ISSN 2277 — 3916 CVR Journal of Science and Technology, Volume 5, December 2013

Improving the Software Quality using AOP

B Vasundhara
Associate Professor, Computer Science Department, AMS School of Informatics, Andhra Pradesh, India,
vasu_venki@yahoo.com

Abstract - The goal of software engineering is to solve a as isolated as possible.

given application problem by implementing a software Software modularity is a software design technique
application ~ system. Programming languages are that builds the modules by breaking down the possible
important in software engineering. Ever since the advent ,qqram functions [2]. Each module devised handles
of high-level programming languages, improvements have one of the many functions. Each module represents

been motivated because of the need to build better h of th fi f d thus i
software more rapidly. Concerns exist at every level of the €8Ch Of (n€ Separalion o concerns, and thus IMproves

system development process. The goal of modularization the system maintenance by enforcing valid boundaries
is to build application software that is maintainable and ~ between the concerns. Aspects help in achieving
reusable. To implement such concerns we need to use a increased modularity of the system and separation of
programming language that supports modularization. All concerns. Separating the functionalities as modules
the software engineering methodologies are expected to helps to control the system complexity. Software

recognize the concerns of a system like the aspect-oriented systems are conceptually complex by very nature, and
software development (AOSD). AOSD additionally also jycreasing their complexity in the implementation

classifies each of the concerns identified. Concerns in a means increasing the expense and the probability of

system are of two types, core concerns and cross-cutting fail Th d ded to int : |
concerns. Core concerns make up the primary structure | a/'Ures. € code needed 1o Integrale a complex

of the system. Cross-cutting concerns are those concerns implementation is expensive. The cost would be even
that spread throughout the system. A major objectiven higher if new features are to be added as and when
software engineering is to increase code reuse in new required. Mostly adding new feature implies deep
systems as reuse saves development time. We can use thechanges in several parts of the application
aspect-oriented programming (AOP) technique to implementation. So, we have to single out the modules
improve software quality characteristics including, that will implement the core business functions and that
correct_ng_ss, _rella_blllty, reusability, usability, efficiency, justify the design and implementation of software.
extendibility, timeliness, easy to use, etc.
IIl. DRAWBACKS IN OBJECT-ORIENTED

Index Terms - AOSD, AOP, Software Quality, AspectJ, PROGRAMMING

Crosscutting Concerns, Join Point, a Pointcut
An application may have some functionalities

I. EVOLUTION OF SOFTWARE ENGINEERING crossing it transversally, called as crosscutting
CONCEPTS — MODULARIZATION AND REUSE concerns A crosscutting concern is an independent
The increasing intricacy, configuration and entity that crosses other functionalities of software.
adaptability of real-time systen%s have become a strong?mmon cros_scutting concerns include se_curity of the
motivation for applying new software engineering stem, logging - across _d|fferent functions Wh?’”
encountered, the transactions management, tracing,

principles, like aspect-oriented developmeAOSD ; hronizati ion handli
improves the existing programming techniques byP€rformance, sync ronization, exception handling, etc.

allowing the identification and description of concernsst;".Ch crqsscu(’;ting concerns, ifci)rgpl)alementelld ergydwith
that crosscut many modules of the system. Applyin ject-oriented programming (), resultsairba

AOSD in real-time application systems reduces th atching between the core concerns and the modules

complexity of the system design and development@hat implement the cross cutting concerns. So, when

AOSD provides a way for a structured and efficientusmg OOP we are forced to deal with the execution of

way to handle the crosscutting concerns in the systerﬁ?e crosscutting functionalities in separate modules, and
We use AOP, a method for improving separation o urther there may be a n_ee_d to add other relat_ed
concerns in software [1]. AOP is built on precedingm()(m'eS or modify the existing ones. _There_fore, It
technologies, like procedural and object-orientecPeCOmes necessary to m_0d|fy the_ code in which these
programming which have already made substantia’l'nOdUI_es are used. This IS undeswed_, but a necessary
improvements in software modularity. The idea behincg'atChmg t_hat the OO implementation unavoidably
developing AOP is that, though the modularity rings with it.
mechanisms of object-oriented languages are extremel The crosscutting concerns in OOP gives rise to the
useful, they are essentially unable to modularize al roblem of scattering code, due to the _transversahty pf
concerns of interest in complex systems. To achievg‘e crosscutting concerns that are implemented in

this, AOP deals with crosscutting aspects of a system asses. In such situations, AOP prowdes_ support to
behavior OP for uncoupling modules that implement

crosscutting concerns. AOP’s purpose is the separation

DOI:10.32377/cvrjst0503 CVR Colleae of Enaineerina 13

ISSN 2277 — 3916 CVR Journal of Science and Technology, Volume 5, December 2013

of concerns. In OOP, the fundamental unit is the clasgoncerns with minimal resources, the real-time
while it is an aspect in AOP [1The aspect contains the application systems use different techniques which
implementation of a crosscutting concern. Codanvolve a number of modules of the system. This makes
scattering appears when the application functionality i mandatory to use approaches like AOP.

scattered due to its implementatiorseparatenodules.

