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Abstract—This work is aimed at the high level synthesis of 
FPGA based IIR digital filters using Vivado HLS produced 
by Xilinx and HDL coder produced by Math works. The 
higher layer model of the filter was designed in Vivado HLS, 
MATLAB and simulink. Simulations, verification and 
synthesis of the RTL code were done for both the tools. 
Further optimizations were done so that the final design 
could meet the area, timing and throughput requirements. 
The resulting designs were later evaluated to see which of 
them satisfies the design objectives specified. The present     
work has revealed that Vivado HLS is able to generate more 
efficient designs than the HDL coder. Vivado provides the 
designer with more granularity to control scheduling and 
binding, the two processes at the heart of HLS. In addition, 
both tools provide the designer with transparency from 
modeling up to verification of the RTL code. HDL coder did 
not meet timing. Vivado HLS on the other hand met the 
timing requirements.  

 

Index Terms— FPGA, HDL, HLS, Synthesis, RTL, MATLAB, 
IIR. 

I.Introduction 

Electronic products currently are composed of highly 
complex designs in such areas as; communication, control, 
medical, defense and consumer electronics. They feature in 
applications such as digital signal processing (DSP), 
communication protocols, soft processors etc. Many DSP 
algorithms such as FFTs, FIR or IIR, which were 
previously built using application specific integrated 
circuits (ASICs) can be built on FPGAs with very high 
flexibility. In addition, these devices offer better economic 
prospects as compared to the ASICs. Consequently designs 
that were previously implemented on ASICs have 
experienced a move to the reconfigurable technology. 
These designs have become increasingly complex and are 
stretching the boundaries of device density, design 
performance and device power consumption. It is always 
the objective of designers to minimize costs by utilizing 
device resources appropriately to meet design objectives. 
In addition, given the shortened windows of design 
development time, it is very important to hit the target for 
the design objectives within the allocated time and 
schedule. Many downstream problems can be avoided with 
an appropriate methodology during the design flow. By 
taking appropriate steps early in the design phase, 
significant design productivity and minimized iterations 
can be achieved. It is therefore important to utilize tools 
that offer a good design methodology and provide proper 

estimates of project viability, cost and design closure early 
in the design phase [8].  

In the applications of ABB HVDC (High Voltage 
Direct Current), voltage and current measuring IO-units in 
the Modular Advanced Control for HVDC system 
(MACH) [9] perform digital filtering of analog signals 
after analog to digital conversion. The filtering in the 
digital domain is done by Digital Signal Processors (DSP) 
and / or Field Programmable Gate Arrays (FPGA). An 
efficient way for filter designing is using VHDL (Very-
high-speed integrated- circuits Hardware Description 
Language). When filters are implemented in FPGAs, the 
corresponding VHDL-code is usually written at Register 
Transfer Level (RTL) which is thereafter synthesized into 
logic gates. This means that the filter architecture and 
characteristics need to be determined before the 
implementation is done. Also, once the implementation is 
done, an architectural change on the filters may cause a 
large impact on the implementation, and may result in a 
change of most of the RTL-code. 

There is plenty of High Level Synthesis (HLS) tools 
available for FPGA design on the market today e.g. HDL 
coder tool, Vivado HLS tool, Catapult e.tc. An HLS tool 
usually takes in a higher level language description, for 
example in C, C++, MATLAB /Simulink or System-C and 
then based on directives, translates the high level code into 
RTL-code which can then be synthesized into logic gates. 
With this methodology, one can easily make changes in an 
algorithm and/or directives, and have the tool 
automatically regenerate the RTL-code. 

