filter depending on which measuring board the
communication board is piggybacked on. The filter block
performs data filtering (anti-aliasing) as well as storage of
filtered values and internal states into the DRAM.

The current implementation of the design utilizes one
multiplier, one adder and one subtractor in a pipelined
fashion in order to save the FPGA resources. It is the goal
of this investigation to be able to achieve these resource
restrictions while satisfying the timing of 100MHZ.

Figure 2. Second Order Section (SOS) of the IIR filter

IV. Vivado High Level Synthesis

Vivado High Level Synthesis is Xilinx’s HLS tool for
transforming a C, C++ or SystemC specification into an
RTL implementation which can then be packaged as an
Intellectual Property (IP) core or exported as RTL source
code for synthesis. This adds an extra layer of abstraction
above the traditional RTL coding approach. The
fundamental reason why the FPGA community has moved
from one abstraction level to the next is to manage the
complexity of the designs. The move is such that each
added abstraction layer hides some complexity of the
corresponding implementation step. The RTL description
captures the desired functionality by defining data path and
logic between boundaries of registers. RTL synthesis
creates a netlist of Boolean functions to implement the
design. The focus of the RTL abstraction layer is to define
a functional model for the hardware [7]. A functional
specification would therefore remove the need to define
the register boundaries in order to implement a desired
algorithm.

The designer’s goal is now focused on only specifying
the desired functionality. In Vivado HLS, moving up the
design hierarchy to use the functional specification for
creating RTL descriptions provides productivity in both
verification and design optimization [2]. High-Level
Synthesis shortens the manual RTL creation process and
avoids translation errors by automating the creation of
RTL from a functional specification. High-Level Synthesis
automates RTL architecture optimization, allowing
multiple architectures to quickly be evaluated before
committing to an optimum solution. C based entry is the

DOI: 10.32377/cvrjst0906

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 9, December 2015

 CVR College of Engineering 29

most popular mechanism to create functional specifications
and Vivado HLS currently supports to a synthesizable
level all three C input standards(C, C++ and SystemC).
This enables it to simulate C code with minimal
modifications.

As described in [3], the Vivado HLS tool performs two
distinct kinds of synthesis on the design; Algorithm
synthesis takes the content of the functions and synthesizes
the functional statements into RTL statements over several
clock cycles. This type of synthesis typically builds the
algorithm and is significantly affected by the interface
level synthesis described below[4]. Interface synthesis
transforms the function arguments (or parameters) into
RTL ports with specific timing protocols, allowing the
design to communicate with other designs in the system.
The types of interfaces that can be synthesized are wire,
Register one way and two way handshakes, Bus, FIFO and
RAM. In addition, functional level protocols that dictate
when a function can start or end can be synthesized.

A) Area Optimization in Vivado HLS

The design objective of this exercise in terms of area
optimization is to be able to utilize one multiplier, one
adder and one subtractor in a pipelined fashion in order to
save the FPGA resources. This measure comes as a design
specification set in the current solution to minimize
resource usage on the FPGA. It suffices to say therefore
that the tool chosen for use ultimately should be able to
meet at least these basic requirements for this simple
design. Vivado HLS comes with a set of directives that a
designer can use to control the operators,resources, the
binding process and the binding effort level [3]. The first
activity is to limit the number of operators used in the
design. In order to do this, Vivado uses the command
set_directive_allocation [OPTIONS] <location>
<instances>. This command specifies the instance
restrictions for resource allocation. It defines, and can
limit, the number of RTL instances that are used to
implement specific functions or operations. The
set_directive_allocation command can either be embedded
in the source code as #pragma or placed in the directives
tcl file. Both options are configurable using the HLS
command line interface or the HLS GUI. In this exercise,
the first option is preferred so that the directives are carried
over across different solutions. Table 1 shows a
comparison between the generated design and the hand
coded design.

TABLE .1
RESOURCE USAGE STATICS FOR THE CURRENT DESIGN AND THE

GENERATED DESIGN
.

Resource Current Design Generated Design

Slices 150 160
LUTS 277 398

FF 486 417
DSP 4 4

BRAM 0 0
SRL 18 19

Overall the Vivado HLS tool achieves almost the same
resource utilization as the handwritten code. In the table
above, there are a rise in the used slices by 10, a rise in the

used LUTS by 121, a reduction in the number of FF by 69
and a rise of SRLs by 1. In percentages of available
resources on the device, as calculated by ISE, the device
utilization of the two designs is the same. In conclusion, it
is reasonable to say that one can achieve very good area
optimization with appropriate directives in the C/C++
design.

