
ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 10, June 2016

82 CVR College of Engineering

Multi-Channel UART Controller with FIFO and
FPGA

T.Janardhan 1 and G.Venkateswarlu2

1CVR College of Engineering/EIE Department, Hyderabad, India
Email: janardhanraju3001@gmail.com

2 CVR College of Engineering/EIE Department, Hyderabad, India
Email: venkigummadilli@gmail.com

Abstract—Communication between the complex control
systems can be done by a multi-channel UART controller
based on FIFO (First In First Out) technique and FPGA
(Field Programmable Gate Array).The communication
between the master equipment and slave equipment with
different baud rate can be done by using this controller. This
controller consists of a FIFO circuit block and UART circuit
block. In this controller an asynchronous FIFO is used. The
design method of an asynchronous FIFO is also presented. A
universal Asynchronous Receiver-Transmitter usually
(UART) converts data from parallel to serial and serial to
parallel. It operates on any two independent clock domains.

Index Terms: FIFO, FPGA, UART.

I. INTRODUCTION

In serial communication, a UART (universal
asynchronous receive/transmit) plays an important role. A
universal asynchronous receive/transmit (usually
abbreviated UART) has a transmitter section and a receiver
section. The distortion of a signal can be reduced in serial
communication. Serial communication is preferred for long
distance transmission. Parallel communication requires
multi- bit address bus and data bus, and it is implemented
for short distance transmission. We have a parallel or serial
port, and the communication between any two systems
may be serial or parallel communication. If the Master
Control Unit (MCU) is sending or receiving the data at one
baud rate and the sub-equipments are receiving or sending
the data at another baud rate then there is a possibility of
loss of data. To overcome this problem, an asynchronous
FIFO is placed between MCU and sub-equipments. In
designing a FIFO, Gray code is used for addressing the
memory locations. The advantage of Gray code is that
there is only one bit change in the address of the successive
address memory location. This will overcome the Met-
stability condition [1]. An asynchronous FIFO has either
full or empty condition. FIFO is an important part of these
systems and it acts like a link between the devices.

The features of multi-channel UART controller depend on
the asynchronous FIFO. The communication between the
MCU and the multi-sub equipments is shown in the below
figure.1. The MCU baud rate is different to that of the sub-
equipments. The baud rates of the sub-equipments are
different to each other. A special baud rate converter is
used to implement the communication between the MCU
and the sub-equipment.

II ASYNCHRONOUS FIFO DESIGN

A. Connections of an asynchronous FIFO

Fig.2. Connections of an asynchronous FIFO

In an asynchronous FIFO, the data is written based on
the write clock pulse and the data is read based on the read
clock pulse. The two operations in an asynchronous FIFO
are read and write as shown in fig.2. The write and read
operations takes place for two different clock domains. The
status of an asynchronous FIFO can be determined by the
FULL and EMPTY signals. When the FIFO is full there is
no space for writing the data. When the FIFO is empty
there is no data to read. The clear signal is used to erase the
data in an asynchronous FIFO.

DOI: 10.32377/cvrjst1017

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 10, June 2016

 CVR College of Engineering 83

B. ASM chart of an Asynchronous FIFO

Fig.3: ASM chart of an Asynchronous FIFO

FIFOs are often used to safely pass data from one
clock domain to another asynchronous clock domain.
Using a FIFO to pass data from one clock domain to
another clock domain requires multi-asynchronous clock
design techniques [1].

An asynchronous FIFO refers to a FIFO design where
data values are written to a FIFO buffer from one clock
domain and the data values are read from the same FIFO
buffer from another clock domain, where the two clock
domains are asynchronous to each other. To determine full
and empty status for an asynchronous FIFO design, the
write and read pointers will have to be compared. If a reset
or read makes the pointers equal to each other, the FIFO is
really empty. If a write makes the pointers equal, the FIFO
is full [1].

The ASM chart of an asynchronous FIFO is shown in
the above figure.3. In this asynchronous FIFO, the
numbers of memory locations are 16 and in each memory
location 7-bits of data can be stored. When the reset
control signal is 0, the write addresses, read address, write
pointer, read pointer and data out are rested to zeros. When
the reset control signal is 1,it checks the clock1 signal. If
the clock1 signal is 1, then the write operation takes place.
If the clock1 signal is 0, it checks the clock2 signal. If the

clock2 signal is 1, then read operation takes place. When
the clock2 signal is 0, again it checks the clock1 signal. If
the read pointer and the write pointer points out to the
same memory location, the FIFO is empty. If the MSB bit
of write pointer is not equal to the MSB bit of read pointer
and the remaining bits are equal then the FIFO is full.