II. FPGA design Overview 

The Field-Programmable Gate Array (FPGA) is a 
Prototype device that can be programmed after 
manufacturing. Instead of being restricted to any 
predetermined hardware function like an application 
specific integrated circuit (ASIC), an FPGA allows a 
designer to program functions and product features, adapt 
it to new standards, and reconfigure the hardware 
technology for specific applications even after the product 
has been installed in the field-hence the name "field-
programmable". The FPGA configuration is generally 
specified using a hardware description language (HDL). 
FPGAs can be used to implement any logical functions that 
ASICs perform. In addition, the ability to update the 
functionality after shipping offers advantages for many 
applications as compared to the ASICs. Specifically 
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FPGAs offer the following advantages as compared to the 
ASICs. 

FPGAs contain programmable logic components called 
"logic blocks or Logic elements", and a hierarchy of 
reconfigurable interconnects that allow the blocks to be 
"wired together" - somewhat like many changeable logic 
gates that can be inter-wired in many different 
configurations. Logic blocks can be configured to perform 
complex combinational functions, or merely simple logic 
gates like AND and XOR. In most FPGAs, the logic 
blocks also include memory elements, which may be 
simple flip-flops or more complete blocks of memory as 
shown in figure 1. Unlike previous generation FPGAs 
using I/Os with programmable logic and interconnects, 
today's FPGAs consist of various mixes of configurable 
embedded SRAM, high-speed transceivers, high-speed 
I/Os, logic blocks, and routing [5] . 

 

 
 

Figure 1: Modern FPGA Architecture 

III.Filter Realization 

As a general rule, linear time-Invariant (LTI) systems 
can be classified into either finite impulse response (FIR) 
or infinite impulse response (IIR) depending on whether 
their operations have finite or infinite response duration. 
Additionally, depending on the application and hardware, 
the filtering operation can be organized to operate either as 
a single block or as a sample by sample process. With 
block processing, the input signal is considered to be a 
block of many samples. Essentially the block is filtered by 
convolving it with the filter input, and the output is also 
obtained as a block of samples. In cases where the input is 
very large, it can be broken down into multiple blocks, 
filtered and then the output blocks pieced together again. 
This can be implemented by ordinary convolution or fast 
convolution algorithms. 

In the sample processing case, the input samples are 
processed one at a time as they arrive at the input. In this 
scenario the filter operates like a state machine by utilizing 
the current sample together with current internal state of 
the filter to compute the current output sample. It also 
updates the current internal state in preparation for 
processing of the next sample. This paper expounds on the 
concepts of the sample by sample processing technique to 

develop a high level language (HLL) for a filter used in an 
instrumentation application on the MACH 2 platform. 

In general FIR filters have an impulse response ( ) 
that extends over a finite duration interval say 0    , 
and is identically equal to zero elsewhere i.e. { 0, 1, 2, 
… , 0, 0, 0, 0, … }.  M is referred to as the order of the 
filter and the impulse response coefficients [ 0, 1, 2] are 
referred to as filter coefficients. In general the filter 
equation for the FIR filters is given by 

M
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0

)()()(  

or, explicitly as 
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     Thus the I/O equation is obtained as a weighed sum of 
the present input sample and the past M samples. IIR filters 
on the other hand have the impulse response ( ) that 
extends over an infinite duration defined over the infinite 
interval 0    . In general the equation for IIR filters is 
given by 

0
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Or, explicitly as 

)2()1()()( 210 nxhnxhnxhny  

This I/O equation is not computationally feasible since 
practical systems cannot deal with an infinite number of 
terms. Therefore, practical implementations normally 
restrict their attention to a subclass of IIR filters in which 
the infinite number of filter coefficients { 0, 1, 2, … } 
are not chosen arbitrarily, but rather they are coupled to 
each other through constant coefficient linear difference 
equations. With this subclass of IIR filters, their I/O 
equation can be rearranged as a difference equation 
allowing the efficient recursive computation of the output 

( ). Practical implementations are normally concerned 
with filters that have impulse responses ( ) that satisfy 
the constant-coefficient difference equations of general 
type: 
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The convolution equation can be written as: 
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Or, explicitly as 
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And in general one can think of FIR filters as a special 
case of IIR filters whose recursive terms are absent i.e. 