Code tangling takes place when a module has tolV. USING AOP FOR REAL-TIME APPLICATION
manage quite a lot of concerns at the same, titke SYSTEMS

logging into an application system. With an OO system,
code tangling and code scattering can occur, thus

causing the system to have duplicate code and result ; X : : o
g y P e real-time perspectives like scheduling policies and

functionalities not being clear. gynchronization mechanisms are better implemented
AOP is a programming concept that is based on th sing AOP. The purpose of AOP is to provide

identification and separation of both ‘the core an stematic means to modularize crosscutting concerns
crosscutting concerns of software. AOP is an extensiony. 9 ’

of OO paradigm, in the sense that it provides nev(/A‘OhP IS &m approach |fn th(|js dlrzctéon,_ Wh.'Ch attemhpts ttct)
constructs for the modularization of crosscuttingac Ieve the resuse of code and design in a much better

concerns. The main objective here is to define avay than OOP. Aspect-orientation is used in realtime

implementation methodology using AOP to achieveappl'cat'on systems for distribution, timeliness and

better software with better quality [2]. With AOP, the de\p;\/endﬁblllty domalnsb[l]. f benefits i . AO
crosscutting functionalities are extracted from the OOIt he' ave P? number Od ten(e)(')Stmh using Th
implementations and applied as advices where they a echniques when compared 1o) _techniques. €
actually executed. In OOP, we develop the code fcpnmary_beneflt of this transition is the increased
every module where a functional component iEmodularlty. As concerns ha\{e been separated, the
encountered. While in AOP, an aspecbde is system's modules that were implemented to solve a
developed and injected into th,e right locations of th given concern are not tangled with calls to modules that

base program using an aspect weaver. The main aim deal with unrelated, cross-cutting concerns. Also, these

an AOP language, like AspectJ, is to make sure that tlcross-cuttlng concerns are not scattered and are

aspect code and non-aspect code run together in packaglebd m;_(: ?h smgrlle ﬂﬁdU|eﬁ Th's'l.f'n turln, hai
coordinated way using the process called aspesevera enetits througnout the software fite-cycle, suc

weaving. as inc_reased maintgnance and reusab_ility._ An add_itional
benefit of aspects is that of a reduction in the size of
I ISSUES IN REAL-TIME APPLICATION cod_e. As_aspects_ collect commonly repeate_d code into
SYSTEMS advice with a pointcut to where that code is relevant,
the code-base will be smaller, when aspects are used,
The correctness of a real-time application systenthan when they are not used.
depends both on the correct result produced by the The key problems a system designer would face
computation and the time when the result is producedluring the aspect-oriented design process include the
Hence, enforcing timeliness is essential to the overaltlentification and classification of concerns, testing the
correctness the system. The increasing complexity inoncern designs, reusing them, designing the concern
the design, adaptability and performance of a real-timenodules, and refining the AO design. A standard
system prompts us to use new software engineeringspect-oriented design process is an extensible,
programming methodologies, like AOP. Using AOP,customizable and independent process which is easy to
the modules or concerns identified are incorporated intadopt. The existing literature describes less about the
the program through interfaces. aspect oriented design processes in use; we can
Software reliability depends on system requirementsgvaluate and validate the aspect oriented design process
good design and implementation. A system fails if itsby applying it to case studies. Examples of the cross-
behaviour is not consistent with its specification. Thecutting concerns include logging, exception handling,
applications that need systems to maintain a predictabgecurity.
and correct functionality even in the presence of faults The code to employ features like authentication,
include online banking, mobile commerce, etc. For authorization, logging, exceptions, etc., is frequently
system to be dependable, it must be available, reliablecattered across the whole application. This will reduce
safe, and secure. Software may undergo sever#te consistency, sustainability and quality of software.
upgrades during the system life cycle. These upgradé@hese characteristics are called crosscutting concerns. It
enhance the software reliability by re-designing or reis difficult to modularize the crosscutting concerns as
implementing the required modules. Further, newthey affect multiple functions and modules in the
unexpected problems may arise. The two mairsystem. The AOP allows the localization and
concerns that have to be considered when designing tingodularization of crosscutting concerns, thereby
real-time application systems are the timeliness angroviding another level of abstraction called aspects.
criticality of the system. Additionally, we need to also While we are aware that crosscutting concerns can
consider that the systems are bounded by limitedccur in various software systems, not much is known
resources. To achieve the criticality and timelineson how AOP and in particular AspectJ have been used.
14 CVR College of Engineering DOI:10.32377/cvrist0503