C. Logic Involved in an asynchronous FIFO

Asynchronous FIFOs are used to safely pass data
from one clock domain to another clock domain.
Asynchronous refers to two different clock domains. The
Master Control Unit (MCU) sends the data to FIFO at one
clock domain and the sub-equipments receive the data
from the FIFO at anther clock domain. A method is
presented that is used to design, synthesize and analyze a
safe FIFO between different clock domains using Gray
code pointers that are synchronized into a different clock
domain before testing for FIFO full� or FIFO empty
condition [2]. For a FIFO design, we require the full
component, empty component, and synch module
component. In a FIFO, the data is written at clock1
frequency and the data is read at clock2 frequency. To
determine full and empty status for an asynchronous FIFO
design, the write and read pointers will have to be
compared.

The FIFO is in full condition when

WPtr (4)/=WSync_rptr (4) and WPtr (3) /= WSync_rptr

(3) and WPtr (2 downto 0) = WSync_rptr (2 downto 0).

The FIFO is in empty condition when

rptr = rsync_wptr

To avoid metastability, Gray code is used as an
address of each memory location instead of binary code.
The probability of occurrence of an error is very low by
using Gray code.

The conversion between the Binary codes and the
Gray codes is as following [3]:

gn=bn

gi=bi Xor bi+1 i
n and

bn=gn

bi=gi Xor bi+1 i
n

D. Simulation result of an Asynchronous FIFO

Rst: When the control signal rst is �0‘ no operation
takes place and when the control signal rst is �1‘ the write
operation and read operation takes place, which is shown
in Fig.4.

Clk1: When the control signal clk1 is �1‘ then write
operation takes place.

DOI: 10.32377/cvrjst1017

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 10, June 2016

84 CVR College of Engineering

Clk2: When the control signal clk2 is �1‘ then read
operation takes place.

Radrs [3:0]: This control signal indicates the address
of the memory location from where the data can be read.

Wadrs [3:0]: This control signal indicates the address
of the memory location to which we can write the data is
shown in Fig.4.

Fig. 4: Simulation result of an asynchronous FIFO

Data_out [6:0]: This control signal indicates the
output data. The output data can be observed on the bus
channel 21, bus channel 22, and the bus channel 23.

Rd: If the control signal rst is �1‘, clk2 is �1‘ and the
rd is �1‘ then the read operation takes place.

Wr: If the control signal rst is �1‘, clk1 is �1‘and the
wr is �1‘then the write operation takes place

Data_in [6:0]: This control signal indicates the data to
be transmitted from the MCU to the Subs. The data can be
observed on the bus channel 1.

Ram1 [0:15]: It is a part of a FIFO and it contains 16
memory locations. The data is placed in each of the
memory location.

Wptr [4:0]: This control signal points out the memory
location where the data can be written.

Rptr [4:0]: This control signal points out the memory
location where the data can be read.

Wfull: If this control signal is �1‘ then the FIFO is full.

Rempty: If this control signal is �1‘ then the FIFO is
empty.

E. ASM chart of UART Transmitter:

Fig.5: ASM chart of UART Transmitter

The UART circuit block consists of three parts
Transmit circuit, Receive circuit and Control/Status
registers. The transmit circuit consists of a transmit buffer
and a shift register. If rst_n=1,wr=1 and txrdy=1 then
tx_sts=1.

If transmitter is ready, then we need to load data from
data line to data buffer register. A parity bit is also
generated in order to check whether the received bits are
correct or incorrect. If TBR (Transmission Buffer Register)
contains data then a parity bit is generated by Exclusive
operation of all the bits in TBR[3]. A start bit, data bits, a
parity bit and a stop bit are loaded into TSR. For every four
clock pulses, a baud clock is generated. Each baud clock
pulse is used to transmit the data in TSR bit by bit.

The source code which is used to describe the UART
transmitter as shown in Fig.5 consists of

DOI: 10.32377/cvrjst1017

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 10, June 2016

 CVR College of Engineering 85

(a) A module indicating the transmitter status.

(b) A module which is used for loading the data from data
line to TBR.

(c) A module which is used for generating a parity bit..

(d) A module which is used for generating a baud clock.

(e) A module which is used to shift the bits in TBR to TSR
bit by bit.

F. Logic Involved in UART TRANSMITTER

The UART circuit block consists of three parts
Receive circuit, Transmit circuit and Control/Status
registers. The transmit circuit consists of a Transmit Buffer
and a Shift Register. Transmit Buffer loads data being
transmitted from local CPU. And Shift Register accepts
data from the Transmit Buffer and send it to the TXD pin
one by one bit. When a control signal tx_sts=1 then the
transmitter is busy. The TBR can load the data of 7 bits.
When the control signal txrdy=1, then we need to load data
from data line to data buffer register . A parity bit is
generated, whenever data is present in TBR. The logic
involved for generating a parity bit is
the bits in TBR are
XORed [4].