0,,, 21 Maaa . 
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This paper is concerned with IIR filters since the current 
design implementation is an IIR filter. The equivalent 
transfer function of the IIR filter can be represented as; 
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For a second order filter, the general form of the transfer 
function is  
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In addition, filters can be realized in different ways 
such as:1) Direct form, 2) Canonical form and 3) Cascade 
form. The IIR filter for which this investigation is 
performed is a cascade of seven second order sections, 
realized in direct form II (canonical form). The design is 
targeted for the 45nm low power process technology 
FPGAs which are optimized for cost, power, performance 
and most efficient utilization of low-power copper process 
technology [1]. The filter is targeted for use in the voltage 
and current measuring IO-units in the MACH control 
system that performs digital filtering of signals after analog 
to digital conversion. The system of equations (difference) 
for the second order section of the filter are shown as  
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The cascade realization form of a general second order 
function assumes that the transfer function is the product of 
such second order transfer functions as shown above. In 
general any transfer function that can be factored into 
second order filters with real valued coefficients. 
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The current design is of order 14 and therefore, since the 
cascade is of second order sections, then  = 7.  
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The design upon which the first evaluation of the tools 

is made is the second order section of the filter as shown in 
the diagram in figure 2. This filter is an anti-aliasing filter 
that is placed between the DSP and the ADC. The ADCs 
sample at approximately 500 kHz whereas the filter 
outputs to the DSP run at a configurable rate depending on 
the measuring board. Typical values could be 50, 100 or 

125 kHz. This is the fundamental reason why the anti-
aliasing filter is needed between the DSP and the ADCs. 
The design of the filter is such that all the coefficients and 
internal states (delay registers), are stored in RAM. The 
coefficients and decimation parameter of the filter (g0, a1, 
a2, b0, b1, b2, ds) are configurable externally by the DSP 
and it is therefore possible to change the characteristics of 
the filter depending on which measuring board the 
communication board is piggybacked on. The filter block 
performs data filtering (anti-aliasing) as well as storage of 
filtered values and internal states into the DRAM. 

The current implementation of the design utilizes one 
multiplier, one adder and one subtractor in a pipelined 
fashion in order to save the FPGA resources. It is the goal 
of this investigation to be able to achieve these resource 
restrictions while satisfying the timing of 100MHZ. 
 

 
Figure 2. Second Order Section (SOS) of the IIR filter 

IV. Vivado High Level Synthesis 

Vivado High Level Synthesis is Xilinx’s HLS tool for 
transforming a C, C++ or SystemC specification into an 
RTL implementation which can then be packaged as an 
Intellectual Property (IP) core or exported as RTL source 
code for synthesis. This adds an extra layer of abstraction 
above the traditional RTL coding approach. The 
fundamental reason why the FPGA community has moved 
from one abstraction level to the next is to manage the 
complexity of the designs. The move is such that each 
added abstraction layer hides some complexity of the 
corresponding implementation step. The RTL description 
captures the desired functionality by defining data path and 
logic between boundaries of registers. RTL synthesis 
creates a netlist of Boolean functions to implement the 
design. The focus of the RTL abstraction layer is to define 
a functional model for the hardware [7]. A functional 
specification would therefore remove the need to define 
the register boundaries in order to implement a desired 
algorithm.  

The designer’s goal is now focused on only specifying 
the desired functionality. In Vivado HLS, moving up the 
design hierarchy to use the functional specification for 
creating RTL descriptions provides productivity in both 
verification and design optimization [2].  High-Level 
Synthesis shortens the manual RTL creation process and 
avoids translation errors by automating the creation of 
RTL from a functional specification. High-Level Synthesis 
automates RTL architecture optimization, allowing 
multiple architectures to quickly be evaluated before 
committing to an optimum solution. C based entry is the 
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most popular mechanism to create functional specifications 
and Vivado HLS currently supports to a synthesizable 
level all three C input standards(C, C++ and SystemC). 
This enables it to simulate C code with minimal 
modifications.  

