
ISSN 2277 –3916 CVR Journal of Science & Technology, Volume 2, June 2012

Survey On Android OS And C2DM Service
R.R.Dhruva

1
 and V.V.N.S.Sudha

2

 1CVR College of Engineering, Department of ECE., Ibrahimpatan, R.R.District, A.P., India

Email: rinku_dhruva@yahoo.com
 2CVR College of Engineering, Department of ECE., Ibrahimpatan, R.R.District, A.P., India

 Email: vedantam_sudha@yahoo.com

Abstract—Android is a mobile operating system for mobile

devices such as mobile tablet computers developed by Google

Inc and the Open Handset Alliance (OHA).By means of Android

Cloud to Device Messaging (C2DM) is a service developers send

data from servers to their applications on Android devices. A

simple, lightweight mechanism is provided by the service which

is used by the servers to tell mobile applications to contact the

server directly, to fetch updated application or user data. All

aspects of queuing of messages and delivery to the target

application running on the target device are handled by the

C2DM service. Using C2DM it is easy for mobile applications to

synchronize data with servers. This paper mainly surveys on the

introduction to Android OS and C2DM service.

I. INTRODUCTION

There are still several limitations for the current mobile
operating systems. Some of them, like iPhone and

BlackBerry OS, are designed for and can be used only in

specific types of mobile devices [Expert users may need to

develop their own applications that require an open platform.

Closed source systems such as Windows Mobile are not

flexible enough for this purpose. Finally, another important

reason is that people want their cell phone functioning like a

PC in that whatever they can access on a desktop, they should

also be able to access on their cell phones. Therefore, an

operating system running on a cell phone should be similar to

a common desktop operating system. Symbian OS, while

having the largest market share, is not. For all above reasons,
on 21 Oct 2008, Google released Android, an open source

software platform and operating system, which can run on

every mobile device, with the hope of reaching as many

mobile users as possible. Android is based on the Linux 2.6

kernel, and it provides an Android is an operating system

based on Linux with a Java programming interface. It

provides tools, e.g. a compiler, debugger and a device

emulator as well as its own Java Virtual machine (Dalvik

Virtual Machine - DVM).

Hence, standard Java bytecode cannot be run on Android.

Java Class files are converted into "dex" (Dalvik Executable)
files using a tool “dx”. The applications of Android are

packed into an .apk (Android Package) file by the program

"aapt" (Android Asset Packaging Tool).To simplify

development Google provides the Android Development

Tools (ADT) for Eclipse. Automatic conversion from class to

dex files is performed by ADT and is created during

deployment. OpenGL libraries in Android support 2-D and 3-

D graphics and data storage is supported in a SQLite

database. Every Android application runs in its own process

and under its own userid which is generated automatically by

the Android system during deployment. Therefore, all the

running applications are isolated from each other and a

misbehaving application cannot easily harm other Android

applications.

II. IMPORTANT ANDROID COMPONENTS

An Android application consists out of the following parts

[4]:

 Activity - Represents the presentation layer of an

Android application, e.g. a screen which is seen by

the user. There can be several activities in an

Android application and there can be switching

between those activities during runtime of the

application.

 Views - The User interface of the Activities is build

with widgets classes which inherent from
"android.view.View"."android.view.ViewGroups"

manages layout of rhe views.

 Services - perform background tasks without

providing an UI. They can notify the user via the

notification framework in Android.

 Intents are asynchronous messages which allow the

application to request functionality from other

services or activities. An application can call directly

a service or activity (explicit intent) or ask the

Android system for registered services and

applications for an intent (implicit intents). For

example the application could ask via an intent for a
contact application. Application register themselves

to an intent via an IntentFilter. Intents are a powerful

concept as they allow to create loosely coupled

applications.

 Broadcast Receiver - receives system messages and

implicit intents, can be used to react to changed

conditions in the system. An application can register

as a broadcast receiver for certain events and can be

started if such an event occurs.

The real-time responsiveness or latency measurement on

Android is broken down in two parts. The first part is the
latency introduced in handling of an interrupt within the

Linux kernel i.e., the time it takes for the Linux kernel, after

 CVR College of Engineering 43

DOI:10.32377/cvrjst0209

mailto:rinku_dhruva@yahoo.com
http://www.vogella.de/articles/AndroidServices/article.html

ISSN 2277 –3916 CVR Journal of Science & Technology, Volume. 1, June 2012

receiving an interrupt (timer interrupt in our experiment), to

propagate this event to the event management layer in the

kernel. The second part is the latency introduced by Dalvik

VM, i.e., the time difference between when it receives the

event from the kernel event management layer and passes it
up to the Application running on top of the VM.

III. ANDROID CLOUD TO DEVICE MESSAGING

Primary characteristics of Android Cloud to Device

Messaging are [6]:

 It allows third-party application servers to send

lightweight messages to their Android applications.

