
ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 4, June 2013

80 CVR College of Engineering

 Software Quality Estimation through Analytic

Hierarchy Process Approach

B. B. Jayasingh, Professor, IT Dept., CVR College of Engineering, Ibrahimpatan, RR Dist-501510.

Email: bbjayasingh9@rediffmail.com

B. Rama Mohan !Associate Professor, CSE Dept., JNTUH College of Engineering, Hyderabad – 500085, (AP).

Email: b.ramamohan@jntuh.ac.in

Abstract--Software quality assurance plays an important

role to justify the software to reach the right level of

quality. Its objective is to estimate the software quality

and the errors in software modules before release to

market place. In order to estimate the right level of

quality one must apply some comprehensive techniques.

To determine software quality, we present the Analytic

Hierarchy Process (AHP) is the suitable approach for

assessing the quality of software, with judgments by a

group of experts rating. Since developing perfect or highly

compatible software is not easy the AHP approach puts a

threshold beyond which the quality of the new

development is more than acceptable. We studied various

techniques approached by different authors of software

quality assurance to enable the stakeholder for choosing

right kind of techniques suitable to their project.

Index Terms—Analytic Hierarchy Process, In Vivo

Testing, Source Code Metrics, Software Quality, Divide

And Conquer, Prioritization Problem.

I. INTRODUCTION

Software runs on the machine and machine finds the

errors with human interaction while development

process. The development phase of SDLC (Software

Development Life Cycle) includes more formal and

detailed technical reviews that ensure to detect errors

early. It is the time now for face-to-face communication

instead of formal reviews, so the teams to decide and

own the quality of each product. The product quality

will be higher through the agile [1] development

process that many organizations belief.

One specific form of technical debt [2] that has been

studied for some time is design debt, also referred to as

architecture debt. Design debt occurs whenever the

software design no longer fits its intended purpose. A

software project can run into design debt for various

reasons. For example, adding a series of features that

the initial architecture was not intended to support can

cause debt and decrease the maintainability of software.

Or, drifting away from a proposed architecture can

bring short-term payoffs but might have consequences

for the portability and interoperability of software.

Reducing or eliminating design debt means in most

cases that the design should be tailored and adapted

towards changing requirements immediately and

continuously.

We study various techniques approached by different

authors of software quality assurance to enable the

stakeholder for choosing right kind of techniques

suitable to their project. The most important goals of

the software industry is to develop high-quality and

reliable software for their customers. We also consider

the in vivo testing, in which tests are continuously

executed in the deployment environment. However, the

technical quality of source code (how well written it is)

is an important determinant for software

maintainability. Our survey focuses the low level

source code metrics also effect to the high level quality

characteristics. One must reconsider the divide and

conquer principle applied consistently throughout the

development (requirements documentation, design,

review, coding, inspection, and testing) and

maintenance of the product. However, predicting the

exact number of faults is too risky, especially in the

beginning of a software project when too little

information is available. We conclude the analytical

hierarchy process is the best suitable approach for

software quality assurance.

 In section II we discuss about the in vivo testing that

run in the deployment environment which is hidden to

the user. In section III we discuss the technical quality

of source code (how well written it is) and how it

affects to software maintainability. In section III we

discuss the source code metrics that affect to the high

level quality characteristics. In section IV we discuss

the mathematical model for software quality assurance

called divide and conquer where the complex job of

building a software product must be reduced to a set of

much simpler jobs. In section V we discuss the analytic

hierarchy process consists of 6 criteria and 27

subcriteria where the prioritization problem solved to

estimate the quality of software.

DOI: 10.32377/cvrjst0416

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 4, June 2013

 CVR College of Engineering 81

II. IN VIVO TESTING APPROACH

 Testing at deployment environment needs attention

of the developer where it runs continuously without the

knowledge of user [3]. It is an improved version of unit

or integration tests and focusing on aspects of the

program that should hold true regardless of the state of

the system. These tests keep the current state of the

program while execution without affecting or altering

the state that visible to users. This testing can be used to

detect concurrency, security, or robustness issues.

