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Abstract— Spectrum sensing is a crucial task in Cognitive 
Radio networks. In this network some frequency bands are 
allocated for primary users. Secondary user can detect the 
unlicensed spectrum bands which are called white spaces 
without disturbing the primary user. The Common control 
channel, Channel estimation, Joint sensing and spectrum 
access, the location information are the other challenges of 
CR networks. To reuse the spectrum, spectrum sensing is 
necessary and several techniques available for spectrum 
sensing based on band of interest [2]. In this paper, Basis 
Pursuit(BP) and Orthogonal Matching Pursuit(OMP) 
algorithms are used for signal reconstruction[1]. All the 
simulations are carried out using MATLAB. 

IndexTerms- WHT, DCT, DFT, Compressive Sensing, Basis 

Pursuit and Orthogonal Matching Pursuit(OMP) . 

I.  INTRODUCTION 

Energy detection, Feature detection, Matched 
filtering, Covariance based detection and Eigenvalue based 
detection (EBD) methods belong to narrowband sensing. 
In energy detection, the PU signal energy is obtained in a 
specific time period of a particular frequency band and it 
has less computational complexity. The performance of 
this algorithm can be achieved by Pd (Probability of 
detection) and Pf (Probability of false alarm). It has poor 
detection performance under the low SNR which is the 
major drawback in this scheme. 

The feature detection technique is based on the cyclic 
feature which is originated by the mean and auto 
correlation of a periodic signal. This algorithm can detect 
the noise from the signals as the noise is Wide-Sense 
Stationary. This process separates the desired signal from 
the noise but it  requires long observation time and higher 
computational complexity. 

To increase the output SNR for a certain input signal 
a matched filter is used which belongs to the linear filter.      
The major advantage of this scheme is it requires only 
O(1/SNR) samples to meet a given probability of 
detection. But it consumes large power. 

Covariance based detection is another narrow band 
spectrum sensing which exploits the inherent correlation in 
received signals at the CR terminal ensuing from the   
oversampling of received signal. It does not require any 
prior information about the PU signal or noise. In this   
scheme the noise power estimation is not a requisite here 
as the threshold is related to false alarm probability and 
number of samples of the received signal at the CR. The 
better performance would be achieved for highly correlated 

PU signals while the performance of this detection 
degrades with the uncorrelated PU signal. To improve the 
signal quality at the receiver various Compressive sensing 
techniques are introduced. Table.1 shows the advantages 
and disadvantages of Energy, Feature, Matched filter and 
Covariance based Detection Methods.  

TABLE 1. 

VARIOUS SPECRTUM SENSING SCHEMES COMPARISON 

SS scheme Advantages Disadvantages

Energy Detection 
Method 

Easy to implement,  
Low computational 
complexity 

Threshold depends on 
Noise uncertainties. Non 
Robust and Low 
accuracy. Hidden 
terminal problem is  
susceptible .

Feature 
Detection 
Method 

 Noise uncertainty. 

High reliability. 

Complex to implement 
and nonblind.

Matched- filter 
Detection 
Method 

Less complex and Less 
susceptible to the hidden 
terminal problems. 

Nonblind, 

complexity and 
sensitivity is high

Covariance based 
Detection 
Method 

High Accuracy, 
blind,less and 
computational 
complexity. 

Degrades the 
performance  for 
uncorrelated PU signals

II .WIDEBAND  SPECTRUM  SENSING

To sense a bandwidth which exceeds the coherence 
bandwidth of the channel these techniques are used.. They 
can be classified into Nyquist rate and Sub-Nyquist 
wideband sensing techniques. The former one processes 
digital signals at or above the Nyquist rate, while the latter 
using the sampling rate below the Nyquist rate. 

A.    Nyquist   Rate   Wideband   Sensing  

To detect the spectral opportunities in Nyquist rate 
wideband sensing, a standard ADC and DSP algorithms 
are used. A filter bank approach is a good solution for the 
multicarrier wideband sensing. The baseband signal can be 
estimated by using a prototype filter, and other can be 
obtained by modulating it. In order to locate the 
singularities and irregular structures of the wideband PSD, 
the wavelet transform is an attractive mathematical tool, 
chosen for this scheme [5]. This algorithm works well for 
the wide range of bandwidth to simultaneously identify all 
the piecewise smooth sub bands, without having prior 
information about the number of sub bands within the band 
of interest. 
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B.    Sub   Nyquist   Rate   Wideband   Sensing