B) Timing Optimizations

Both designs exceed the timing requirement by a very
good margin; however the current handwritten design
achieves a higher operation frequency of 129.467MHZ as
compared to 114.338MHZ in the generated design. It is
however important to note that the timing requirements of
the generated code can be altered as quickly as the design
can be regenerated which is comparably difficult when it
comes to adjusting timing requirements for handwritten
RTL designs in general. For more details about the timing
results see following timing reports shown in figure 3.

Figure 3: Static Timing Reports for the generated design and current

design

C) Latency and Throughput Optimizations

Overall the latency and the iteration interval for the
current design and the generated design are equal, however
the value for the delay register zero of the filter gets ready
after 14 clock cycles in the generated design as compared
to 8 clock cycles in the handwritten RTL code.
This value cannot be improved since latency and
throughput constraints cannot be specified for this single
output value. The tables 2 and 3 illustrate the Latency and
throughput values.

Static Timing Report for the generated design:
Timing summary:

Timing errors: 0 Score: 0 (Setup/Max:

0, Hold: 0)

Constraints cover 19793 paths, 0 nets,

and 2299 connections

Design statistics:

Minimum period: 8.746ns{1} (Maximum

frequency: 114.338MHz)

Static Timing Report for the current design:
Timing summary:

Timing errors: 0 Score: 0

(Setup/Max: 0, Hold: 0)

Constraints cover 17411 paths, 0

nets, and 1826 connections

Design statistics:

Minimum period: 7.724ns {1} (Maximum

frequency: 129.467MHz)

DOI: 10.32377/cvrjst0906

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 9, December 2015

30 CVR College of Engineering

TABLE 2

LATENCY AND ITERATION INTERVAL VALUES FOR THE CURRENT

DESIGN.

latency Interval
min max min max
19 19 6 6

TABLE 3

LATENCY AND ITERATION INTERVAL VALUES FOR THE GENERATED

DESIGN.

latency Interval
min max min max
19 19 6 6

V. HDL Coder

The HDL coder tool embedded in the
MATLAB/Simulink environment lets a designer generate
synthesizable HDL code for FPGA and ASIC
implementations in the following steps:

 Build a model of the design using a combination
of MATLAB code, Simulink and State flow
charts.

 Optimize the design to meet area-speed
objectives.

 Generate the design using the integrated HDL
workflow advisor for MATLAB and Simulink

 Verify the generated code using HDL verifier.

HDL coder also features a Workflow advisor for
automating the FPGA design process from MATLAB
algorithms and Simulink models into Xilinx and Altera
FPGAs. The HDL Workflow Advisor integrates all steps
for traditional FPGA design process, and also includes the
following features [6]:

 Checking the Simulink model for HDL code
generation compatibility. Generating HDL code,
an HDL test bench, and a co-simulation model

 Performing synthesis and timing analysis through
integration with Xilinx ISE and Altera Quartus II

 Estimating resources used in the design
 Back annotating the Simulink model with critical

path timing
The HDL tool in MATLAB leverages on the HDL

Workflow to guide the designer during the process of
generating HDL code. The HDL Workflow Advisor
automatically converts MATLAB code from floating-point
to fixed-point and generates synthesizable VHDL and
Verilog code. Similarly the Workflow Advisor can
generate VHDL and Verilog code from Simulink and State
flow. The power of the tool lies in its ability to generate
code from algorithms built using a library of more than
200 blocks, including State flow charts. In addition, the
MATLAB language gives designers the capability to
model their algorithm at a high level using abstract
MATLAB constructs. This, together with the huge library
provides complex functions, such as the Viterbi decoder,
FFT, CIC filters, and FIR filters, for modeling signal

processing and communications systems, and generating
HDL code [6].

A) Area Optimization in HDL coder

 HDL coder fundamentally uses the sharing optimization
to ensure resource re-use in the generated RTL code. In
addition, MathWorks advises designers to follow the
following guidelines when implementing designs in
MATLAB/Simulink [5]: Input and output data should be
serialized since parallel data processing structures require
more hardware resources and a higher pin count. Designers
should use add and subtract algorithms instead of
algorithms that use functions like sine, divide and modulo.
This is because add and subtract operations use fewer
hardware resources. Designers should avoid large arrays
and matrices since they require more registers and RAM
for storage. Code should be converted from floating-point
to fixed-point since floating-point data types are inefficient
for hardware realization.

HDL coder provides an automated workflow for
floating-point to fixed-point conversion as discussed
earlier. In addition unrolling loops increases speed at the
cost of higher area; unrolling fewer loops and enabling the
loop streaming optimization conserves area at the cost of
throughput. By default, HDL implements hardware that is
a 1-to-1 mapping of Simulink blocks to hardware module
implementations. The resource sharing optimization
enables users to share hardware resources by enabling an
N-to-1 mapping of 'N' functionally-equivalent Simulink
blocks to a single hardware module. The user specifies 'N'
using the 'Sharing Factor' implementation parameter.

