
ISSN 2277 –3916 CVR Journal of Science & Technology, Volume 2, June 2012

Pattern Methodology Of Documenting And

Communicating Domain Specific Knowledge
Dr.Hari Ramakrishna

1
and Dr.K.V Chalapathi Rao

2

1Chaitanya Bharathi Institute of Technology, Department of CSE, Hyderabad, A.P., India

Email: dr.hariramakrishna@rediffmail.com
2CVR College of Engineering, Department of CSE, Ibrahimpatan, R.R.District, A.P., India

Email: chalapatiraokv@gmail.com

Abstract— the main objective of this paper is to present

pattern methodology of documenting and communicating

domain specific knowledge along with a brief historic review

of the domain. This paper presents pattern methodology of

documenting domain specific knowledge along with few

simple framework samples.

Index Terms—pattern, pattern language, frameworks,

pattern frames, Graphic frameworks.

I. INTRODUCTION

Patterns for software development are one of the latest
trends to emerge from the object oriented approach.

Fundamental to any science or engineering discipline is a

common vocabulary for expressing its concepts, and a

language for expressing these interrelationships. The goal

of patterns within the software community is to create a

body of literature to help software developers resolve

recurring problems encountered throughout all of

software development. Patterns help create a shared

language for communicating insight and experience about

these problems and their solutions.

The current use of the term pattern is derived from the
writings of the architect Christopher Alexander who has

written several books on the topic as it relates to urban

planning and building architecture. Although these books

are ostensibly about architecture and urban planning, they

are applicable to many other disciplines, including

software development.

Alexander proposes a paradigm for architecture based

on three concepts namely Quality, Gate and the Way.

Quality is freedom, wholeness, completeness, comfort,

harmony, habitability, durability, openness, resilience,

variability and adaptability. The gate is the mechanism

that allows us to reach the quality. And the Way is
progressively evolving an initial architecture, which then

flourishes into a live design possessing the quality. [1]

In 1987 Ward Cunningham and Kent Beck were

working with Smalltalk and designed user interfaces.

They decided to use some of Alexander‟s ideas to

develop a small five-pattern language for guiding novice

Smalltalk programmers. They presented the results at

OOPSLA-87 in Orlando in the paper “Using Patterns

Language for Object-Oriented Programming”. Soon

after, Jim Coplien (referred to as Cope) began compiling

a catalog of C++ idioms. These are one kind of patterns.
Later they are published as “Advanced C++

Programming Styles and Idioms”. [2]

From 1990 to 1992 the members of GOF (Erich
Gamma, Richard Helm, Ralph Johnson and John

Glissades frequently referred as GOF Gang of Four) had

done some work compiling a catalog of patterns.

Discussions of patterns abounded at OOPSLA-91

workshop conducted by Bruce Andersen. This was

repeated in 1992. Many pattern domain experts

participated in these workshops including Jim Coplien,

Doug Lea, Desmond D’Souza,Norm Kerth, Wolfgang

Pree and others.

In August 1993, Kent Beck and Grady Booch

sponsored a mountain retreat in Colorado, the first
meeting of what is now known as the Hillside Group.

Another pattern workshop was held at OOPSLA –93 and

then in April of 1994, the Hillside Group met again to

plan the first conference on Patterns Languages for

Program Design (referred as PloP or PloPD). Shortly

thereafter the GOF released a book on Design Patterns

[3]. Most of the patterns presented in that book are from

Erich‟s Ph.D thesis. Several conferences are continuously

organized on this domain.

Software patterns first became popular with the wide

acceptance of the book „Design Patterns: Elements of

Reusable Object-Oriented Software’. Patterns have been
used for many different domains ranging from

organizations and processes to teaching and architecture.

At present the software community is using patterns

largely for software architecture, design, development

processes and organizations. Though several conference

proceedings and books are available on this domain ,

other books that helped popularize patterns are „Pattern-

Oriented Software Architecture: A system of Patterns „

(also called as POSA book) by Frank Buschmann, Regine

Meunier, Hans Rohnert, Peter Sommerlad, and Michael

Stal (referred as Gang of Five GoV). Collection of
selected papers from the first and second conferences on

Patterns Languages for Program Design is released as a

book namely “Pattern Languages of Program Design”.