       If the sampling rate is less than the Nyquist rate and 
detecting spectral opportunities in the Nyquist wideband 
sensing, they can be categorized into Wideband CS and 
Wideband Multi-Channel Sub-Nyquist sensing. 
Compressive Sensing belongs to this category. CS can be 
used to recover the wideband signal when the  spectrum is 
sparse due to its low utilization and capitalizing the 
sparseness. In CS a finite-length time-variant signal x(t) can 
be represented by 

)(bψ=(t)ψb=x(t) i

N

=i
i 1

1
∑

where  ib
indicates the basis coefficients  of the sparse 

signal x(t). 
     In sparse signals, x can be expressed as a weighted sum 
of S orthonormal basis functions, with NS << and it can 
be obtained from equation (1). Those are significant Number 
of NonZero (NNZ) elements, while the remaining (N−S) of 
values gives less significant elements or zeros. The output y 
can be written as

)(bΘ=bψφ=xφ=y 2

Where φψ=Θ is a matrix of size M X N and the size of y 
is smaller than that of x, and then it provides infinite number 
of solutions. The recovery of x can be obtained with a 
measurement matrix, φ and y by solving the l1
-norm minimization problem is given by

This is a convex optimization problem which is solved by 
the Basis Pursuit (BP), an iterative greedy algorithm, etc. 
The advantage of this scheme is robust to noise and can 
afford less number of samples.

C.      Measurement   Matrix   of   CS   Recovery

To make M measurements from the signal x with length-N 
could be reconstructed by its sparse coefficient vector s. The 
reconstruction will not be possible if the measurement 
process damages the data in x. Hence, this process is linear 
and has an infinite no. of solutions with fewer equations 
than unknowns.

III . VARIOUS  TRANSFORMATION  TECHNIQUES

A.    Walsh  - Hadamard   Transform   Coding

   A Walsh matrix is a square matrix, with a power of 2 
dimensions, the elements of the matrix are +1 or 1,and  the 
dot product of any two  rows (or columns) is zero. Each row 

of a matrix corresponds to a Walsh function. Hadamard is a 
computationally simpler than the Fourier transform, since it 
requires no complex arithmetic operations. These operations 
were extremely time intensive on the small computers[3]. 
We have
                        )(Hxy 4;=
                        

)(Hyx 5;=

From equations (4) and (5) x denotes the input, y is the 
output, and H is the Hadamard transform matrix which is 
symmetric and self-inverse:
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The Walsh-Hadamard transform can be obtained by 
rearranging the basis vectors according to the number of 
zero crossings.

B.     Discrete   Cosine   Transform

In DCT a data sequence is represented by a sum of cosine 
functions. It is widely used in science and engineering, 
audio and image compression techniques. It is expressed in 
the following four types of DCTs

DCT-I

DCT-II

DCT-III

DCT-IV

The coefficients 
)(nCk are given by the equation 
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let us consider the forward and inverse DCT-II:
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The DCT-II is of major importance in signal coding because 
its correlation coefficient is close to one.

C.    Discrete   Fourier   Transform

The transform pair of the Discrete Fourier Transform
(DFT) is defined as 
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Due to the periodicity of the basis functions, the
  DFT of a periodic signal with period N. 
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     the above relationships can also be expressed as

           
1 (12)HX = Wx x = W X
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It is observed from the above equation that W is 
orthogonal, but not orthonormal.

The DFT can be normalized as follows:
φαφα =↔= xxH

1 (1 3)Hw h ere φ = W
N

IV.   DIFFERENT SCHEMES OF CS RECOVERY

CS Recovery schemes can be used for spectral estimation. 
Instead of Fourier representation Wavelets dictionary gives 
a better result. This dictionary contains Steerable Wavelets, 
Segmented Wavelets, Multi-scale Gabor dictionaries,
Wavelet Packets etc. The decomposition of a signal s can be 
written as 

or an approximate decomposition

where R(m) is a residual. The recovery signal representation 
decomposes into pure tones, bumps, chirps etc. depending 
on the dictionary.

A.    Basis   Pursuit   Algorithm

  The principle behind Basis Pursuit (BP) is decomposition 
of a signal into an optimal superposition of dictionary 
elements [4]. BP is used in ill-posed systems, total variation 
and multiscale edge denoising.  It can be used with noisy 
data by solving an optimization problem measure with an l1 
norm of coefficients. Among the many possible solutions 
to s=αφ , they pick one whose coefficients have the 
minimum l1 norm.