Without the sharing factor, the design is able to achieve
the following hardware resource usage as viewed from the
code generation report.

TABLE 4

RESOURCE USAGE BEFORE SHARING

multipliers 6
Adders/Subtractors 6

Registers 21
RAMs 0

Multiplexers 0
Table 4 above clearly shows that the number of

multipliers (corresponding to DSP48As since the signal
processing parameter is turned to on in the model) used is
very high, approximately 41% of the entire available
DSP48A resources available on chip, which is not
acceptable in this design. One can deduce therefore from
looking at the instances that the increased number of
DSP48A usage is due to the number of multiplication
blocks in the model. Each multiplier block corresponds to
4 DSP48As. There are approximately 6 multiplication
blocks and these will result in 24 DSP48As. The objective
at hand therefore is to reduce this number to just 4
DSP48As instances which correspond to only one
multiplier implementation in the design. By setting the
sharing factor to 6, the number of multiplier blocks in the
design could be reduced to 1. The synthesis and mapping
results clearly demonstrate the EDA tool results. Important
to note at this point is that HDL coder does not give actual

DOI: 10.32377/cvrjst0906

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 9, December 2015

 CVR College of Engineering 31

resource usage estimates in a summarized form as Vivado
HLS. The designer has therefore to invoke the required
EDA tool and examine the reports generated by the tool for
thorough conclusions on resource usage. Table 5 below
shows resource utilization after resource sharing. The case
for the multipliers is fairly trivial. Since the multipliers are
6, a sharing factor of 6 results in one multiplier being
shared in the design. The design however uses more
registers as can be seen by the increase in the number of
the registers and flip-flops used by the design. However
this is expected, and the end result is conserving more
multipliers which are in less numbers as compared to flip-
flops. Tthe tool is able to reduce the overall area usage.

TABLE 5

RESOURCE USAGE AFTER SHARING.

Multipliers 1
Adders/Subtractors 6

Registers 28
RAMs 0

Multiplexers 18

Table 6 shows the results after design synthesis using ISE
by HDL coder.

TABLE 6

RESOURCE USAGE AFTER DESIGN SYNTHESIS

Resource Number
Slices 340
LUTS 679

FF 1132
DSP 4

BRAM 0
SRL 28

In conclusion, synthesis and mapping results from ISE
reveal considerable reduction in the area used by the
design after sharing, which is a significant advantage of the
tool. Significant to these reductions and increases in these
designs however is but one important design achievement;
the number of DSP48A1s used for the design has been
reduced. Without a sharing factor, up to 41% of the
DSP48A1s on the FPGA are used. With a sharing factor,
this percentage reduces to just 6%, which is a considerable
reduction in the resources. Correspondingly there is an
increase in the number of LUTS, SRLs, FF and Slices in
the design by a factor of approximately 2 overall. If
ignored this could result in increasingly large designs.

B) Comparison of Area Statistics with the Current

Implementation

Overall the HDL coder generates VHDL code with a
high resource usage. In table 7, there is a rise in the used
slices by a factor of 2.3, a rise in the used LUTS by a
factor of 2.5, a rise in the number of used flip-flops by a
factor of 2.3 and a rise of SRLs by a factor of 1.6. The
DSP481As are however the same. In conclusion, it is
reasonable to say that code generation with HDL coder
results in increased resource usage.

TABLE 7

HDL CODER RESOURCE USAGE COMPARISON WITH THE CURRENT
DESIGN

Resource
Current
Design

Generated
Design

Slices 150 340
LUTS 277 679

FF 486 1132
DSP 4 4

BRAM 0 0
SRL 18 28

C) Timing Optimization in HDL Coder

HDL coder utilizes the concept of distributed
pipelining which is a subsystem-wide optimization to
achieve high clock speed hardware. By turning on
'Distributed Pipelining', the coder redistributes the input
pipeline registers, output pipeline registers of the
subsystem and the registers in the subsystem to appropriate
positions to minimize the combinatorial logic between
registers and maximize the clock speed of the chip
synthesized from the generated HDL code [5]. To increase
the clock speed for any given design, the designer can set a
number of pipeline stages for any subsystem. Without
turning on distributed pipelining, the specified number of
registers will be added to each of the output ports of the
subsystem. Once distributed pipelining is turned on, the
registers in the subsystem, including output pipeline
registers and input pipeline registers, will be repositioned
to achieve best clock speed. It is equivalent to retiming at
subsystem level [5] as shown in figure 4.

and Testing

As mentioned in the previous section, IIR filter design, the
cascade is combination of seven second order sections,
with the ability of being singly configured by the DSP. In
addition, the filter application provides a mechanism for
filter data storage to the dual port RAMs. The output
values stored are decimated accordingly to the rates
supported by the DSP or eTDM core on the FPGA.