Parity bit = tbr(0) XOR tbr(1) XOR tbr(2) XOR
tbr(3) XOR tbr(4) XOR tbr(5) XOR tbr(6)

For every four clock pulses a baud clock is generated.
For each baud clock a bit is transmitted from TSR to the
receiver circuit. The TSR can load the data of 10 bits. In
the TSR, the first bit indicates start bit, the ninth bit
indicates the parity bit, and the tenth bit indicates the stop
bit and from the second bit to the eight bit indicates the bits
from TBR. When TSR contains no data then txrdy=1
which indicates that the entire data has been sent to the
receiver circuit.

G. Simulation Result of UART Transmitter

The simulation result of UART transmitter is shown
in Fig.6. The UART block consists of a transmitter section
and receiver section. The transmitter consists of TBR and
TSR (Receiver Shift Register). The receiver section
consists of RBR (Receiver Buffer Register) and RSR. The
TBR consists of 8-bits of data. The TSR consists of start
bit, stop bit, parity bit and 8-bits of data. The bits in TSR
are shifted to RSR bit by bit. The data bits in RSR are
shifted to RBR.

Fig.6: Simulation result of UART Transmitter

Txrdy: If this control signal is �1‘ then TSR has
finished in sending the data. If this control signal is �0‘
then TSR has data to be sent.

Tx: This control signal indicates the data that is to be
transmitted to the sub-equipments. The data is transmitted

to the sub-equipments at different baud rates.

Wr: It is a control signal which indicates the write
operation.

Rst_n: This is a control signal which indicates the reset
operation.

H. ASM Chart of UART receiver

 The ASM chart of UART receiver is shown in Fig.7.

 Fig.7: ASM chart of UART receiver

DOI: 10.32377/cvrjst1017

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 10, June 2016

86 CVR College of Engineering

The UART circuit block consists of three parts
receive circuit; transmit circuit and control/status registers.
The receive circuit consists of a receive shift register and a
receive buffer. If a start bit is received into RSR then the
control signal det_rx is enabled as shown in Fig.7. The bits
in the TSR(Transmitter Shift Register) are shifted bit by bit
into the RSR(Receiver Shift Register). If the start bit
occupies the first position or first bit of RSR then all the
bits are received into receiver. The RSR is reset i.e., RSR
contains all 1s. For every four clock pulses, a baud clock is
generated. Each baud clock is used for receiving one bit. If
the first position of RSR contains �0‘ then the data bits in
RSR are shifted into the RHR(Receiver Hold Register). If
the read, rd control signal is high then the data in RHR is
shifted to data line. The status of the receiver whether it is
ready or not can be determined by the control signal rxrdy.
If the first position of RSR contains �0‘ then the receiver is
ready. If the above condition is not satisfied the receiver is
not ready.

I. Logic Involved in UART RECEIVER

The UART circuit block consists of three parts
Receive circuit, Transmit circuit and Control/Status
Registers. The receive circuit consists of a Receive Shift
Register and a Receive Buffer. The Receive Shift Register
receives data from RXD one by one bit. The Receive
Buffer loads data from long-distance MCU and gets it
ready for the local PC to read. If the start bit �0‘ is
received, det_rx control signal is enabled. If the start bit
�0‘ occupies the first position of RSR then all the bits are
received into the receiver. For each four clock pulses a
baud clock is generated. Based on the baud clock the bits
are received from the transmitter circuit. The bits in RSR
are shifted to the RHR except the first and the last bits.
When the control signal read (rd=‘1‘), the data is shifted
from RHR to data line.

J. Simulation result of UART receiver

 Fig.8: Simulation result of UART receiver

Clock: When the control signal clock is �1 then the
receiver is ready to accept the data.

Rst_n: When the control signal rst_n is �0 no
operation takes place and when it is �1‘ the data receiving
operation takes place.

Rd: When the control signal rd is �1 then the data in

RHR can be read into the data line as shown in Fig.8.

Rxrdy: This control signal indicates whether the
receiver is ready or not.

Rx: This control signal indicates the data to be
received from the data line to the RSR.

Rbaud_clk: When this control signal is �1‘ then the
data is received from the transmitter line to receiver i.e., to
RSR as shown in Fig.8.

Data [6:0]: This control signal indicates the input data.

