
ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 10, June 2016

 CVR College of Engineering 21

Implementation of Multi-Dimensional FFTs using
FPGA

G Ravi Kumar Reddy

CVR College of Engineering College, ECE Department, Hyderabad, India.
Email: ravigrkr@gmail.com

Abstract—This paper presents the implementation of
multidimensional Fast Fourier Transform (FFT). In this
implementation the FFT is calculated separately per each
dimension in the pipeline. The resultant three dimensional
pipeline FFT is implemented on an FPGA. The implemented
FPGA can calculate the 3-dimensional (3D) FFT for a data
which consists of 2563 samples with each sample with word
size of 32- bits. The main challenge of this paper is the
permutations between the one dimensional FFT modules. For
these permutations, the storage memory is an external DDR2
SDRAM and on chip memory BRAM. The resultant multi-
dimensional FFT is hardware efficient with very less latency
around 84.2 msec.

Index Terms—DFT, FFT, FPGA, RAM, SDRAM & BRAM.

I. INTRODUCTION

In the real world applications, the multi-dimensional
FFTs are widely used. For example, the 2D FFT used in
synthetic Aperture Radar [8], and 3D FFT used in
astrophysics, motion detection cosmology, turbulence
simulations[7], molecular dynamics and reverse
tomography. At present, the iterative 2D and 3D FFTs are
only implemented in the hardware, but the pipelined
architectures are placed in 2D FFTs only. The aim of this
paper is to design and implement a pipeline 3D FFT with
stable throughput using external memory for permutations
by supporting large number of input data sets. The
motivation for this is to enable the use of 3D FFT in real-
time systems demanding constant throughput of samples.

Generally, the discrete Fourier transform (DFT)is a
different type of Fourier transform in the discrete manner
set. The Cooley and Tukey invented the FFT in the year of
1965 [2]. The FFT algorithm reduces the total no. of
calculations required to perform DFT. Since the FFT has
been mostly used and is still used and research is being
carried out today also. The entire FFT implementations
are two groups of categories, one is iterative and the
second is pipelined architectures. In the iterative
architecture, one or more processing elements are reused
for the calculation of the result. In the pipelined
architecture, a series of processing elements are used to
calculate result from sequence of samples. The iterative
method is hardware efficient because it uses same
hardware for many calculations but it is not suitable for
continuous flow. For continuous flow environment, the
less latency is required, which is provided by pipeline
architecture with more hardware [3].

The same classification strategy is followed for the
multi dimensional FFT(MD FFT) architectures. The
MDFFT is also grouped into iterative and pipelined
architectures. The iterative architectures which are
discussed in[7,9] are designed as more flexible than the
available processing elements. The performance of this is
same as CDFFT only. The counter are pipelined
architecture which supports the continuous flow of sample
calculation by using dedicated hardware like 1DFFT.

II. ARCHITECTURE SELECTION

The architecture selection completely depends on the
type of application in the real time environment. The tough
constraints are considered for both latency and throughput.
The typical example is a processing chain, in this each and
every clock cycle provides data and gives the results in the
same speed with required latency.

Another example in real time applications, is the post
processing of the video stream is considered, in which the
decision marker cannot take the correct decision in time if
the latency is high. One more example is medical body
scanning; for this application the doctor is needed to
provide the information in time with respect to updates of
the image, then low latency and higher throughputs are
required.

A. Pipelined or Iterative Architecture

In real time applications there is requirement for fast
computation of both 2D and 3D FFT. When we consider
inside of the continuous flow, the iterative architectures
halt a bit flow .The main reason for this is the memory
loading and storing intermediate results by the repeated
access.

For example, the 3D FFT have to read and write the
data set 3 or 4times,than to process the chain and include a
mandatory clock domain crossing (CDC) the bandwidth of
memory also required 3 or 4 times. From the experience of
CDCs, the debugging is tedious if the design is that in
good manner. Hence, we can understand that the iterative
process architectures are not fit for real time applications
at the high cost of very advanced circuitry and large
memories.

The pipelined architectures are basically adapted to a
continuous flow of samples. This architecture enables the
1D FFTs to be evaluated without repeated memory
accesses but hardware cost is high for mandatory
permutations. The bandwidth of memory remains same for

DOI: 10.32377/cvrjst1005

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 10, June 2016

22 CVR College of Engineering

the entire processing chain because memory uses only for
read and write operations at once . For small data sets, the
permutations with respect to on-chip memory only taken
place with less hardware. The large data set permutations
required external memory with some constraints and
accessing limitations.