As described in [3], the Vivado HLS tool performs two 
distinct kinds of synthesis on the design; Algorithm 
synthesis takes the content of the functions and synthesizes 
the functional statements into RTL statements over several 
clock cycles. This type of synthesis typically builds the 
algorithm and is significantly affected by the interface 
level synthesis described below[4]. Interface synthesis 
transforms the function arguments (or parameters) into 
RTL ports with specific timing protocols, allowing the 
design to communicate with other designs in the system. 
The types of interfaces that can be synthesized are wire, 
Register one way and two way handshakes, Bus, FIFO and 
RAM. In addition, functional level protocols that dictate 
when a function can start or end can be synthesized. 

A) Area Optimization in Vivado HLS 

The design objective of this exercise in terms of area 
optimization is to be able to utilize one multiplier, one 
adder and one subtractor in a pipelined fashion in order to 
save the FPGA resources. This measure comes as a design 
specification set in the current solution to minimize 
resource usage on the FPGA. It suffices to say therefore 
that the tool chosen for use ultimately should be able to 
meet at least these basic requirements for this simple 
design. Vivado HLS comes with a set of directives that a 
designer can use to control the operators,resources, the 
binding process and the binding effort level [3]. The first 
activity is to limit the number of operators used in the 
design. In order to do this, Vivado uses the command 
set_directive_allocation [OPTIONS] <location> 
<instances>. This command specifies the instance 
restrictions for resource allocation. It defines, and can 
limit, the number of RTL instances that are used to 
implement specific functions or operations.  The 
set_directive_allocation command can either be embedded 
in the source code as #pragma or placed in the directives 
tcl file. Both options are configurable using the HLS 
command line interface or the HLS GUI. In this exercise, 
the first option is preferred so that the directives are carried 
over across different solutions. Table 1 shows a 
comparison between the generated design and the hand 
coded design. 
 

TABLE .1  
RESOURCE USAGE STATICS FOR THE CURRENT DESIGN AND THE 

GENERATED DESIGN 
. 

Resource Current Design Generated Design 

Slices 150 160 
LUTS 277 398 

FF 486 417 
DSP 4 4 

BRAM 0 0 
SRL 18 19 

Overall the Vivado HLS tool achieves almost the same 
resource utilization as the handwritten code. In the table 
above, there are a rise in the used slices by 10, a rise in the 

used LUTS by 121, a reduction in the number of FF by 69 
and a rise of SRLs by 1. In percentages of available 
resources on the device, as calculated by ISE, the device 
utilization of the two designs is the same. In conclusion, it 
is reasonable to say that one can achieve very good area 
optimization with appropriate directives in the C/C++ 
design. 

B) Timing Optimizations 

Both designs exceed the timing requirement by a very 
good margin; however the current handwritten design 
achieves a higher operation frequency of 129.467MHZ as 
compared to 114.338MHZ in the generated design. It is 
however important to note that the timing requirements of 
the generated code can be altered as quickly as the design 
can be regenerated which is comparably difficult when it 
comes to adjusting timing requirements for handwritten 
RTL designs in general. For more details about the timing 
results see following timing reports shown in figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Static Timing Reports for the generated design and current 

design 
 

C) Latency and Throughput Optimizations 

Overall the latency and the iteration interval for the 
current design and the generated design are equal, however 
the value for the delay register zero of the filter gets ready 
after 14 clock cycles in the generated design as compared 
to 8 clock cycles in the handwritten RTL code. 
This value cannot be improved since latency and 
throughput constraints cannot be specified for this single 
output value. The tables 2 and 3 illustrate the Latency and 
throughput values.  