The functional perspective of real-time application
stems can be developed using conventional OOP, but

ISSN 2277 — 3916 CVR Journal of Science and Technology, Volume 5, December 2013

Several studies encompass the capabilities of AOP tihe function code that needs changes. The aspect code
improve the modularity, customization, and theis weaved or inserted wherever needed in the system at
evolution of software, but less is known about howcompile time or at run time. AOP modularizes the
AOP is used. Modularization of the crosscuttingcrosscutting concerns by encapsulating the replicated,
concerns of a software system will persist to be thacattered and tangled code into aspects.
source of initiative for progress in software The assimilation of base code and aspect code is
engineering. called aspect weaving. The source code weaver merges
For a system concern like security, first we need tdhe original source code with the aspect code. The
check for the users who attempt to access unauthorisedpects are interpreted and combined with the main
data, and secondly prevent users from declassifying th@rogram code and submitted to the compiler. After this,
data. If we use the OOP approach to implement ththe compiler will generate the intermediate or machine
security concern, it will result in code scattering andanguage output.
code tangling, and its implementation will be weak.
This weak implementation of security concern can be VI. ASPECTJ AS AN AOP LANGUAGE
because of the intrinsic design of the system or a
program error. The AOP approach using Aspect
language presents a strong implementation of securijg
concern [1]. This reduces the load on the programme
to correctly recognize the positions in the base cod
where authorization is necessary. This can be achiev
using AspectJ which is difficult to achieve using OOP . ; . .
Ianggageplike Java. Even if the OOP concept pr%vides%sr’ec.t‘] is dynamic [5]' TO de_3|gn a_crosscutting
normal way to implement security concern, it does nopehawour, we have to identify the_ join points where we
really prevent any security flaws caused by badVant to add or _mod|fy _the behaviour. To apply such a
program coding or poor system design. design, we initially write an aspect for the module

Aspect] offers improved separation—of—concernéde.nt'f'e‘j' Next, within th? aspect we write the
Qintcuts to capture the required join points. Finally, we

SoC) in the system design phase, better encapsulati !) - .
gmd a)\lso makeys the implgmgntation much cleaﬁer th%‘\‘“Id an ad_V|ce for e_ach pointcut. Within the advice
Java [5]. ody we write t_h_e action that is to take plac_e when th_e
corresponding join points are reached. For instance, in
the implementation of the logging concern affects every
significant module in the system, the authorization
concern affects every module with access control
A concern in software engineering means, a goakequirements, and the storage-management concern
functionality, or a requirement. The modularity affects every stateful business object. We start by
mechanisms of OOP languages are useful, but they aceeating the aspect that encapsulates the logging
essentially unable to modularize all the concerns ioncern. Next, we write the pointcut within the aspect
complex systems that involve more functionality. AOPthat captures all join points where the operations are
attempts to achieve the reuse of code and design inperformed. Lastly, within the aspect we write an advice
much improved way than OOP [3]. Therefore, AOP isfor the pointcut concerned, where we print the logging
more appropriate to implement the crosscuttingstatement. Since the logging code lies inside the
concerns with better modularity. A software developetogging module and logging aspect; clients will no
can use AOP language like AspectJ to isolate the codenger hold the code for logging. We find that the
for implementing concerns like logging, security, etc.,logging requirements are mapped directly into a single
which otherwise are present at different locations in thaspect. With such modularization, changes to the
base code. AOP achieves a more direct correspondeniogging requirements will affect only the logging
between design-level and implementation-levelaspect. So, using AspectJ the core modules will no
constructs, which leads to improved code quality whichonger hold calls to the logging services.
results in the reduction of the cost of designing, There are crosscutting concerns that are not well
developing, and maintaining complex softwarecaptured by the traditional programming methodologies
systems. [5]. This motivates us to use AspectJ. Let's consider for
AOP enhances the abstract degree and modukxample, the performance of a security policy in an
character of software, which can improve theapplication. We know that security concern cuts across
expansibility, reuse, easy understanding andn application. The security policy should be
maintenance of software and enhance other factornsistently applied to any improvements as the
influencing the quality of software. The requiredapplication advances, and also the security policy being
methods codes are described within the aspect wheepplied may itself progress. Identifying such
the code executes instead of a class. Whenever tlogosscutting concerns in a closely controlled way is
aspect code needs changes, there is only one placemplicated in a long-established programming
where we need to alter it. But, in OOP the softwardanguage like Java. The advantage of implementing the
developer will have to trace all the classes employingrosscutting concerns in AspectJ over Java is that, the