 In vivo testing [3] is a methodology by which tests

are executed continuously without disturbing the state

of the system that is hidden to the user. A prototype is

developed in JAVA programming language called

Invite (IN VIvo TEsting framework), focused on

distributed execution of tests in earlier version. The

current version includes a more detailed description in

which it reveals the defects in real world applications.

A. In Vivo Testing Framework

 The in vivo testing framework describes the steps

for a software vendor regarding to use the Invite

framework. The development of any new test code and

the configuration of the framework must be done prior

to distribute an in vivo-testable system.

1. Create test code

The test methods must reside in the same class

as the code they are testing (or in a superclass).

2. Instrument classes

The vendor must select the methods from one

or more Java classes in the application that

under test for instrumentation.

3. Configure frameworks

Each method runs with probability ρ, the

vendor must configure Invite with values

representing Before deployment.

4. Deploy applications

The compiled code including the tests and the

configured testing framework would ship as

part of the software distribution. However, the

customer would not even notice that the in

vivo tests were running.

B. Testing Scenario

• The user is not aware of the presence of the

testing, so his performance is not affected.

• These tests perform the following:

– Checks the values of the individual

variables

– How the variables are related

– Condition is held or not? – after some

execution of the software

Figure 1 Testing Scenario

C. Concurrency Problem

• Function1 is used to destroy the processes that

are running.

• Function 2 is used to create a new process.

• If function1 and function2 are called at the

same time then function2 cannot create new

process.

• This kind of defect can only be detected during

run time, so In vivo testing approach is useful.

Figure 2 Concurrency problem

III. CODE QUALITY BENCHMARKING

The quality of source code also affect to software

maintainability [4]. Whenever a change is required it

must ensure how easy it is to perform the change, to

implement the change, to avoid unexpected effects of

that change and to validate the change.

 Software Code Metrics

 Software Improvement Group (SIG) chose 6 source

code properties as key metrics for the quality

assessments, namely:

1. Volume the larger the size the more to

maintain since there is more information.

2. Redundancy duplicated code has to be

maintained in all places where it requires.

DOI: 10.32377/cvrjst0416

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 4, June 2013

82 CVR College of Engineering

3. Unit size the lowest-level piece of code and

should be small to understand easily.

4. Complexity testing simple systems is easier

than complex ones.

5. Unit interface size units with many interfaces

to other units can be a symptom of bad

encapsulation.

6. Coupling tightly coupled components are more

resistant to change.

A. Measurements Aggregation

 The sub characteristics are made quantifiable with

the above source code metrics [5]. However, the

metrics values are aggregated to a grand total of the

whole system. Latter summarize to the cyclomatic

complexity based on a set of thresholds. The aggregated

measurements are used to determine a rating for each

source code property, based on the application of

another set of thresholds. These are further combined to

calculate ratings for the sub characteristics and the

general maintainability score for a given system [6].

B. Standardized Evaluation Procedure

 The procedure consists of several steps, defined by

SIG [7] quality model starting with the take-in of the

source code by secure transmission to the evaluation

laboratory and ending with the delivery of an evaluation

report.

1. Intake: The source code is uploaded to a

secure and standard location. For future

identification of the original source a

checksum is calculated.

2. Scope: it defines an unambiguous description

of which software artifacts are to be covered

by the evaluation. The description includes

the identification (name, version, etc.) of the

software system, a characterization

(programming languages and the number of

files analyzed) as well as a description of

specific files excluded from the scope of the

evaluation and why.

3. Measure: Apply an appropriate algorithm to

determine the software artifacts automatically.

The values of source code units are then

aggregated to the level of properties of the

system as a whole.

4. Rate: The values obtained in the measure step

are combined and compared against target

values to determine quality sub ratings and the

final rating for the system.

Figure 3 Evaluation framework

IV. SOURCE CODE METRICS AND

MAINTAINABILITY

The ISO/IEC 9126 standard defines six high level

product quality characteristics that are widely accepted

both by industrial experts and academic researchers.

These characteristics are: Functionality, Reliability,

Usability, Efficiency, Maintainability and Portability.

The characteristics are affected by low level quality

properties [8], that can be internal (measured by

looking inside the product, e.g. by analyzing the source

code) or external (measured by executing the product,

e.g. by performing testing). This work focuses on the

relationship between the low level source code metrics

and the high level quality characteristics defined by the

standard.

