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Abstract—This paper presents the implementation of 
multidimensional Fast Fourier Transform (FFT). In this 
implementation the FFT is calculated separately per each 
dimension in the pipeline. The resultant three dimensional 
pipeline FFT is implemented on an FPGA. The implemented 
FPGA can calculate the 3-dimensional (3D) FFT for a data 
which consists of 2563 samples with each sample with word 
size of 32- bits. The main challenge of this paper is the 
permutations between the one dimensional FFT modules. For 
these permutations, the storage memory is an external DDR2 
SDRAM and on chip memory BRAM. The resultant multi-
dimensional FFT is hardware efficient with very less latency 
around 84.2 msec. 

Index Terms—DFT, FFT, FPGA, RAM, SDRAM & BRAM. 

I. INTRODUCTION

In the real world applications, the multi-dimensional 
FFTs are widely used. For example, the 2D FFT used in 
synthetic Aperture Radar [8], and 3D FFT used in 
astrophysics, motion detection cosmology, turbulence 
simulations[7], molecular dynamics and reverse 
tomography. At present, the iterative 2D and 3D FFTs are 
only implemented in the hardware, but the pipelined 
architectures are placed in 2D FFTs only. The aim of this 
paper is to design and implement a pipeline 3D FFT with 
stable throughput using external memory for permutations 
by supporting large number of input data sets. The 
motivation for this is to enable the use of 3D FFT in real-
time systems demanding constant throughput of samples. 

Generally, the discrete Fourier transform (DFT)is a 
different type of Fourier transform in the discrete manner 
set. The Cooley and Tukey  invented the FFT in the year of 
1965 [2]. The FFT algorithm  reduces the total no. of 
calculations required to perform DFT. Since the FFT has 
been mostly used and is still used and research is being 
carried out today also.  The entire FFT implementations 
are two groups of categories, one is iterative and the 
second is pipelined architectures. In the iterative 
architecture, one or more processing elements are reused 
for the calculation of the result. In the pipelined 
architecture, a series of processing elements are used to 
calculate result from sequence of samples. The iterative 
method is hardware efficient because it uses same 
hardware for many calculations but it is not suitable for 
continuous flow. For continuous flow environment, the 
less latency is required, which is provided by pipeline 
architecture with more hardware [3]. 

The same classification strategy is followed for the 
multi dimensional FFT(MD FFT) architectures. The 
MDFFT is also grouped into iterative and pipelined 
architectures. The iterative architectures which are 
discussed in[7,9] are designed as more flexible than the 
available processing elements. The performance of this is 
same as CDFFT only. The counter are pipelined 
architecture which supports the continuous flow of sample 
calculation by using dedicated hardware like 1DFFT.

II. ARCHITECTURE SELECTION

The architecture selection completely depends on the 
type of application in the real time environment. The tough 
constraints are considered for both latency and throughput. 
The typical example is a processing chain, in this each and 
every clock cycle provides data and gives the results in the 
same speed with required latency. 

Another example in real time applications, is the post 
processing of the video stream is considered, in which the 
decision marker cannot take the correct decision in time if 
the latency is high.  One more example is medical body 
scanning; for this application the doctor is needed to 
provide the information in time with respect to updates of 
the image, then low latency and higher throughputs are 
required.  

A. Pipelined or Iterative Architecture 

In real time applications there is requirement for fast 
computation of both 2D and 3D FFT. When we consider 
inside of the continuous flow, the iterative architectures 
halt a bit flow .The main reason for this is the memory 
loading and storing intermediate results by the repeated 
access. 

For example, the 3D FFT have to read and write the 
data set 3 or 4times,than to process the chain and include a 
mandatory clock domain crossing (CDC) the bandwidth of 
memory also required 3 or 4 times. From the experience of 
CDCs, the debugging is tedious if the design is that in 
good manner. Hence, we can understand that the iterative 
process architectures are not fit for  real time applications 
at the high  cost of very advanced circuitry and large 
memories.  

The pipelined architectures are basically  adapted to a 
continuous flow of  samples. This architecture enables the 
1D FFTs to be evaluated without repeated memory 
accesses but hardware cost is high for mandatory 
permutations. The bandwidth of memory  remains same for 
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the entire processing chain because memory uses only for 
read and write operations at once . For small data sets, the 
permutations with respect to on-chip memory only taken 
place with less hardware. The large data set permutations 
required external memory with some constraints and 
accessing limitations. 