At present Patterns are adopted into application

domains for example: [4].

i) Patterns in software development generally,

including software design, software engineering,

and software architecture

ii) Process patterns for management and

development processes

iii) Patterns for human-computer interaction (user-

interface patterns, or novel modes of interaction)

 CVR College of Engineering 9

DOI:10.32377/cvrjst0203

ISSN 2277 –3916 CVR Journal of Science & Technology, Volume 2, June 2012

iv) Patterns for education (ranging from

professional training to classroom teaching)

v) Patterns for business and organizations

vi) Modeling patterns, analysis patterns, design

patterns

vii) Patterns for object-oriented design, aspect-

oriented design, and software design generally

viii) Patterns to describe libraries, frameworks, and

other reusable software elements

ix) Patterns for middleware, including distribution,

optimization, security, and performance
improvement

x) Domain specific patterns and technology

specific patterns, as well as generic patterns

xi) Patterns for refactoring and reengineering

xii) Formal models and type systems for patterns

xiii) Programming environments, software

repositories, and programming languages for

patterns

xiv) The use of patterns to improve quality attributes

such as adaptability, evolvability, reusability and

cost-effectiveness

II. PATTERNS AND PATTERN LANGUAGES

Pattern can be defined as “Reusable solution for

recurring problem”. Patterns Dirk Riehle and Heinz

Zullighoven define pattern as, “the Abstraction from a

concrete form, which keeps recurring in specific non-

arbitrary contexts”. Another definition of pattern for

software community is given as, “a named nugget of

insight that conveys the essence of a proven solution to a

recurring problem within a certain context amidst

competing concerns”.

Each pattern is a three-part rule, which expresses a
relation between a certain context, and a certain system of

forces, which occurs repeatedly in that context, and a

certain software configuration, which allows these forces

to resolve themselves. Alexander defines three-part

rule, as “Each pattern is a three-part rule, which

expresses a relation between a certain context, a problem

and a solution.”

Cope says that a good pattern does the following:

1) It solves a Problem

2) It is a proven concept

3) The solution is not obvious

4) It describes a relationship
5) The pattern has a significant human component

(like comfort, quality of life)

If something is not a pattern, it doesn‟t mean that it is

not good. Similarly if it is a pattern, hopefully it is good

but need not be always. Many of the initial patterns

focused in the software community are design patterns.

The patterns in the GOF book are Object Oriented Design

Patterns [3]. There are many other kinds of software

patterns beside design patterns, analysis patterns

published by Marin Fowler and other patterns like

organizational patterns are also available.
Architectural patterns express a fundamental structural

organization or schema for software systems. Design

Patterns provide a schema for refining the subsystems or

components of a software system or the relationships

between them. They describe commonly recurring

structure of communicating components that solve a

general design problem within a particular context.

 Idioms are low-level patterns specific to a

programming language. An idiom describes how to

implement particular aspects of component or the

relationship between them using the features of the given

language. The difference between these patterns is in

their corresponding level of abstraction.

Riehle and Zullighoven have classified patterns as
Conceptual patterns, Design Patterns and Programming

Patterns [12].

A collection of patterns forms a vocabulary for

understanding and communicating ideas. A pattern

language is such collection skillfully woven together into

a cohesive “whole” that reveals the inherent structure and

relationships of its constituent parts towards fulfilling a

shared objective [1]. If a pattern is a recurring solution to

a problem in a context given by some forces, then a

pattern language is a collection of such solutions, which

at every level of scale, work together to resolve a
complex problem into an orderly solution according to a

predefined goal.

Cope defines a pattern language as a collection of

patterns and the rules to combine them into an

architectural style. Pattern languages describe software

frameworks or families of related systems [5, 6, and 7]. In

some other context, Cope defines pattern language as a

structured collection of patterns that build on each other

to transform needs and constraints into architecture.

III. DOMAIN SPECIFIC PATTERN LANGUAGES

The following is a description of view on domain
specific patterns and pattern languages as per the domain

experts.

The domain-specific patterns are confidential –they

represent a company‟s knowledge and expertise about

how to build particular kinds of applications; so

references to them are not generally available. One can

however more and more of this knowledge will become

public over time. In the long run, sharing experience is

usually more effective for everyone than trying to hold

onto secrets.