Many researches propose maintainability models

based on source code metrics. Bakota et al. [9] suggest

a probabilistic approach for computing maintainability

for a system. Heitlager et al. [10] also introduce a

maintainability model. They transform metric value

averages to the [9] discrete scale and perform an

aggregation to get a measure for maintainability.

Bansiya and Davis [11] developed a hierarchical model

(QMOOD) for assessment of high level design quality

attributes and validated it on two large commercial

framework systems.

 This work performed a manual evaluation of 570

class methods from five different aspects of quality.

Now it is developed as a web-based framework to

collect, store, and organize the evaluation results.

A. Evaluated Systems

An evaluated system JEdit is discussed, a well-

known text editor designed for programmers. JEdit is a

powerful tool written in Java includes syntax highlight,

built-in macros, plug-in support, etc. The system selects

320 out of 700 methods to evaluate. The other

evaluated system selects 250 out of 20,000 methods to

evaluate. The evaluation was performed by 35 experts,

who varied in age and programming experience.

DOI: 10.32377/cvrjst0416

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 4, June 2013

 CVR College of Engineering 83

B. The Evaluation Framework

The system consists of four modules:

1. AnalyzeManager - the module computes low

level source code metrics and other analysis

results.

2. Uploader - the module uploads the source code

artifacts into a database.

3. AdminPages - the module manages the web

interface and control the analysis process.

4. EvalPages - the module allow the users to

evaluate the methods.

The questions are organized into the following five

categories:

1. Analyzability - how easy the code to diagnose

or to make a change.

2. Changeability - how easy the code to make a

change in the system (includes designing,

coding and documenting changes).

3. Stability - how easy the code to avoid

unexpected effects after a change.

4. Testability - how easy the code to validate the

software after a change.

5. Comprehension - how easy the code to

comprehend (understanding its algorithm).

The author have shown the evaluator panel in fig. 4

for our better understanding.

Evaluator Panel

classExample{

 public static void main(string

args[])

 {

 int

num=Integer.parseInt(args[0]);

 int temp=num,res=0;

 while(temp>0){

 res=res+temp;temp--;}

Question: How easy it is

to diagnoise the system

for deficiencies or to

identify where to make

changes?

o Good

o Average

o Poor

Figure. 4 Evaluator Screen

V. MATHEMATICAL MODELS

Present day software is more complicated where a

small error can have bigger impact. With the complex

task, the solution is the divide and Conquer strategy

[12]. In this strategy the complex job can be reduced to

a set of much simpler. This “Divide and Conquer”

principle must be applied consistently throughout the

development (requirements documentation, design,

review, coding, inspection, and testing) and

maintenance of the product

Figure 5 Divide and Conquer Model

Figure 6 Inspection Using Divide and Conquer

 It discusses one of three ways to measure software

quality:

1. Reliability

 It measures the failure rate of the software that

depends on the way the software is used.

2. Correctness

 It measures the correctness of a program because

correctness is one property that high-quality software

must have.

3. Trustworthiness

 It is a question of whether users should trust a

product. Some undesirable types of behavior called

hazards have to be eliminated by the design and the

process called hazard analysis. The more we test the

more we trust in the product.

VI. ANALYTIC HIERARCHY PROCESS

The analytic hierarchy process (AHP) is the popular

approach for assessing the quality of software, with

judgments by a group of experts at different levels. It

will explain the purpose and features of the system,

what the system will do functional requirements and the

constraints under which it must work. This document is

DOI: 10.32377/cvrjst0416

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 4, June 2013

84 CVR College of Engineering

intended for the developer of software source code to

understand their code quality. To determine software

quality, quality metric models have been studied by

many researchers. The AHP selects six criteria with 27

sub criteria in ISO/IEC 9126-1 (2001), which is the

revision of 1991 version (ISO/IEC 9126, 1991) [13].

The relative rating provided by the expert contains nine

scale value i.e. Equally important, Weakly important,

Moderately important, Moderately plus, Strongly

important, Strongly plus, Very strongly, Very very

strongly and Extremely important. However the ratings

provided by the experts are all fuzzy numbers. The

proposed approach can help a group of various experts

including developers, testers and purchasers, to measure

the level of the software quality of the in-house

development or the third party development.