B. Memory permutations with some access limitations

In the implementation  of 3- dimensional FFT, a two 
dimensional FFT is also considered as a part. Suppose if 
we are calculating the 2D FFT of each slice is spanned into 
two of 3 dimensions, followed by the calculation of 3D 
FFT. Therefore, the initial part of the 3 dimensional 
pipeline FFT is same as the pipelined 2D FFT as in the 
paper [3], namely a1D FFT followed by a transposition 
unit of the another 1D FFT. The transposition of 
permutations are present in both 2D and 3D FFTs. The 3 
dimensional FFT performs another permutation between 
the 2nd and 3rd 1D FFT blocks, permutation has to permute 
the whole 3D dataset such that data is delivered in the 3 
dimension to the 3rd1D FFT. 

If the data is larger in size, one or both of those 
permutations have to perform in external memory. Hence, 
the large and high speed external SDRAM architecture is 
chosen to provide the required. The SDRAMs are dynamic 
in nature, so refreshing is required frequently, and you can 
access limited memory only at a time. This is the one 
difficulty while performing real time permutations for 
pipelined 3D and 2D FFTs. Basically, SDRAMs are burst 
oriented and at a time series of samples access is possible. 
That means the lowest address bits and corresponding 
elements are locked within the burst and permutated using 
separate auxiliary circuit. These permutations are not 
performed on SDRAM. In the auxiliary permutation 
circuit, the places of the bits are swapped and finally 
placed on their site.      

Next, the memory SDRAM  gets refreshed in a 
particular period of time without any loss of the data. This 
is considered as important constraint on the access of the 
memory schedule. The memory schedule can be done in 
two ways for refreshing, one is dynamic schedule and 
other one is static schedule. If dynamic schedule is 
selected, the latency is varied and sometimes throughput 
also varied, which is not supported by some applications. 
The other one is static schedule refreshing, in which 
refresh requires long time to fit with overhead by iterations 
with considerable bandwidth. 

     After that, for the rows and columns the less 
amount of memory access is only possible. Hence, the data 
is mapped to access the number of elements in all possible 
dimensions inside rows. For this sufficient row switches 
are required to overcome the overhead of the rows 
memory. The overhead concept is related to the process of 
pre-charging the active rows,  the storing of the rows in the 
memory array, and fetching new rows and finally placing 
of those new rows in the sense amplifier blocks. 

III. PROPOSED APPROACH

     In this section, we focus on the 3D permutation 
between 2nd and 3rd 1D FFT. The series of 1D FFT 
architecture is selected with permutations in between; at 
the end we also perform a bit reversal result with natural 
order. The complete architectural view with bit reversal is 
shown in figure1. 

Figure 1. The complete view of the architecture for 3D 
FFT 

The 3D permutation design process is also called as 
3D rotation because this permutation rotates in three 
dimensions. This entire process is divided into following 
steps. 1)  The determination of the external memory 
requirement, 2) identification of memory to fulfill the 
bandwidth requirements of the application and extraction 
of parameters to overcome the access 3) if external 
memory is not required, directly the design can perform 
permutations on internal memory i.e BRAM. 4) next step 
is determination of static schedule to avoid the tedious 
work to fulfill the latency and throughput always while 
using dynamic schedule, which includes group of memory 
commands for accessing.  

In the design of the schedule, the row changes are not 
allowed during the schedule processing. If row changes are 
allowed, the data permutations inside the group is not 
performed without extra memory. Inside the group, the 
data index bits are locked when memory operations are 
performed, because the order is determined statically in the 
schedule. Due to this, finally the length of the schedule and 
size of the group are reduced and hence complexity and 
hardware usage reduced. The next step is, the permutation 
design and corresponding hardware to perform the 
permutation only.  It means the number of locked bits 
impacts the 3D rotation. The placing of the bits should end 
up where the locked bits are located as low as possible, and 
preferably in the location to where we have to move the 
locked bits in the auxiliary permutation circuit after the 
memory. Otherwise, no auxiliary permutation is required 
for accessing the memory. Now, the counter bits are 
directly applied on memory according to the inverse 
permutation. We will need as many mappings as indicated 
by the periodicity of the required permutation. The last 
step is the auxiliary circuit design for permutation is based 
on the number of locked bits.  