 
 
 

Static Timing Report for the generated design: 
Timing summary: 

--------------- 

Timing errors: 0 Score: 0 (Setup/Max: 

0, Hold: 0) 

Constraints cover 19793 paths, 0 nets, 

and 2299 connections 

Design statistics: 

Minimum period: 8.746ns{1} (Maximum

frequency: 114.338MHz) 

 

Static Timing Report for the current design:
Timing summary: 

--------------- 

Timing errors: 0 Score: 0 

(Setup/Max: 0, Hold: 0) 

Constraints cover 17411 paths, 0 

nets, and 1826 connections 

Design statistics: 

Minimum period: 7.724ns {1} (Maximum

frequency: 129.467MHz) 
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TABLE 2 

LATENCY AND ITERATION INTERVAL VALUES FOR THE CURRENT 

DESIGN. 

latency Interval 
min max min max 
19 19 6 6 

 
TABLE 3 

LATENCY AND ITERATION INTERVAL VALUES FOR THE GENERATED 

DESIGN. 

latency Interval 
min max min max 
19 19 6 6 

V. HDL Coder 

The HDL coder tool embedded in the 
MATLAB/Simulink environment lets a designer generate 
synthesizable HDL code for FPGA and ASIC 
implementations in the following steps:  

 Build a model of the design using a combination 
of MATLAB code, Simulink and State flow 
charts.  

 Optimize the design to meet area-speed 
objectives. 

 Generate the design using the integrated HDL 
workflow advisor for MATLAB and Simulink  

 Verify the generated code using HDL verifier. 
 

HDL coder also features a Workflow advisor for 
automating the FPGA design process from MATLAB 
algorithms and Simulink models into Xilinx and Altera 
FPGAs. The HDL Workflow Advisor integrates all steps 
for traditional FPGA design process, and also includes the 
following features [6]: 

 Checking the Simulink model for HDL code 
generation compatibility. Generating HDL code, 
an HDL test bench, and a co-simulation model 

 Performing synthesis and timing analysis through 
integration with Xilinx ISE and Altera Quartus II 

 Estimating resources used in the design 
 Back annotating the Simulink model with critical 

path timing 
The HDL tool in MATLAB leverages on the HDL 

Workflow to guide the designer during the process of 
generating HDL code. The HDL Workflow Advisor 
automatically converts MATLAB code from floating-point 
to fixed-point and generates synthesizable VHDL and 
Verilog code. Similarly the Workflow Advisor can 
generate VHDL and Verilog code from Simulink and State 
flow. The power of the tool lies in its ability to generate 
code from algorithms built using a library of more than 
200 blocks, including State flow charts. In addition, the 
MATLAB language gives designers the capability to 
model their algorithm at a high level using abstract 
MATLAB constructs. This, together with the huge library 
provides complex functions, such as the Viterbi decoder, 
FFT, CIC filters, and FIR filters, for modeling signal 

processing and communications systems, and generating 
HDL code [6].  

A) Area Optimization in HDL coder 

     HDL coder fundamentally uses the sharing optimization 
to ensure resource re-use in the generated RTL code. In 
addition, MathWorks advises designers to follow the 
following guidelines when implementing designs in 
MATLAB/Simulink [5]: Input and output data should be 
serialized since parallel data processing structures require 
more hardware resources and a higher pin count. Designers 
should use add and subtract algorithms instead of 
algorithms that use functions like sine, divide and modulo. 
This is because add and subtract operations use fewer 
hardware resources. Designers should avoid large arrays 
and matrices since they require more registers and RAM 
for storage. Code should be converted from floating-point 
to fixed-point since floating-point data types are inefficient 
for hardware realization.  

HDL coder provides an automated workflow for 
floating-point to fixed-point conversion as discussed 
earlier. In addition unrolling loops increases speed at the 
cost of higher area; unrolling fewer loops and enabling the 
loop streaming optimization conserves area at the cost of 
throughput. By default, HDL implements hardware that is 
a 1-to-1 mapping of Simulink blocks to hardware module 
implementations. The resource sharing optimization 
enables users to share hardware resources by enabling an 
N-to-1 mapping of 'N' functionally-equivalent Simulink 
blocks to a single hardware module. The user specifies 'N' 
using the 'Sharing Factor' implementation parameter. 