A. Prioritization Problem

Consider a 3*3 group pair wise matrix for 3 criteria

by 2 expert judgments as follows:

Phase 1: expert1 matrix

Step 1: consider 3 criteria given by only 1
st
 expert from

the above matrix.

Step 2: consider only the lower values from the above

matrix (step 1).

Step 3: consider the higher values of the above

matrix(step 2) and calculate the Least Common

Multiple (LCM).

LCM=15

So the factors are 1*15, 3*5, 5*3, consider the upper

factors and add it i.e. 15+5+3=23.

Now calculate the reciprocal values

15/23= 0.652

5/23=0.217

3/23=0.130

Now the weighted matrix for lower values is

 =

Step 4: calculate for medium values

 Consider only the medium values from the above

matrix (step 1).

Step 5: consider the higher values of the above

matrix(step 4) and calculate the Least Common

Multiple (LCM).

LCM=12

So the factors are 1*12, 4*3, 6*2, consider the upper

factors and add it i.e. 12+3+2=17.

Now calculate the reciprocal values

12/17= 0.705

3/17=0.176

2/17=0.117

Now the weighted matrix for medium values is

 =

Step 6: calculate for upper values

 Consider only the upper values from the above matrix

(step 1).

Step 7: consider the higher values of the above matrix

(step 4) and calculate the Least Common Multiple

(LCM).

LCM=35

So the factors are 1*35,5*7, 7*5, consider the upper

factors and add it i.e. 35+7+5=47.

Now calculate the reciprocal values

35/47=0.744

7/47=0.148

5/47=0.106

Now the weighted matrix for upper values is

 =

So the final weighted matrix for expert 1 is

 =

Step 8: now divide the values with highest of upper

values i.e. 0.744

DOI: 10.32377/cvrjst0416

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 4, June 2013

 CVR College of Engineering 85

 =

Now multiply the column values of the two matrixes

for the expert1

0.652*0.876 + 0.217*0.291 + 0.130*0.174= 0.657

0.705*0.947 +0.176*0.236 + 0.117*0.157= 0.726

0.744*1 + 0.148*0.198 + 0.106*0.142= 0.788

So the values for expert1 is

Phase 2: expert2 matrix

Step 1: consider 3 criteria given by only 2
nd

 expert from

the above matrix.

Step 2: consider only the lower values from the above

matrix (step 1).

Step 3: consider the higher values of the above

matrix(step 2) and calculate the Least Common

Multiple (LCM).

LCM=12

So the factors are 1*12, 2*6, 6*2, consider the upper

factors and add it i.e. 12+6+2=20.

Now calculate the reciprocal values

12/20= 0.6

6/20=0.3

2/20=0.1

Now the weighted matrix for lower values is

 =

Step 4: calculate for medium values

 Consider only the medium values from the above

matrix (step 1).

Step 5: consider the higher values of the above matrix

(step 4) and calculate the Least Common Multiple

(LCM).

LCM=21

So the factors are 1*21, 3*7, 7*3, consider the upper

factors and add it i.e. 21+7+3=31.

Now calculate the reciprocal values

21/31= 0.677

7/31=0.225

3/31=0.096

Now the weighted matrix for medium values is

 =

Step 6: calculate for upper values

 Consider only the upper values from the above matrix

(step 1).

Step 7: consider the higher values of the above matrix

(step 4) and calculate the Least Common Multiple

(LCM).

LCM=8

So the factors are 1*8, 4*2, 8*1, consider the upper

factors and add it i.e. 8+2+1=11.

Now calculate the reciprocal values

8/11=0.727

2/11=0.181

1/11=0.09

Now the weighted matrix for upper values is

 =

So the final weighted matrix for expert 2 is

 =

 Step 8: now divide the values with highest of upper

values i.e. 0.727

 =

Now multiply the column values of the two matrixes

for the expert2

0.6*0.825 + 0.3*0.412 + 0.1*0.137= 0.632

0.677*0.931 +0.225*0.309 + 0.096*0.132= 0.712

0.727*1 + 0.181*0.248 + 0.09*0.123= 0.782

So the values for expert2 is

Phase 3: Synthesis

The matrix values for expert1 is

And the matrix values for expert2 is

Now calculate the average of these two matrices

DOI: 10.32377/cvrjst0416

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 4, June 2013

86 CVR College of Engineering

The final fuzzy value (0.644, 0.719, 0.785) is derived

as the level of the quality. These results the quality of

the new development is more than acceptable. Thus the

SQA can give permission for a product of this quality to

be used.