Figure 6.1 Cascade of the SOS IIR filter

Figure 4: Timing report using HDL Coder

D) Latency and Throughput in HDL Coder

In order to increase throughput, HDL coder gives the
option of pipelining. This option is handled together with
improving timing in the section below. In addition the
coder specifies a maximum computation latency parameter
which enables designers to specify a time budget for the
HDL coder when performing a single computation. Within
this time budget, the coder does its best to optimize the
design without exceeding the maximum oversampling
ratio. When the designer sets a maximum computation

Timing summary:

Timing errors: 0 Score: 0 (Setup/Max:

0, Hold: 0)

Constraints cover 31148965 paths, 0

nets, and 5500 connections

Design statistics:

Minimum period: 14.880ns{1} (Maximum

frequency: 67.204MHz)

Minimum input required time before

clock: 17.503ns

Maximum output delay after clock:

13.200ns

DOI: 10.32377/cvrjst0906

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 9, December 2015

32 CVR College of Engineering

latency, N, each Simulink time step takes N time steps in
the implemented design. In essence what this means is that
the coder implements a design which captures the DUT
inputs once every N clock cycles, starting with the first
cycle after reset. The DUT outputs are held stable for N
cycles. The requirement of this filter is that the design
should be able to have at least an iteration interval of 6, so
the maximum computational latency was set to 6.

VI. Conclusion

This work has shown that using high level synthesis in
FPGA, application development significantly achieves
accelerated product development cycles. This work has
established that the Vivado HLS tool provides the designer
with a mechanism for influencing the HLS process
(scheduling and binding) with significant granularity as
compared to the HDL coder. A designer can explicitly
specify the number of operations, specific cores, function
instances, RAM cores, communication interfaces etc. quite
easily in Vivado HLS as compared to the HDL coder. In
addition the tool provides the designer with a detailed
analysis of the design with clock level granularity i.e. the
designer is able to establish quite easily which operations
are performed in which clock cycle and which variables,
either in the source code or the generated code, are
affected.

This work has also shown that the designer may be
able to achieve the design objectives of area, throughput,
latency and timing in an easier way in Vivado HLS as
compared to HDL coder. This may be fundamentally
because the aspects of pipelining, resource usage etc., are
handled in a much better way in Vivado HLS compared to
HDL coder. The HDL coder workflow also supports both
Altera and Xilinx FPGAs and seamlessly integrates into
their respective synthesis tools. This gives developers a
wider coverage of hardware technology. In addition, the
tool supports addition of legacy code for final design
synthesis.

References

[1] R. Zoss et al, “Comparing Signal Processing Hardware-
Synthesis Methods Based on the MATLAB Tool-
Chain,” 2011, January IEEE Sixth IEEE International
Symposium on Electronic Design, Test and
Application (DELTA)

[2] W. Meeus et al , “An overview of today’s high-level
synthesis tools” Journal for Design Automation for
Embedded Systems; September 2012, Volume 16,
Issue 3, pp 31-51

[3] Xilinx (2013, June 19), Vivado Design Suite User
Guide on High Level Synthesis, UG902 (v2013.2).

[4] P. Coussy et al , “An Introduction to High-Level
Synthesis,” Design & Test of Computers, IEEE
(Volume:26 , Issue: 4), August 2009

[5] M. Haldar et al, “FPGA Hardware Synthesis from
MATLAB,” IEEE, Fourteenth International
Conference on VLSI Design, January 2001

[6] C .Tseng, “ Automated Synthesis of Data Paths in
Digital Systems,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems
CAD-5, 3, July 1986, pp. 379-395.

[7] H. Flamel et al , “A High-Level Hardware Compiler,”
IEEE Transactions on CAD CAD-6, 2 , March 1987,
pp. 259-269.

[8] G.E. Moore, “Cramming more components onto
integrated circuits.” Proceedings of the ieee, vol. 86,
no. 1, january 1998, pp. 144–144116

[9] L. Araujo et al, "MACH2-modular advanced control 2nd
edition," Transmission and Distribution Conference and
Exposition, Latin America, 2004 IEEE/PES, vol., no.,
pp.884,889, 8-11 Nov. 2004

DOI: 10.32377/cvrjst0906