The development of complete pattern language is an

optimistic but worthwhile goal. Such a language provides
solutions to all design problems that can occur in the

respective domains. Christopher Alexander claims to

have done this in the domain of Architecture. Pattern

language already exists for small sub-domains of

software design, for example the CHECKS pattern

language for information integrity [8].

It would be very beneficial to have a pattern language

that covers a substantial part of the design space of the

respective domains.

IV. FRAMEWORKS

The software frameworks are closely related to design
patterns and object-orientation. A software framework is

10 CVR College of Engineering

ISSN 2277 –3916 CVR Journal of Science & Technology, Volume 2, June 2012

a reusable mini-architecture that provides the generic

structure and behavior for a family of software

abstractions, along with a context of mimes/metaphors

that specify their collaboration and use within a given

domain. The following presents views of Brad Appleton

on frameworks.

The framework accomplishes patterns by hard coding

the context into a kind of "virtual machine" (or "virtual

engine"), while making the abstractions open-ended by

designing them with specific plug-points (also called hot

spots). These plug-points (typically implemented using
callbacks, polymorphism, or delegation) enable the

framework to be adapted and extended to fit varying

needs, and to be successfully combined with other

frameworks. A framework is usually not a complete

application: it often lacks the necessary application-

specific functionality. Instead, an application may be

constructed from one or more frameworks by inserting

this missing functionality into the plug-and-play "outlets"

provided by the frameworks. Thus, a framework supplies

the infrastructure and mechanisms that execute a policy

for interaction between abstract components with open
implementations [9].

The GOF also defines object-oriented frameworks as:

“a set of cooperating classes that makeup a reusable

design for a specific class of software”. A framework

provides architectural guidance by partitioning the design

into abstract classes and defining their responsibilities

and collaborations. A developer customizes a framework

to a particular application by sub classing and composing

instances of framework classes. For example Microsoft

Application framework belongs to this kind.

A framework dictates the architecture of the
application. It will define the overall structure, such as

partitioning into classes and objects, the key

responsibilities, how the classes and objects collaborate,

and the thread of control

 A framework predefines these design parameters so

that the application designer/implementer can concentrate

on the specifics of the application. The framework

captures the design decisions that are common to its

application domain. Frameworks thus emphasize design

reuse rather than code reuse, though a framework will

usually includes concrete subclasses that work directly.

The difference between a framework and an ordinary
programming library is that a framework employs an

inverted flow of control between itself and its clients.

When using a framework, one usually just implements a

few callback functions, or a few specialized classes, and

then invokes a single method or procedure. At this point,

the framework does the rest of the work, invoking any

necessary client callbacks or methods at the appropriate

time and place. For this reason, frameworks are often said

to abide by the Hollywood Principle "Don't call us, we'll

call you." or the Greyhound Principle "Leave the driving

to us.”
Design patterns may be employed both in the design

and the documentation of a framework. A single

framework typically encompasses several design patterns.

In fact, a framework can be viewed as the implementation

of a system of design patterns. Despite the fact that they

are related in this manner, it is important to recognize that

frameworks and design patterns are two distinctly

separate entities: a framework is executable software,

whereas design patterns represent knowledge and

experience about software. In this respect, frameworks

are of a physical nature, while patterns are of a logical

nature: frameworks are the physical realization of one or

more software pattern solutions; patterns are the

instructions for how to implement those solutions.

The major differences between design patterns and
frameworks are as follows: [3].

Design patterns are more abstract than frameworks.

Frameworks can be embodied in code, but only examples

of patterns can be embodied in code. Strength of

frameworks is that they can be written down in

programming languages and not only studied but

executed and reused directly. In contrast, design patterns

have to be implemented each time they are used. Design

patterns also explain the intent, trade-offs, and

consequences of a design.

Design patterns are smaller architectural elements than
frameworks. A typical framework contains several design

patterns. The reverse is never true, but one can build

patterns for frameworks. Several domain specific patterns

are available for designing frameworks. [10]. The San

Francisco Frameworks are example of popular

frameworks available in the software market [11].