IV. IMPLEMENTATION

This section presents the implementation of the 
proposed 3D FFT, permutation circuits on FFT [4] and the 
transposition technique for FFT [3][10].The overall 
architecture of the system is shown in figure 2. This figure 
also shows the system modules and indexed bits and their 
order changing. In the any module the input and output 
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order is changed according to the order of the bits in the 
subs section of the module.  By this, we can understand 
what is going on in the module. Based upon the inputs and 
outputs, all the modules are observed and duplicate things 
are ignored.  The above process actually starts with the 
block FFT , then the process continues with the 
transposition and bit reversal in BRAM. This BRAM is 
followed by BDP circuits and it is continued with the 3D 
rotation in SDRAM. The auxiliary circuit for the required 
permutation circuit moves the locked index bits to finish 
the 3D rotation. The hardware usage and  performance 
results are described below. 

The 3D FFT with size of 2563 samples consists of 
indexed bits of 24 and 8- bits for dimension.   This 
example is because  it does not require 3d data set in cubic 
form  and it is an easier case to understand the design. The 
above design is implemented on the DE3 board with the 
combination of a Stratix III FPGA including DDR2 of 
SDRAM slot. The goal of this paper is the designing of a 
system to give throughput of 200 M Samples per second 
and 1 sample per each clock cycle at the frequency of 200 
Mhz. 

Figure 2.The system overview with bit positions of index 
at the input and output. 

A. FFT 

The placement of all identical FFT modules in the 
system are shown in the Figure 3.The 256-point feed-
forward pipelined architecture considered. The 
multiplications approximation done by 14-bit precision 

CORDIC algorithm. From [1] the FFT module design is 
taken. 

In the above figure, numbers specify the  index bits 
and arrows gives the moment of the index bits done by the 
permutation. The  shading portion in the above figure 
indicates the   bit dimensions. 

Figure 3. The FFT module highlighted system. 

B. Transposition and Bit Reversal on BRAM 

We need to perform two permutations between the 
first and second FFT Between the first and second FFT 
shown in figure 4. First permutation is bit reversal on the 
lowest eight bits for achieving natural order in the 
frequency domain, Second step is the transposition of 
matrix rows data in the second FFT. The next operation 
step is switching of index places for index bits on the one 
and two dimensions. 

Figure 4. BRAM highlighted system overview. 

For the saving of the resources, the two permutations 
are combined into one permutation performed on memory. 
This combining of permutations is easy because the 
BRAM did not have any access limitations and constraints. 
That means the read and write operations can take place 
any time. One and only limitation with respect to read and 
write operations is same  location does not use double. 

C. Bit Reversal 

The following figure shows the bit dimensions and 
corresponding bit reversal circuits of the given design. This 
design performs the permutations using the minimum 
number of logic and memory resources with low 
complexity. This system is proposed in[4], which is 
desirable for efficient hardware design. 

Figure 5. Architecture with bit reversal modules. 

The bit reversal in FFT makes the samples in natural 
order with respect to frequency domain. After each FFT, 
the index bits  reversed in the corresponding dimension is 
called bit reversal. In FFT architecture two bit reversal 
modules are included for permutations on memory. After 
the memory permutation for the first FFT, the transposition 
takes place. The auxiliary permutation circuit size is 
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increased in the SRRAM due to the placing of the bit 
reversal blocks for permutations in SDRAM. The size 
difference plays important role and bit reversal circuit sizes 
also. In the upcoming section, the sizes are compared with 
respect to SDRAM permutations. 

D. Permutations on SDRAM 

This section gives the design decisions and the 
corresponding implementations on the SDRAM memory.  
This is important criteria in the design. The following steps  
give the required permutations 

Step 1 - Need of External Memory 

Step 2 - External Memory Constraints and Parameters

Step 3 – Scheduling 

Step 4 - SDRAM Permutation Design 

Step 5 -  Auxiliary Permutation Circuit. 

Figure 6 and figure 7 shows the placing of the PERM 
block and the order of the input and output bits of the 
SDRAM respectively. Figure 8 presents the auxiliary 
circuit and corresponding input and output order with 
respect to permutations. 