AspectlJ is the most popular among the existing AOP
nguages [2]. Aspect] is an easy and convenient AOP
nguage and is an extension to Java programming
@nguage with some new programming elements. It
pports modularity and reuse of the aspects identified.
ostly crosscutting concerns implementation in

V. OVERVIEW OF AOP AND COMPARISON WITH
OOP

DOI:10.32377/cvrst0503 CVR Colleae of Enaineerina 15

ISSN 2277 — 3916 CVR Journal of Science and Technology, Volume 5, December 2013

organization, evolution and implementation of theconsiderable reduction of about 3% in the AOP version

crosscutting concerns is easier and more stable. when compared to the 9% in the total code size in the
OOP version. When crosscutting concerns are
VIl. APPLICATION OF AOP TO REAL-TIME homogeneous, aspects considerably reduces the
APPLICATION SYSTEMS redundant code fragments.

w that th o f -ti It is found that there is an improvement in system
© are aware ha € precision ol a real- Imemodularity after the concerns are written as aspects [5].
application depends on the consistent result it produc is results in an increased consistency of functions in

and the mstant_whe_n the regults are. produceqhe system and a significant decrease in coupling
Therefore, enforcing timeliness is essential for theoetween the crosscutting concerns. In the

overall correciness of a real-ime application SyStenﬂ’nplementation of case studies we observed that the

[4]. The .aspects created represenf[the crosscuttin'gO approach supports code mobility, usability and
concerns in the system._The aspects improve the SySt@ietyiness [3]. It is found that the Aspect] solution
maintenance by enforcing !og|cal boundaries bewVeegupports improved modularity because it reduces the

. X : '§verall coupling between the concerns. We know that
through interfaces [4]. AOP approach is applied to Caser a softwgre ?o be good, it should be flexible to take

studies like Onllne_ Banking System and_ Shc_)pplnqn necessary modifications through less effort. If the
Catalogue. In particular, the concentration is on

it handli logai thenticati crosscutting concerns identified during software
exception andiing, ogging, authen 'C.a.'on'development are well modularized and implemented
authorization, etc., as they contribute to the efﬂuenc;osing Aspect), we can accomplish the desirable
and reliability of these application systems. These Web: y

software qualities like code stability, volatility,
based systems need to use advanced technology to g%%intenange etc y y

the option of evading the time consuming and paper The design stability is assessed in Aspect]

based features of conventional business. This results fﬂmlementations considered. The design stability is
managing the transactions more quickly and efﬁmentlyfound mainly when the modifications were made in a

fC.onleJ_mers |n§|ght ‘ of security, da(;]curagy, usert- articular crosscutting concern. These modifications are
ren ;.n?st’ tan fpetLormance sp:cee h as l.ectc.)me ore simple to apply and less intrusive. The effect of
essential factors for In€ success ot such applicalions. a5 Aspect maintenance time mostly decreases.

An 0r_1|ine ba_nl_<ing system is the technology which he study shows that AOP especially AspectJ, provides
helps in avoiding prolonged and paper base ore support in the software evolution and

characteristics of conventional banking, and thereb aintenance than other solutions. Application

manages the business more efficiently. This applicatioaevelopment time using Aspect] is found to be less
system allows us to connect to a bank through thﬂwan other language implementation

Internet to view our accounts, credit, debit and transfer With new language constructs, Aspect] proposes

:Z”.O”gly.' ete. C'il'ran?actlon SeF;f‘.”."V' accurtar\]cy, .tl.JseI::odern ways to implement traditional programming
riendliness and performance efficiency are the critical |\ - icms For example, the case study

factors for the success of online banking. Qua“tyimplementation applies aspects to modularize the

attributes such as reliability, response time, security angxception handling concern. It is found that Aspect]

availability are stringent system requirements for On"n%ffers improved support for implementing exception

bank_lch. '\I'ArllebOnIme Sf:opplng Cat_?logue:ppllcatlorhand”ng. It is observed that when exception handling
provides VWeh access 1o various Tiems. USET Calyncern is non-uniform and complex, then use of AOP
browse a range of categories of items, select and a es not give the desired returns. The AOP

items to the catalogue and finally check out, do thefmplementation of exception handling concern reduces