B. Memory permutations with some access limitations

In the implementation of 3- dimensional FFT, a two
dimensional FFT is also considered as a part. Suppose if
we are calculating the 2D FFT of each slice is spanned into
two of 3 dimensions, followed by the calculation of 3D
FFT. Therefore, the initial part of the 3 dimensional
pipeline FFT is same as the pipelined 2D FFT as in the
paper [3], namely a1D FFT followed by a transposition
unit of the another 1D FFT. The transposition of
permutations are present in both 2D and 3D FFTs. The 3
dimensional FFT performs another permutation between
the 2nd and 3rd 1D FFT blocks, permutation has to permute
the whole 3D dataset such that data is delivered in the 3
dimension to the 3rd1D FFT.

If the data is larger in size, one or both of those
permutations have to perform in external memory. Hence,
the large and high speed external SDRAM architecture is
chosen to provide the required. The SDRAMs are dynamic
in nature, so refreshing is required frequently, and you can
access limited memory only at a time. This is the one
difficulty while performing real time permutations for
pipelined 3D and 2D FFTs. Basically, SDRAMs are burst
oriented and at a time series of samples access is possible.
That means the lowest address bits and corresponding
elements are locked within the burst and permutated using
separate auxiliary circuit. These permutations are not
performed on SDRAM. In the auxiliary permutation
circuit, the places of the bits are swapped and finally
placed on their site.

Next, the memory SDRAM gets refreshed in a
particular period of time without any loss of the data. This
is considered as important constraint on the access of the
memory schedule. The memory schedule can be done in
two ways for refreshing, one is dynamic schedule and
other one is static schedule. If dynamic schedule is
selected, the latency is varied and sometimes throughput
also varied, which is not supported by some applications.
The other one is static schedule refreshing, in which
refresh requires long time to fit with overhead by iterations
with considerable bandwidth.

 After that, for the rows and columns the less
amount of memory access is only possible. Hence, the data
is mapped to access the number of elements in all possible
dimensions inside rows. For this sufficient row switches
are required to overcome the overhead of the rows
memory. The overhead concept is related to the process of
pre-charging the active rows, the storing of the rows in the
memory array, and fetching new rows and finally placing
of those new rows in the sense amplifier blocks.

III. PROPOSED APPROACH

 In this section, we focus on the 3D permutation
between 2nd and 3rd 1D FFT. The series of 1D FFT
architecture is selected with permutations in between; at
the end we also perform a bit reversal result with natural
order. The complete architectural view with bit reversal is
shown in figure1.

Figure 1. The complete view of the architecture for 3D
FFT

The 3D permutation design process is also called as
3D rotation because this permutation rotates in three
dimensions. This entire process is divided into following
steps. 1) The determination of the external memory
requirement, 2) identification of memory to fulfill the
bandwidth requirements of the application and extraction
of parameters to overcome the access 3) if external
memory is not required, directly the design can perform
permutations on internal memory i.e BRAM. 4) next step
is determination of static schedule to avoid the tedious
work to fulfill the latency and throughput always while
using dynamic schedule, which includes group of memory
commands for accessing.

In the design of the schedule, the row changes are not
allowed during the schedule processing. If row changes are
allowed, the data permutations inside the group is not
performed without extra memory. Inside the group, the
data index bits are locked when memory operations are
performed, because the order is determined statically in the
schedule. Due to this, finally the length of the schedule and
size of the group are reduced and hence complexity and
hardware usage reduced. The next step is, the permutation
design and corresponding hardware to perform the
permutation only. It means the number of locked bits
impacts the 3D rotation. The placing of the bits should end
up where the locked bits are located as low as possible, and
preferably in the location to where we have to move the
locked bits in the auxiliary permutation circuit after the
memory. Otherwise, no auxiliary permutation is required
for accessing the memory. Now, the counter bits are
directly applied on memory according to the inverse
permutation. We will need as many mappings as indicated
by the periodicity of the required permutation. The last
step is the auxiliary circuit design for permutation is based
on the number of locked bits.

IV. IMPLEMENTATION

This section presents the implementation of the
proposed 3D FFT, permutation circuits on FFT [4] and the
transposition technique for FFT [3][10].The overall
architecture of the system is shown in figure 2. This figure
also shows the system modules and indexed bits and their
order changing. In the any module the input and output

DOI: 10.32377/cvrjst1005

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 10, June 2016

 CVR College of Engineering 23

order is changed according to the order of the bits in the
subs section of the module. By this, we can understand
what is going on in the module. Based upon the inputs and
outputs, all the modules are observed and duplicate things
are ignored. The above process actually starts with the
block FFT , then the process continues with the
transposition and bit reversal in BRAM. This BRAM is
followed by BDP circuits and it is continued with the 3D
rotation in SDRAM. The auxiliary circuit for the required
permutation circuit moves the locked index bits to finish
the 3D rotation. The hardware usage and performance
results are described below.