Without the sharing factor, the design is able to achieve 
the following hardware resource usage as viewed from the 
code generation report. 

TABLE 4 

RESOURCE USAGE BEFORE SHARING 

multipliers 6 
Adders/Subtractors 6 

Registers 21 
RAMs 0 

Multiplexers 0 
Table 4 above clearly shows that the number of 

multipliers (corresponding to DSP48As since the signal 
processing parameter is turned to on in the model) used is 
very high, approximately 41% of the entire available 
DSP48A resources available on chip, which is not 
acceptable in this design. One can deduce therefore from 
looking at the instances that the increased number of 
DSP48A usage is due to the number of multiplication 
blocks in the model. Each multiplier block corresponds to 
4 DSP48As. There are approximately 6 multiplication 
blocks and these will result in 24 DSP48As. The objective 
at hand therefore is to reduce this number to just 4 
DSP48As instances which correspond to only one 
multiplier implementation in the design. By setting the 
sharing factor to 6, the number of multiplier blocks in the 
design could be reduced to 1. The synthesis and mapping 
results clearly demonstrate the EDA tool results. Important 
to note at this point is that HDL coder does not give actual 
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resource usage estimates in a summarized form as Vivado 
HLS. The designer has therefore to invoke the required 
EDA tool and examine the reports generated by the tool for 
thorough conclusions on resource usage. Table 5 below 
shows resource utilization after resource sharing. The case 
for the multipliers is fairly trivial. Since the multipliers are 
6, a sharing factor of 6 results in one multiplier being 
shared in the design. The design however uses more 
registers as can be seen by the increase in the number of 
the registers and flip-flops used by the design. However 
this is expected, and the end result is conserving more 
multipliers which are in less numbers as compared to flip-
flops. Tthe tool is able to reduce the overall area usage. 

TABLE 5 

RESOURCE USAGE AFTER SHARING. 

Multipliers 1 
Adders/Subtractors 6 

Registers 28 
RAMs 0 

Multiplexers 18 
 
Table 6 shows the results after design synthesis using ISE 
by HDL coder. 

TABLE 6 

RESOURCE USAGE AFTER DESIGN SYNTHESIS 

Resource Number 
Slices 340 
LUTS 679 

FF 1132 
DSP 4 

BRAM 0 
SRL 28 

In conclusion, synthesis and mapping results from ISE 
reveal considerable reduction in the area used by the 
design after sharing, which is a significant advantage of the 
tool. Significant to these reductions and increases in these 
designs however is but one important design achievement; 
the number of DSP48A1s used for the design has been 
reduced. Without a sharing factor, up to 41% of the 
DSP48A1s on the FPGA are used. With a sharing factor, 
this percentage reduces to just 6%, which is a considerable 
reduction in the resources. Correspondingly there is an 
increase in the number of LUTS, SRLs, FF and Slices in 
the design by a factor of approximately 2 overall. If 
ignored this could result in increasingly large designs. 

B) Comparison of Area Statistics with the Current 

Implementation 

Overall the HDL coder generates VHDL code with a 
high resource usage. In table 7, there is a rise in the used 
slices by a factor of 2.3, a rise in the used LUTS by a 
factor of 2.5, a rise in the number of used flip-flops by a 
factor of 2.3 and a rise of SRLs by a factor of 1.6. The 
DSP481As are however the same. In conclusion, it is 
reasonable to say that code generation with HDL coder 
results in increased resource usage. 