 V. FRAMEWORKS SAMPLES

Typical framework samples starting from

representation of a framework in UML, Figure 1 presents

the UML building block for representing a framework.

A simple hello world program in Java uses java

framework. This example can be implemented using java

Applet. The Java Applet is a part of Java Framework.

This in turn depends on AWT and Java language. The
following Figure 2 represents a hello world Applet

component structure in UML using Java frameworks.

Figure 1. Framework in UML

Framework Name

 CVR College of Engineering 11

ISSN 2277 –3916 CVR Journal of Science & Technology, Volume 2, June 2012

From this diagram, it can be observed that Hello-

world applet is depending on Java Applet. The HTML

client or Java frame which includes the Hello-World

Applet gets Hello-World Interface through the Java

Applet. Message from client application will invoke the
Java Applet that in turn sends them to the Hello-world

Applet. For displaying the hello world message the

Hello-world applet implementation again depends on

Java graphic library. The class diagram of the hello world

example is displayed in the following Figure.3

The following application which uses application

wizard of Microsoft demonstrates a better view of anther

framework. This application depends and reuses

Microsoft Document View Architecture. Microsoft

provides Application Wizard for using the framework and

class wizard for managing the applications. A simple
MFC based application structure in UML is presented in

the following Figure 4.

This UML Diagram represents a logical structure of

Document View Architecture. The application class of

the client module is inherited from CWinApp, a class of

Microsoft MFC framework. In fact the Application

wizard will decide from which class of CWinApp class

group the MyApplication class should be inherited,

depending on the requirement of the client specified
through application wizard. The user requirements are

collected in six steps at the time of creating an application

(project workspace) in VC++ through application wizard.

The type of project workspace also will change the

aggregation-combination, depending on how the user is

exporting his functionality.

The ATL technology of Microsoft also provides

similar frameworks for supporting Automation layer;

component technology and web based computing.

Several commercial frameworks available in the market

use Microsoft frameworks. These frameworks are
referred to as Middleware integration frameworks.[10]

Microsoft Visual studio present frameworks for providing

web services and other features. These enable the client

to use the latest technology without having detailed

Figure 2. Structure of Hello-World Applet with Java

Frameworks

Hello

World

Applet

Java

Apple

t

AWT

Lang

Figure 3. Class diagram of Hello world class

Applet

Hello
World

Paint () Graphic

g.drawString(Hello

World”,10,10)

Figure

 4:

Figure 4. MFC based

 VC++ Windows‟s application

Visual
Studio

Microsoft Framework

supporting Document View

Windows
Application in

VC++

MyApplication

MyFrame

MyView

MyDocument

CWinApp

CMainFrame

CView

CDocument

12 CVR College of Engineering

ISSN 2277 –3916 CVR Journal of Science & Technology, Volume 2, June 2012

knowledge of the hidden technology. Such frameworks

enable common use to use complex technology.

Benefits of Object Oriented Application Frameworks

are Modularity, Reusability, Extensibility, and Inversion

of control. Some of the Challenges of Object Oriented

Application Frameworks are Development efforts,

Learning curve, Integratability, Maintainability,

Validation and defect removal.

VI. OBJECT ORIENTED GRAPHIC FRAMEWORKS

Several pattern languages are available for handling

the problems and for documenting and communicating
the skill set of a Graphic and CAD developer. A simple

graphic framework known as pattern-frame for

integrating existing graphic libraries with Microsoft ATL

framework is presented briefly as an example.

Name: Middleware integration pattern-frames

Intent: To export object oriented framework into

component oriented framework using middleware

frameworks.

Motivation and Applicability: The object oriented

graphic frameworks require to be ported into new

technology component-oriented technology for providing
better interfaces to the client.

In this pattern frame, the object oriented frameworks is

ported into component-oriented frameworks through

integrating middleware frameworks for supporting

component technology.

Structure: The structure of these frameworks is

presented in the following UML diagram presented in the

Figure 5.

Participants and collaboration: Figure 5. presents

mainly three participants.

1. The object oriented frameworks: They are some
of the object oriented frameworks, which need

to be ported to component technology. In this

example a three dimensional object oriented

graphic framework with all user required

graphic functionality (domain specific

functionality) is selected for porting in to COM

technology.