The messaging service is not designed for sending a

lot of user content via the messages. Rather, it

should be used to tell the application that there is

new data on the server, so that the application can

fetch it.

 There is no gurantee about delivery or the order of
messages. So, for example, while you might use this

feature to tell an instant messaging application that

the user has new messages, you probably would not

use it to pass the actual messages.

 There is no need for an application to run to receive

messages. When the message arrives, system wakes

up the application via Intent broadcast.

 It does not provide any built-in user interface or

other handling for message data. C2DM simply

passes raw message data received straight to the

application, which has full control of how to handle
it. For example, the application might post a

notification, display a custom user interface, or

silently sync data.

 Android 2.2 or higher version is required that also

have the Market application installed.

 It uses an existing connection for Google services.

Users are required to set up their Google account on

their mobile devices.

C2DM is basically divided into two categories:

a) Components

b) Credentials

Components are regarding the physical entities that play a

role in C2DM.Credentials are the IDs and tokens used at

different stages which ensure the authentication of parties,

and that message is going to correct place. The various

components used are Mobile Device, Third-Party Application

Server, C2DM Servers. Mobile device is the device that is

running an Android application that uses C2DM. This must

be a 2.2 Android device that has Market installed, and it must
have at least one logged in Google account. Server sends data

to an Android application on the device via the C2DM server

using third party Application Server .C2DM Servers are

servers that take messages from the third-Party application

server and sends them to device. Sender ID, Application ID,

Registration ID, Google User Account, Sender Auth Token

are the various credentials used. Sender ID is an email

account associated with the application's developer. The

sender ID is used in the registration process to identify a

Android application that is permitted to send messages to the

device. This ID is typically role-based rather than being a
personal account. Application ID is the application that is

registering to receive messages. The application is identified

by the package name from the manifest. This ensures that the

messages are targeted to the correct application. Registration

ID is issued by the C2DM servers to the Android application

that allows it to receive messages. Once the application has

the registration ID, it sends it to the third-party application

server, which uses it to identify each device that has

registered to receive messages for a given application. In

other words, a registration ID is tied to a particular

application for C2DM to work, the mobile device must

include at least one logged in Google account running on a
particular device. ClientLogin Auth token that is saved on the

third-party application server that gives the application server

authorized access to Google services. The token is included

in the header of POST requests that send messages. For more

discussion of ClientLogin Auth tokens. The primary

processes involved in cloud-to-device messaging is:

 Enabling C2DM: An Android application running

on a mobile device registers to receive messages.

 Sending messages: Messages are sent by third-party

application server to the device.

 Receiving messages: An Android application
receives a message from a C2DM server.

A. Enabling C2DM

This is the sequence of events that occurs when an

Android application running on a mobile device registers to

receive messages:

1. The first time the application needs to use the
messaging service, it fires off a registration Intent to

a C2DM server.

2. If the registration is successful, the C2DM server

broadcasts a REGISTRATION Intent which gives

application a registration ID.

3. To complete the registration, the application sends

the registration ID to the application server. The

application server typically stores the registration ID

in a database.

B. Sending the Message

For an application server to send a message, the following

things must be in place:

 The application has a registration ID that allows it to

receive messages for a particular device.

 The third-party application server has stored the

registration ID.

There is one more thing that needs to be in place for the
application server to send messages:

ClientLoginauthorizationtoken. This is something that the

developer must have already set up on the application server

44 CVR College of Engineering

DOI:10.32377/cvrjst0209

ISSN 2277 –3916 CVR Journal of Science & Technology, Volume. 1, June 2012

for the application. The ClientLogin token authorizes the

application server to send messages to a particular Android

application. An application server has one ClientLogin token

for a particular 3rd party app, and multiple registration IDs.

Each registration ID represents a particular device that has
registered to use the messaging service for a particular 3rd

party app.

Here is the sequence of events that occurs when the

application server sends a message:

1. The application server sends a message to C2DM

servers.

2. Google enqueues and stores the message in case the

device is inactive.

3. When the device is online, Google sends the

message to the device.

4. On the device, the system broadcasts the message to

the specified application via Intent broadcast with
proper permissions, so that only the targeted

application gets the message. This wakes the

application up. The application does not need to be

running beforehand to receive the message.

5. The application processes the message. If the

application is doing non-trivial processing, you may

want to grab a wake lock and do any processing in a

Service.

An application can unregisterC2DM if it no longer wants

to receive messages.

C. Receiving a Message

This is the sequence of events that occurs when an

Android application running on a mobile device receives a

message:

1. The system receives the incoming message and

extracts the raw key/value pairs from the message

payload.
2. The system passes the key/value pairs to the targeted

Android application in a

com.google.android.c2dm.intent.RECEIVE Intent as

a set of extras.

3. The Android application extracts the raw data from

the RECEIVE Intent by key and processes the data.