VII. CONCLUSION

We study various techniques approached by different

authors of software quality assurance to enable the

stakeholder for choosing right kind of techniques

suitable to their project. We also consider the in vivo

testing, in which tests are continuously executed in the

deployment environment. However, the technical

quality of source code (how well written it is) is an

important determinant for software maintainability. Our

survey focuses the low level source code metrics also

effect to the high level quality characteristics. One must

reconsider the divide and conquer principle applied

consistently throughout the development (requirements

documentation, design, review, coding, inspection, and

testing) and maintenance of the product. We conclude

the analytical hierarchy process is the best suitable

approach for software quality assurance.

REFERENCES

[1] P. McBreen, “Quality Assurance and Testing in Agile

Projects”, McBreen.Consulting, 2003.

[2] N. Zazworka et al., Investigating the Impact of Design

Debt on Software Quality, ACM 978-1-4503-0586-

0/11/05, pp. 17-23.

 [3] C. Murphy et al., Quality Assurance of Software

Applications Using the In Vivo Testing Approach,

International Conference on Software Testing

Verification and Validation, IEEE DOI

10.1109/ICST.2009.18, 2009, pp. 111-120.

[4] R. Baggen et al., Standardized code quality benchmarking

for improving software maintainability, Software Qual J,

Springer Pub., DOI 10.1007/s11219-011-9144-9, 2012,

pp. 287–307.

[5] I. Heitlager et al., A practical model for measuring

maintainability, In proceedings of 6th international

conference on the quality of information and

communications technology (QUATIC 2007), IEEE

Computer Society, pp. 30–39.

[6] J. Correia et al., A survey-based study of the mapping of

system properties to iso/iec 9126 maintainability

characteristics, In 25th IEEE international conference on

software maintenance (ICSM 2009), September 20–26,

2009, pp. 61–70.

[7] J. P Correia, J. Visser, Certification of technical quality of

software products, In an International workshop on

foundations and techniques bringing together free/libre
open source software and formal methods, FLOSS-FM

2008, pp. 35–51.

[8] P´eter Heged˝us, Tibor Bakota, L´aszl´o Ill´es, Gergely

Lad´anyi, Rudolf Ferenc, and Tibor Gyim´othy, Source

Code Metrics and Maintainability:A Case Study,

ASEA/DRBC/EL 2011, Springer-Verlag Berlin

Heidelberg 2011, CCIS 257, pp. 272–284.

[9] Bakota, T., Heged˝us, P., K¨ortv´elyesi, P., Rudolf, F.,

Gyim´othy, T., A Probabilistic Software Quality Model,

In Proceedings of the 27th IEEE International

Conference on Software Maintenance, ICSM 2011, IEEE

Computer Society, Williamsburg 2011, pp. 368–377.

[10] I. Heitlager, T. Kuipers, J. Visser, A Practical Model for

Measuring Maintainability, In Proceedings of the 6th

International Conference on Quality of Information and

Communications Technology, 2007, pp. 30–39.

[11] Bansiya, J., Davis, C., A Hierarchical Model for Object-

Oriented Design Quality Assessment, IEEE Transactions

on Software Engineering 28, 2002, pp. 4–17.

[12] David Lorge PARNAS, The use of mathematics in

software quality assurance, Front. Comput. Sci., Higher

Education Press and Springer-Verlag Berlin Heidelberg,

DOI10.1007/s11704-012-2904-2, 2012, pp. 3–16.

[13] K. K. F. Yuen, C.W. Lau Henry, A fuzzy group

analytical hierarchy process approach for software

quality assurance management, Fuzzy logarithmic least

squares method, Expert Systems with Applications 38,

ELSEVIER Publication, 2011, pp. 10292–10302.

DOI: 10.32377/cvrjst0416