Rhr [6:0]: This control signal indicates the data in the
Receiver Hold Register.

Rsr [8:0]: This control signal indicates the start bit,
the data bits and the stop bit.

III. IMPLEMENTATION OF A M-CHANNEL UART
CONTROLLER

 In the multi-channel UART controller, there are
various blocks which includes UART block, status
detectors, asynchronous FIFOs block and baud rate
generator block. All the blocks in the controller has its own
function. The main part is UART circuit block and its
structure is shown in figure. The communication between
any two devices is broadly classified into two types i.e., the
serial communication and the parallel communication. In
serial communication, the data bits are transferred bit by
bit whereas in parallel communication, all the bits are
transferred at a time. Parallel communication requires less
amount of time and serial communication requires more
amount of time for transferring the data. The cost of
parallel communication is more compare to the serial
communication. If the communication is within the system
then the parallel communication is preferred. Suppose, if
the communication is between any two systems separated
by a great distance then the serial communication is
preferred. The UART block is used for converting serial
data to parallel data and vice-versa. Asynchronous
communication between any two systems will occur when
the two systems are operating with different clock
domains.

In asynchronous communication, a start bit, a stop
bit, a parity bit and the data bits are used. The start bit
indicates the start of communication between any two
systems. After the start bit, the data or message bits are
sent. For detecting the error, a parity bit is sent from the
transmitter section to the receiver section. The parity bit

DOI: 10.32377/cvrjst1017

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 10, June 2016

 CVR College of Engineering 87

may be an even parity or odd parity. The stop bit indicates
the end of communication between any two systems.

A.UART Architecture

The main functional blocks of an UART as shown in
below Fig.9 are:

CPU Bus Controller

 Baud rate generator

Receiver /Transmitter

CPU Bus Controller

 A bus is a group of wires. The bus is classified into
three types. They are control bus, data bus and address bus.
The bus controller controls these buses. The control bus is
used for transmitting the control signals like bus request,
bus grant, hold request, and hold acknowledge etc. The
data bus carries the data bits from one block to the another
block. The address bus carries the addresses of various
memory locations in the memory.

Fig.9:UART block diagram

Baud rate generator

The purpose of the baud rate generator is to generate
the baud rate signals. The baud rate indicates the number
of bits per second i.e., the transmitter section can send and
the receiver section can receive. In UART there are two
main blocks i.e., the transmitter section and the receiver
section. The baud rate generator is connected to the
transmitter section as well as to the receiver section. Based

on the baud rate, the transmitter section sends the bits to
the receiver section and the receiver section receives the
bits from the transmitter section. By suitable selection of
the baud rate, the bit loss can be overcome between the
transmitter and the receiver section.

Receiver /Transmitter

The transmitter section of an UART block consists of
a Transmitter Hold Register (THR) and Transmitter Shift
Register (TSR). The receiver section of an UART block
consists of a Receiver Hold Register (RHR) and Receiver
Shift Register (RSR).The data on the bi-directional data
bus is loaded into the THR of the transmitter section of
UART.The data bits in THR are loaded into TSR and a
start bit, a stop bit and a parity bit are added. These bits are
shifted to RSR bit by bit. The RSR contains the data bits,
the start bit, the stop bit and the parity bit. Only, the data
bits in RSR are loaded into the RHR. The RHR contains
the data or message bits.

B.ASM chart

The ASM chart of multi-channel UART controller is
shown in Fig.10.The bits are loaded from MCU to RSR.
The bits in RSR are loaded to RBR. Here, the RBR
contains only the data bits. The bits in RBR are shifted to
TBR and the bits in TBR are shifted to TSR. The bits are
transmitted to the sub-equipments through the TxD pin.
The FIFO is in full condition, when all the bits in wr _ptr
are equal to the bits in rd_ptr except the MSB bit of
wr_ptr.If all the bits in rd _ptr are equal to all the bits of
wr_ptr, then the FIFO is in empty condition.