payment and get the items. The requirements of thlﬁﬂe code to define the exception interface and improves

application can be considered as cross-cutting concerng, separation between the base and aspect code.
Effective join point representations have to be
VIIl. RESULTS developed for more robust handling of the exception
AOP especially Aspect] can have a considerablbandling concern [4].
affect on the program code size of an application by The advantages and restrictions of AOP, in particular
removing the code scattering and tangling [2]. Aspectf\spect] depend on the criterion like the software
can be expected to reduce the program code volume Ipgrformance, application code size, system modularity,
better code reuse and by reducing the code replicatiofoftware evolution and language mechanism. After
There is a considerable decrease in the codevaluation of the application of AspectJ in our case
redundancy. The 35-40% drop found in the code size istudies the behaviour of the above criteria is [5]:
by separating the major functions of the system as Performance: The results show that AspectJ generates
aspects. There is lesser number of methods and also thpositive outcomes with respect to the execution
program control flow is simplified [4]. While performance of the application systems because of
evaluating the Aspectd model for exception handling better response time and minimum use of memory.
implementation, it is found that there is a decline in the Code size: Aspect] shows considerable decrease in
number of lines of the concerned program. There is athe volume of application code, because of the

16 CVR College of Engineering DOI:10.32377/cvrjst0503

ISSN 2277 — 3916 CVR Journal of Science and Technology, Volume 5, December 2013

separation of crosscutting concerns. According to the REFERENCES

resu”ts, .there (Ijs a TOteWgrtrA%(Secrease in the OVera[q] D. Zhengyan, Aspect Oriented Programming Technology
application code volume by 0. and the Strategy of Its Implementatidie Proceedings

* Modularity: Modularity is very prominent, especially of the International Conference on Intelligence Science
in Separation of Concerns (SoC). and Information Engineering (ISIER011, pp.457, 460,

* Evolution: AspectJ has the capability to adapt to the 20-21.
incessant modifications in the user needs an@l2] T. Zukai, P. Zhiyong, Survey of Aspect Oriented

functioning conditions. The outcome is positive in ~ Programming LanguageJournal of Frontiers of
evolution context. Computer Science and Technolpg910, vol.4, no.1, pp

1-19.
[3] M. Ali, M. Babar, L. Chen, K. Stol, A systematic review
CONCLUSIONS of comparative evidence of aspect-oriented

AOP has an optimistic impact on the software programming, Information and Software Technology
development process and improves the application 2910, vol.52,no.9, pp. 871-887. _ _
software quality. The more the crosscutting ConcernEA'] Clarlf S and Baniassad E: Aspect_ Oriented Analysis and
are isolated, the more effortless it is to carry out ;)ggggn—The Theme Approachddison-WesleyMarch,
changes_ 'OC‘."‘”V- Its .e'ﬁeCt on COgmt.lc.m and languag 5] Elrad T, Filman R, and Bader A: Aspect Oriented
mechanism is less likely to be positive. Aspectd cal

. , Programming.Communication of the ACMpp.29-32,
improve a system’s performance where ever the October 2001/vol.44. No 10.

crosscutting concern context is alike. [6] Introduction to Aspecthttp://eclipse.org/aspectj/doc/

We observe improvements in the facets of Aspectd released/progguide/starting-aspectj.html
language evolution which includes volatility,
extensibility, code stability, maintenance. AspectJ has
the potential to develop evolving real-time application ABOUT AUTHOR
systems software whose maintenance is easy. AOP is a
capable approach and a solution to the problems wg
face in conventional programming approaches
However, the solution presented by AOP necessaril
may not come out well in terms of lower compilation
time and less memory usage [4].

The basic concept and programming idea of AspectJ
elaborates the software development approach based on
AOP [3]. AOP has many works that need to be
completed in future applications. The support
languages need to be further enriched and their
accuracies ensured, and more tools should be studied to
support AOP and fulfil the demands in various stages
from software design to maintenance. In view of the
increasing software scale and complexity of software
structure, the software development based on AOP
technology would certainly play a more important
function. AOP has remarkable prospective for
constructing software for future applications. AspectJ
compiler (ajc) needs to do more work than a pure Java
compiler, so it is likely to take a little more time to
compile an application. The small performance
overhead caused is because of the need to analyze the
classes, to see if any advice code needs to be woven
into them.

Ms Vasundhara is working as Associate Professor at
MS School of Informatics. Her areas of interest are
Software Engineering, AOP, and Operating Systems.
$he has done her M Tech (CSE).

DOI:10.32377/cvrjst0503 . .
J CVR Colleae of Enaineerina 17