1
min (16)subject to sαα ϕ =

To deal with the signal at the noise level 0>σ

it is proposed an approximate decomposition as in 
equation(16), solving

2

2 1
min (17)nsαϕ λ α− +

with 
)log(#2 Dn σλ =

depending on the number of different  
vectors in the dictionary.

B.   Orthogonal Matching Pursuit

Let s be a d-dimensional s-sparse signal. Let 
}.........,{ 21 Nxxx

be a sequence of input vector in 
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dR . Those vectors can be used to collect N linear 
measurements of the signal

The procedure of OMP scheme is

1. Initialize the residual, index set and the iteration 
counter t = 1.

2. Find the index tλ which solves the optimization 

problem 〉〈= −= jtdjt r ϕλ ,maxarg 1,....,1

3. Augment the matrix of chosen atoms.
4. Obtain a new signal estimate by    using the equation  

2
minarg xvx txt φ−=

5. Calculate the new residual.     
6. Increment t, and return to Step 2 if t < m.
7. The estimate s� in component jΛ equals the jth 

component of xt.

V.    SIMULATION RESULTS 

In this paper different CS schemes have been discussed for 
sparse signal acquisition. Most of the CS based signal 
acquisition schemes require a measurement matrix based on 
sparsity. In this paper, the performance analysis of WHT, 
DCT and DFT transform coding techniques are compared. 
Usually, DFT and DCT transform coded measurement 
matrix provides the similar results, while the comparison 
between WHT and DCT transform coded measurement 
matrix illustrates a very significant result in the wideband 
sensing algorithm. 

We consider, at baseband, a wideband spectrum range 
[0MHz to 60MHz] containing 30 channels of 2 MHz each. 
Every channel is occupied by a Primary User (PU) with a 
digital modulation scheme either 16-PSK or 16-QAM. So, 
the symbol rate is 2 MHz and number of samples per 
symbol is 16 and number of symbols in a frame is chosen 
512. In a single attempt there are three PUs communicating 
with the center frequency of 20:7 MHz, 45:3 MHz, 59:5 
MHz respectively, while their individual bandwidth is 2 
MHz each. Here, we have considered the Nyquist sampling 
frequency, fs = 128 MHz and the sampling number, N = 
8192.We also consider, the received signal at the cognitive 
terminal is corrupted by the AWGN. The signal to noise 
ratio of active channels is considered to be 20dB. For CS 
reconstruction, the chosen compression ratio is varying from 
2.5% to 60%. The compressed matrix φ is Gaussian 

distributed with zero mean and variance 1
M and these 

matrices allow sparse recovery using l1 minimization. The 
above transformation techniques are used to form the 
measurement matrix, φ and then compares the normalized 
MSE w.r.t. PSD.

The NMSE(Normalized Mean Square Error) of the PSD is  
defined by:

where xs
denotes the average of the PSD estimates  and 

xs�
is the average PSD estimate of the reconstructed signal 

through the compressive sensing from the periodogram of 
same type. From Figure.1 it is clearly observed that the 
signal reconstruction quality is better with higher 

compression ratio M
N .

Figure 1.   Normalized MSE versus compression rate

In order to compare the DCT and WHT matrices execution 

time, we consider the compression rate M
N of interest in 

the range of 2.50%-60%. Figure 1 shows that the WHT 
matrix executes 30% faster than its DCT counterparts while 
their detection probability as shown in Fig.2 is comparable.

Figure 2.   Detection probability versus compression rate

The probability of detection, 
dp

is defined as:
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Where Xq(K) is the Fourier transform of the signal xq(n) and 
n indicates the sample index with 8 PSD samples in each  
block. 

Figure 3.   Influence of compression ratio on the detection performance

Where 
γ

is the decision threshold found by fixing the 
probability of false alarm, Pf = 0.05 and H1 represents the 
presence of PUs. Fig.3 describes the Pd with various values 
of compression ratios.

Figure .4.   Execution time versus compression rate
.

Fig.4 shows that the relation between execution time and 
compression ratio for various modulation techniques.

VI    CONCLUSIONS

In this paper various detection schemes are discussed. For 
signal recovery Basis Pursuit and Orthogonal Matching 
Pursuit algorithms are used along with Walsh Hadamard, 
Discrete Cosine and Discrete Fourier Transform techniques. 
These two techniques give  a better result than  Energy 
detection, Feature detection, Matched filter detection and 
Covariance based detection Methods. This is proved with 
the help of simulation results. It is concluded that the signal 
reconstruction quality is better with higher compression 
ratio. A novel compressive spectrum sensing algorithms can 
be implemented in future.
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