 
 
 

TABLE 7 

HDL CODER RESOURCE USAGE COMPARISON WITH THE CURRENT 
DESIGN 

Resource 
Current 
Design 

Generated 
Design 

Slices 150 340 
LUTS 277 679 

FF 486 1132 
DSP 4 4 

BRAM 0 0 
SRL 18 28 

C) Timing Optimization in HDL Coder 

HDL coder utilizes the concept of distributed 
pipelining which is a subsystem-wide optimization to 
achieve high clock speed hardware. By turning on 
'Distributed Pipelining', the coder redistributes the input 
pipeline registers, output pipeline registers of the 
subsystem and the registers in the subsystem to appropriate 
positions to minimize the combinatorial logic between 
registers and maximize the clock speed of the chip 
synthesized from the generated HDL code [5]. To increase 
the clock speed for any given design, the designer can set a 
number of pipeline stages for any subsystem. Without 
turning on distributed pipelining, the specified number of 
registers will be added to each of the output ports of the 
subsystem. Once distributed pipelining is turned on, the 
registers in the subsystem, including output pipeline 
registers and input pipeline registers, will be repositioned 
to achieve best clock speed. It is equivalent to retiming at 
subsystem level [5]  as shown in figure 4. 
 
 

and Testing 

As mentioned in the previous section, IIR filter design, the 
cascade is combination of seven second order sections, 
with the ability of being singly configured by the DSP. In 
addition, the filter application provides a mechanism for 
filter data storage to the dual port RAMs. The output 
values stored are decimated accordingly to the rates 
supported by the DSP or eTDM core on the FPGA. 
 
 
 

Figure 6.1 Cascade of the SOS IIR filter 
 

Figure 4: Timing report using HDL Coder 

D) Latency and Throughput in HDL Coder 

In order to increase throughput, HDL coder gives the 
option of pipelining. This option is handled together with 
improving timing in the section below. In addition the 
coder specifies a maximum computation latency parameter 
which enables designers to specify a time budget for the 
HDL coder when performing a single computation. Within 
this time budget, the coder does its best to optimize the 
design without exceeding the maximum oversampling 
ratio. When the designer sets a maximum computation 

Timing summary: 

--------------- 

Timing errors: 0 Score: 0 (Setup/Max: 

0, Hold: 0) 

Constraints cover 31148965 paths, 0 

nets, and 5500 connections 

Design statistics: 

Minimum period: 14.880ns{1} (Maximum 

frequency: 67.204MHz) 

Minimum input required time before 

clock: 17.503ns 

Maximum output delay after clock: 

13.200ns 
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latency, N, each Simulink time step takes N time steps in 
the implemented design. In essence what this means is that 
the coder implements a design which captures the DUT 
inputs once every N clock cycles, starting with the first 
cycle after reset. The DUT outputs are held stable for N 
cycles. The requirement of this filter is that the design 
should be able to have at least an iteration interval of 6, so 
the maximum computational latency was set to 6. 

VI.    Conclusion 

This work has shown that using high level synthesis in 
FPGA, application development significantly achieves 
accelerated product development cycles. This work has 
established that the Vivado HLS tool provides the designer 
with a mechanism for influencing the HLS process 
(scheduling and binding) with significant granularity as 
compared to the HDL coder. A designer can explicitly 
specify the number of operations, specific cores, function 
instances, RAM cores, communication interfaces etc. quite 
easily in Vivado HLS as compared to the HDL coder. In 
addition the tool provides the designer with a detailed 
analysis of the design with clock level granularity i.e. the 
designer is able to establish quite easily which operations 
are performed in which clock cycle and which variables, 
either in the source code or the generated code, are 
affected.  

This work has also shown that the designer may be 
able to achieve the design objectives of area, throughput, 
latency and timing in an easier way in Vivado HLS as 
compared to HDL coder. This may be fundamentally 
because the aspects of pipelining, resource usage etc., are  
handled in a much better way in Vivado HLS compared to 
HDL coder. The HDL coder workflow also supports both 
Altera and Xilinx FPGAs and seamlessly integrates into 
their respective synthesis tools. This gives developers a 
wider coverage of hardware technology. In addition, the 
tool supports addition of legacy code for final design 
synthesis. 
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