Figure 6. The SDRAM architecture and correction of the 
permutation blocks in the FFT  system. 

Figure 7. The input and output bit order in the SDRAM  

The auxiliary permutation circuit permutes the last or 
lowest locked bits 19 to 16. 

Figure 8. The input and output bit order of the 
auxiliary permutation circuit. 

V. RESULTS

This section describes the  key performance numbers 
in real-time systems, namely the latency and throughput. 
Latency, describes how long it will take for a value to 
propagate through the system. The throughput defines how 
many samples you can calculate per time unit; Based on 
this value you can then determine how many 3D FFTs you 
can calculate per time unit. The first 3D FFT calculation 
will be finished after the size of the data set divided by the 
throughput in addition to the latency. After that you will 

have one calculation finished after each following size of 
the data set divided by the throughput. 

A. Throughput 

In this system the system clock frequency is equal to 
throughput of the system. For the given system, the clock 
frequency is considered as 200MHz then the throughput is 
200 mega samples per second. In this paper a 2563 cubic 
data samples are considered as example. The throughput 
for this example will be 11.9 frames per second, which is 
84 milli seconds 

B. Latency 

The latency is determined with respect to number of 
implementation blocks in the system. The total latency is 
calculated  using the propagation time of the samples with 
the aid of a counter. Final latency is determined using 
clock cycles. If the clock frequency is 200MHz then t lat

(latency) is given by  

t lat =N cycles * t clk = 16848123.5 ns =0.084240615 s 
=84.2 msec. 

C. Hardware Utilization 

The size of the hardware depended on some factors. 
Mainly the design requires very high memory and logic 
registers of both the memories SDRAM and BRAM. The 
controlling of physical communication between memories, 
the corresponding delays and signals gives the utilization 
factor of SDROM. For this a Nios II soft processor is used 
as controller .This controller depends on utilization of on 
chip memory and utilization of  logic. The on chip memory 
means the memory required for the matrix transposition. 
The remaining blocks are 3 FFT hardware blocks and 
permutation circuits. These permutation circuits  consist of  
large number of memory elements, which occupies more 
logic registers since on logic blocks are used. Hence the 
calculation of FFTs is simple without any complex 
multiplications. The synthesis summary report and 
utilization of hardware presented in table I.  

Table I. Synthesis results for hardware utilization on Altera 
Stratix III FPGA. 

Family  Stratix III 

Device EP3SL150F1152C2 

Logic utilization   28 % 

Total block memory bits  2,548,445/5,630,976 
(45% ) 

Memory ALUTs   2,595 / 56,800 ( 5 % ) 

Combinational ALUTs  19,955 / 113,600 ( 17 % ) 

Total registers  27048 

Total pins   148 / 744 ( 20 % ) 

Total PLLs   1 / 8 ( 13 % ) 

DSP block 18-bit 
elements  

 0 / 384 ( 0 % ) 

Dedicated logic registers   26,870 / 113,600 ( 24 % ) 

Total DLLs  1 / 4 ( 25 % ) 
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VI. CONCLUSIONS

This paper  presented the 3D FFT algorithm design 
and implementation  for continuously flow of samples 
using pipelined architecture. This paper is aimed for many 
real time applications. The FFT architecture is mainly 
based on series of three 1D FFT pipelined permutations.  
such a way that the data arrives in correct order to all three 
1D FFTs, and that the result is in natural order in the 
frequency domain if this is desired. 

This proposed and designed method can be used for 
any type memory system architectures, with or without 
access limitations and constraints. This implementation 
required two memories are on chip BRAM  and external 
SDRAM. 

This implementation is good competition for all the 
existing FFT designs in terms of cost , hardware,   memory 
and performance. The further improvements in this design 
are including parallel dimensions in the permutations. Due 
to this modification, the fast memory using is possible by 1 
D FFTs and then the throughput of the system is improved. 
It would be good to have the possibility to connect the 
design to a data bus and through it, a shared memory. The 
samples could be fetched from the data bus, and the shared 
memory could also be used for permutations. This would 
probably give a lower performance, but it would give a 
better opportunity to include the architecture in a complete 
System-on-Chip solution, and be more integrable in larger 
systems. 
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