The UART consists of transmitter section and
receiver section. The transmitter section consists of TBR
(Transmit Buffer Register) and TSR (Transmit Shift
Register).The receiver section consists of RBR (Receiver
Buffer Register) and RSR (Receive Shift Register).The
purpose of the UART is to convert the data from serial to
parallel and parallel to serial. The communication between
the Master Control Unit (MCU) and the Sub-equipments is
performed by using the multi-channel UART controller. If
the Master Control Unit (MCU) is sending the data at high
baud-rate and the sub-equipments are receiving the data at
low baud-rate then there will be the loss of data. This
difficulty can be over commend by using an asynchronous
FIFO between the Master Control Unit (MCU) and the
sub-equipments. The asynchronous FIFO operates at two
different clock domains. The data is read from the Master
Control Unit (MCU) at one clock domain and the data is
written into the sub-equipments at another clock domain.
The MCU and the sub-equipments both contain the UART.
The transmitter section of the UART in Master Control
Unit (MCU) transmits the data to the sub-equipments and
the receiver section of the UART in the sub-equipments
receives the data. The Transmit Buffer Register (TBR) in
the transmitter section of UART consists of data bits. The
start bit, stop bit and a parity bit are added to the data bits
and loaded into the Transmit Shift Register (TSR).The bits
in Transmit Shift Register (TSR) are transferred into the
Receiver Shift Register (RSR) of the receiver section of the

DOI: 10.32377/cvrjst1017

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 10, June 2016

88 CVR College of Engineering

UART in the sub-equipments. Only the data bits in the
Receiver Shift Register (RSR) are transferred into the
Receiver Buffer Register (RBR) of the receiver section of
the UART in the receiver section of the sub-equipments.
The communication between the Master Control Unit
(MCU) and the sub-equipments is described in the form of
ASM chart as shown in Fig.10.

 Fig.10.ASM chart of multi-channel UART Controller.

C. Block Diagram

The block diagram of a multi-channel UART
controller is shown in the below figure. The
communication between the Master Control Unit (MCU)
and the sub-equipments is done through the FIFO as shown
in Fig.11. If the baud rate of Master Control Unit (MCU)
and the sub-equipments are different to each other, then
there is a possibility of data loss. This can be overcome by
using a FIFO in between the MCU and the sub-
equipments. The bus channel 1 is used to transmit the data
from MCU to the FIFO s and the bus channel 21, bus
channel 22, and the bus channel 23 is used to transmit the
data from the FIFO s to the sub-equipments. The UART
block is used for converting serial to parallel and parallel
to serial data

Fig.11.Block Diagram of Multichannel UART Controller.

D. Simulation Result

The simulation result of the top module is shown in
the below figure.12. A multichannel UART controller is
used for transmitting the data between the master
equipment and the three sub-equipments. If the master
equipment is sending the data at one baud rate and the
three sub-equipments are receiving the data at different
baud rates then there will be loss of data. To overcome this
difficulty, we are using a FIFO in the controller. A FIFO
can store the data and the data can be used latter by the
sub-equipments. The structure of the controller consists of
UART block, baud rate generator, status detector, FIFO
and status buffer. The structure of UART block consists of
Transmit Buffer Register (TBR), Transmit Shift Register
(TSR), Receiver Buffer Register (RBR), and Receiver
Shift Register (RSR).In the simulation description the
input data exists on data_in and the output data exists on
data_out[5]. The three sub-equipments will receive the
data at different baud rates. This can be observed in the
simulation diagram where they are labeled as tx. The baud
rates of the three transmitters are also different[6]. The
simulation result of the controller can be observed below.

Fig.12.Simulation result of multichannel UART controller (Top
module).

IV. CONCLUSIONS

This project introduces a method to design an
asynchronous FIFO based on FPGA and using an
asynchronous FIFO technique implements a multichannel
UART controller within FPGA. The controller can be used
to implement communications in complex system with
different baud-rates of sub-controllers. And it also can be
used to reduce time delays between sub-controllers of a
complex control system to improve the synchronization of
each sub -controller. The controller is reconfigurable and
scalable.

DOI: 10.32377/cvrjst1017

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 10, June 2016

 CVR College of Engineering 89

REFERENCES

[1]. Clifford E. Cummings and Peter Alfke, “Simulation and
Synthesis Techniques for Asynchronous FIFO Design
with Asynchronous Pointer Comparisons,” SNUG 2002
(Synopsys Users Group Conference, San Jose, CA, 2002)
User Papers, March 2002, Section TB2, 3rd paper. Also
available at www.sunburst-design.com/papers.

[2]. Stephen Brown and Zvonoko Vranesic “Fundamentals of
Digital Logic Design with VHDL” Second Edition , Tata
McGraw-Hill Education,pp:310-450,July 2002.

[3]. John M. YarBrough “Digital Logic Applications &
Design”Thomson,2002.

[4]. Floyd & Jain “Digital Fundamentals” Eight Edition,2014.
[5]. Douglas L. Perry “VHDL programming by example

“Fourth Edition, pp: 68-94, Mcgraw-Hill Book Comp.,
1991.

[6]. Jayaram.Bhaskar “A VHDL primer” Third Edition, Third

 Edition,pp:98-124.May1,2013.

DOI: 10.32377/cvrjst1017