The 3D FFT with size of 2563 samples consists of
indexed bits of 24 and 8- bits for dimension. This
example is because it does not require 3d data set in cubic
form and it is an easier case to understand the design. The
above design is implemented on the DE3 board with the
combination of a Stratix III FPGA including DDR2 of
SDRAM slot. The goal of this paper is the designing of a
system to give throughput of 200 M Samples per second
and 1 sample per each clock cycle at the frequency of 200
Mhz.

Figure 2.The system overview with bit positions of index
at the input and output.

A. FFT

The placement of all identical FFT modules in the
system are shown in the Figure 3.The 256-point feed-
forward pipelined architecture considered. The
multiplications approximation done by 14-bit precision

CORDIC algorithm. From [1] the FFT module design is
taken.

In the above figure, numbers specify the index bits
and arrows gives the moment of the index bits done by the
permutation. The shading portion in the above figure
indicates the bit dimensions.

Figure 3. The FFT module highlighted system.

B. Transposition and Bit Reversal on BRAM

We need to perform two permutations between the
first and second FFT Between the first and second FFT
shown in figure 4. First permutation is bit reversal on the
lowest eight bits for achieving natural order in the
frequency domain, Second step is the transposition of
matrix rows data in the second FFT. The next operation
step is switching of index places for index bits on the one
and two dimensions.

Figure 4. BRAM highlighted system overview.

For the saving of the resources, the two permutations
are combined into one permutation performed on memory.
This combining of permutations is easy because the
BRAM did not have any access limitations and constraints.
That means the read and write operations can take place
any time. One and only limitation with respect to read and
write operations is same location does not use double.

C. Bit Reversal

The following figure shows the bit dimensions and
corresponding bit reversal circuits of the given design. This
design performs the permutations using the minimum
number of logic and memory resources with low
complexity. This system is proposed in[4], which is
desirable for efficient hardware design.

Figure 5. Architecture with bit reversal modules.

The bit reversal in FFT makes the samples in natural
order with respect to frequency domain. After each FFT,
the index bits reversed in the corresponding dimension is
called bit reversal. In FFT architecture two bit reversal
modules are included for permutations on memory. After
the memory permutation for the first FFT, the transposition
takes place. The auxiliary permutation circuit size is

DOI: 10.32377/cvrjst1005

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 10, June 2016

24 CVR College of Engineering

increased in the SRRAM due to the placing of the bit
reversal blocks for permutations in SDRAM. The size
difference plays important role and bit reversal circuit sizes
also. In the upcoming section, the sizes are compared with
respect to SDRAM permutations.

D. Permutations on SDRAM

This section gives the design decisions and the
corresponding implementations on the SDRAM memory.
This is important criteria in the design. The following steps
give the required permutations

Step 1 - Need of External Memory

Step 2 - External Memory Constraints and Parameters

Step 3 – Scheduling

Step 4 - SDRAM Permutation Design

Step 5 - Auxiliary Permutation Circuit.

Figure 6 and figure 7 shows the placing of the PERM
block and the order of the input and output bits of the
SDRAM respectively. Figure 8 presents the auxiliary
circuit and corresponding input and output order with
respect to permutations.

Figure 6. The SDRAM architecture and correction of the
permutation blocks in the FFT system.

Figure 7. The input and output bit order in the SDRAM

The auxiliary permutation circuit permutes the last or
lowest locked bits 19 to 16.

Figure 8. The input and output bit order of the
auxiliary permutation circuit.

V. RESULTS

This section describes the key performance numbers
in real-time systems, namely the latency and throughput.
Latency, describes how long it will take for a value to
propagate through the system. The throughput defines how
many samples you can calculate per time unit; Based on
this value you can then determine how many 3D FFTs you
can calculate per time unit. The first 3D FFT calculation
will be finished after the size of the data set divided by the
throughput in addition to the latency. After that you will

have one calculation finished after each following size of
the data set divided by the throughput.

A. Throughput

In this system the system clock frequency is equal to
throughput of the system. For the given system, the clock
frequency is considered as 200MHz then the throughput is
200 mega samples per second. In this paper a 2563 cubic
data samples are considered as example. The throughput
for this example will be 11.9 frames per second, which is
84 milli seconds

B. Latency

The latency is determined with respect to number of
implementation blocks in the system. The total latency is
calculated using the propagation time of the samples with
the aid of a counter. Final latency is determined using
clock cycles. If the clock frequency is 200MHz then t lat

(latency) is given by

t lat =N cycles * t clk = 16848123.5 ns =0.084240615 s
=84.2 msec.