D. Writing Android Applications that Use C2DM

The various steps involved in writing the application are:

 Creating the manifest.

 Registering for C2DM.

 Unregistering from C2DM.

 Handling received data.

IV. CREATING THE MANIFEST

Every application must have an AndroidManifest.xml file

in its root directory. The manifest presents essential

information about the application to the Android system,

information the system must have before it can run any of the
application's. To use the C2DM feature, the manifest must

include the following [6]:

 com.google.android.c2dm.permission.RECEIVE

states that the application has permission register

and receive messages.

 android.permission.INTERNET states that the
application has permission to send the receiver key

to the 3rd party server.

 applicationPackage + ".permission.C2D_MESSAGE

prevents other applications from registering and

receiving the application's messages.

 The permision com.google.android.c2dm.SEND is

required by the receiver, so that the message can be

sent only by the C2DM framework. Both

registration and the receiving of messages are

implemented as Intents.

 If the C2DM feature is critical to the application's
function, android:minSdkVersion="8" should be set

in the manifest. This ensures that the application

cannot be installed in an environment in which it

could not run properly.

V. REGISTERING FOR C2DM

An Android application needs to register with C2DM

servers before receiving any message. To register it needs to

send an Intent (com.google.android.c2dm.intent.REGISTER),

with 2 extra parameters:

 sender is the ID of the account authorized to send

messages to the application, typically the email

address of an account set up by the application's
developer.

 app is the application's ID, set with a PendingIntent

to allow the registration service to extract

application information.

Registration is not complete until the application sends the

registration ID to the third-party application server. The

application server uses the registration ID to send messages

that are targeted to the application running on that particular

device.

VI. HANDLING RECEIVED DATA

When the C2DM server receives a message from the third-
party application server, C2DM extracts the raw key/value

pairs from the message payload and passes them to the

Android application in the

com.google.android.c2dm.intent.RECEIVE Intent as a set of

extras. The application extracts the data by key and processes

it, whatever that means for that application.

VII. DEVELOPING AND TESTING YOUR APPLICATIONS

Here are some guidelines for developing and testing an

Android application that uses the C2DM feature:

 To develop and test your C2DM applications, you

need to run and debug the applications on an
Android 2.2 system image that includes the

 CVR College of Engineering 45

DOI:10.32377/cvrjst0209

http://developer.android.com/guide/topics/intents/intents-filters.html

ISSN 2277 –3916 CVR Journal of Science & Technology, Volume. 1, June 2012

necessary underlying Google services.

 To develop and debug on an actual device, you need

a device running an Android 2.2 system image that

includes the Market application.

 To develop and test on the Android Emulator, you
need to download the Android 2.2 version of the

Google APIs Add-On into your SDK using the

Android SDK and AVD Manager. If the C2DM

feature is critical to the application's function, be

sure to set android:minSdkVersion="8" in the

manifest. This ensures that the application cannot be

installed in an environment in which it could not run

properly.

VIII. LIMITATIONS OF C2DM:

 The message size limit is 1024 bytes.

 Google limits the number of messages a sender
sends in aggregate, and the number of messages a

sender sends to a specific device.

CONCLUSION

Android is truly open, free development platform based on

linux and open source. Handset makers can use and

customize the platform without paying the royalty. A

component-based architecture inspired by internet mash-ups.

Parts of one application can be used in another in ways not

originally envisioned by the developer and can even replace

built-in components with own improved versions. This will

unleash a new round of creativity in the mobile space.C2DM

service is more efficient than other techniques like polling as
it results in fresher data and more efficient use of network

and battery.

REFERENCES

[1] Wikipedia en.wikipedia.org/wiki/Android.
[2] Google Android SDK,

http://developer.android.com/sdk/index.html.

[3] http://android-developers.blogspot.com/2010/05/android-
cloud-to-device-messaging.html.

[4] http://www.vogella.de/articles/AndroidCloudToDeviceMe
ssaging/article.html.

[5] http://blog.mediarain.com/2011/03/simple-google-
android-c2dm-tutorial-push-notifications-for-android/

[6] http://code.google.com/android/c2dm/

46 CVR College of Engineering

DOI:10.32377/cvrjst0209

http://developer.android.com/sdk/index.html
http://android-developers.blogspot.com/2010/05/android-cloud-to-device-messaging.html
http://android-developers.blogspot.com/2010/05/android-cloud-to-device-messaging.html
http://www.vogella.de/articles/AndroidCloudToDeviceMessaging/article.html
http://www.vogella.de/articles/AndroidCloudToDeviceMessaging/article.html
http://blog.mediarain.com/2011/03/simple-google-android-c2dm-tutorial-push-notifications-for-android/
http://blog.mediarain.com/2011/03/simple-google-android-c2dm-tutorial-push-notifications-for-android/
http://code.google.com/android/c2dm/