C. Hardware Utilization

The size of the hardware depended on some factors.
Mainly the design requires very high memory and logic
registers of both the memories SDRAM and BRAM. The
controlling of physical communication between memories,
the corresponding delays and signals gives the utilization
factor of SDROM. For this a Nios II soft processor is used
as controller .This controller depends on utilization of on
chip memory and utilization of logic. The on chip memory
means the memory required for the matrix transposition.
The remaining blocks are 3 FFT hardware blocks and
permutation circuits. These permutation circuits consist of
large number of memory elements, which occupies more
logic registers since on logic blocks are used. Hence the
calculation of FFTs is simple without any complex
multiplications. The synthesis summary report and
utilization of hardware presented in table I.

Table I. Synthesis results for hardware utilization on Altera
Stratix III FPGA.

Family Stratix III

Device EP3SL150F1152C2

Logic utilization 28 %

Total block memory bits 2,548,445/5,630,976
(45%)

Memory ALUTs 2,595 / 56,800 (5 %)

Combinational ALUTs 19,955 / 113,600 (17 %)

Total registers 27048

Total pins 148 / 744 (20 %)

Total PLLs 1 / 8 (13 %)

DSP block 18-bit
elements

 0 / 384 (0 %)

Dedicated logic registers 26,870 / 113,600 (24 %)

Total DLLs 1 / 4 (25 %)

DOI: 10.32377/cvrjst1005

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 10, June 2016

 CVR College of Engineering 25

VI. CONCLUSIONS

This paper presented the 3D FFT algorithm design
and implementation for continuously flow of samples
using pipelined architecture. This paper is aimed for many
real time applications. The FFT architecture is mainly
based on series of three 1D FFT pipelined permutations.
such a way that the data arrives in correct order to all three
1D FFTs, and that the result is in natural order in the
frequency domain if this is desired.

This proposed and designed method can be used for
any type memory system architectures, with or without
access limitations and constraints. This implementation
required two memories are on chip BRAM and external
SDRAM.

This implementation is good competition for all the
existing FFT designs in terms of cost , hardware, memory
and performance. The further improvements in this design
are including parallel dimensions in the permutations. Due
to this modification, the fast memory using is possible by 1
D FFTs and then the throughput of the system is improved.
It would be good to have the possibility to connect the
design to a data bus and through it, a shared memory. The
samples could be fetched from the data bus, and the shared
memory could also be used for permutations. This would
probably give a lower performance, but it would give a
better opportunity to include the architecture in a complete
System-on-Chip solution, and be more integrable in larger
systems.

 REFERENCES

[1] R. Andersson. FFT hardware architectures with
reduced twiddle factor sets. Master’s thesis,
Department of Electrical Engineering, Linköping
University,2013.

[2] J. W. Cooley and J. W. Tukey. An algorithm for the
machine calculation of complex Fourier series. Math.
Comp., 19, 1965.

[3] M. Garrido. Efficient Hardware Architectures for the
Computation of the FFT and other related Signal
Processing Algorithms in Real Time. PhD thesis,
Universidad Politechnical de Madrid, Spain, 2009.

[4] M. Garrido, J. Grajal, and O. Gustafsson. Optimum
circuits for bit reversal. Circuits and Systems II:
Express Briefs, IEEE Transactions on, 58(10):657–
661, 2011.

[5] G. Halcrow and B. Mulgrew. “SAR 3D scene
reconstruction using Fourier imaging techniques” in
High Resolution Imaging and Target Classification,
2006. The Institution of Engineering and Technology
Seminar on, pages 53– 60, 2006.

[6] A. Kojima, N. Sakurai, and J. I. Kishigami. Motion
detection using 3DFFT spectrum. In Proc. IEEE Int
Acoustics, Speech, and Signal Processing ICASSP-93.
Conf, volume 5, pages 213–216, 1993.

[7] U. Nidhi, P. Kolin, H. Ahmed, and K. Anshul. High
performance 3D-FFT implementation. In Circuits and

Systems (ISCAS), 2013 IEEE International
Symposium on, pages 2227–2230, 2013.

[8] C.-L. Yu and C. Chakrabarti. Transpose-free SAR
imaging on FPGA platform. In Proc. IEEE Int Circuits
and Systems (ISCAS) Symp, pages 762–765, 2012.

[9] C.-L. Yu, K. Irick, C. Chakrabarti, and V. Narayanan.
“Multidimensional DFT IP generator for FPGA
platforms” Circuits and Systems I: Regular Papers,
IEEE Transactions on, 58(4):755–764, 2011.

[10] B. Akin, P. A. Milder, F. Franchetti, and J. C. Hoe.
“Memory bandwidth efficient two-dimensional fast
Fourier transform algorithm and implementation for
large problem sizes” In Proc. IEEE 20th Annual Int.
Field-Programmable Custom Computing Machines
(FCCM) Symp, pages 188–191, 2012.

DOI: 10.32377/cvrjst1005