2. The Middleware Integration frameworks: These

frameworks defines interface for exporting the

functionality of object oriented framework and

aggregate the object oriented frameworks to

form black box. They will depend on
Middleware component frameworks like

Microsoft ATL, and Java beans frameworks.

They basically provide automation layer. Few

VB command are presented in table 1.

3. The Middleware component framework: This is

a framework used to build components,

supporting component technology. Examples of

middleware component frameworks are Java

Beans development kit, Microsoft Active

Template Libraries.

A. Implementation and Code:

The selected object oriented graphic framework can be

exported to VB client using Active X controls. Building

a graphic component is possible by integrating traditional

graphic framework with Active X controls, which is a

middleware framework. This will export traditional

graphic framework functionality to VB client. Table1

shows sample VB front-end application commands used
to control the graphic component frameworks. Sample

view of the e VB application is presented in the Figure 6.

HGP3D1 is the name of the framework component.

Table I.

Few VB Statements used in the application

HGP3D1.Sp3d Text1.Text, Text2.Text, Text3.Text, Text4.Text

HGP3D1.RoteteSegmentAbs Text7.Text, Text4.Text,

Text5.Text, Text6.Text

HGP3D1.ShowAll

HGP3D1.CloseSegment Text7.Text

HGP3D1.RotateSegRel Text7.Text, Text4.Text, Text5.Text,

Text6.Text

Figure 5: Middleware integration based

frameworks

Object Oriented

Frameworks

Middleware Interaction

framework for components

Component based Graphic System

Middleware
Component

Frameworks

 CVR College of Engineering 13

ISSN 2277 –3916 CVR Journal of Science & Technology, Volume 2, June 2012

Figure: 6 A Three Dimensional graphic Framework

A sample output of the application used to simulate

PCB board using same framework is presented in the

following Figure 7.

Figure 7. A graphic Frameworks for simulating PCB

Several framework patterns for the development of

Graphic frameworks are presented in the following

section.

VI. PATTERN LANGUAGE FOR GRAPHIC

FRAMEWORK

Problems in evolving Graphic frameworks can be

documented adapting pattern approach for provide

solutions. Sixteen typical common design and

implementation issues are identified and they are

classified into three groups depending on nature of the
issues namely object oriented, component oriented and

distributed & web based pattern frames. The following

are a catalog of few pattern frames [10].

A. Object Oriented pattern Frames

These are based on simple object oriented patterns.
They make lightweight frameworks. They provide

solutions for under engineering problems for developing

frameworks.

Table II.

Object Oriented Pattern Frames

Name Intent

TRADITIONAL

GRAPHIC

FRAMEWORKS

This will apply traditional graphic

techniques for building frameworks

FUNCTION CLASS

FRAMEWORKS

This will apply basic object oriented

patterns for building configurable

function classes

FOUNDATION CLASS

FRAMEWORKS

This will provide hot spot object libraries

for reusing most common modules of the

domain

WHITE -BOX

FRAMEWORKS

This will generate object library for

configurable generic domain specific

classes

FLYWEIGHT OBJECT

FRAMEWORKS

This will decrease number of classes and

number of objects in a system

B. Component Oriented Pattern Frames

These frameworks are based on Component

technology. All are black box frameworks. They provide

solutions for building Component based application

frameworks.

Table III.

Component Oriented Pattern Frames

Name Intent

MIDDLEWARE

INTEGRATION

BASED

FRAMEWORKS

This will reuse middleware integration

frameworks for building Enterprise

frameworks

Component based

frameworks

This will apply patterns defined on

components for providing black box

frameworks

Abstract

Component

frameworks

This will generate black box framework

components using simple object oriented

primitive patterns

Component wrapper

frameworks

This will apply simple object oriented

primitive patterns for using black box

frameworks

C. Distributed nad Webbased Pattern Frames

These are useful for building frameworks for

supporting typical distributed and web based application

requirements.

Table IV.

Distributed Web based Pattern Frames

Name Intent

DISTRIBUTED

FRAMEWORKS

This will provide environment for

building domain specific distributed

application components

WEB ENABLED

FRAMEWORKS

This will provide environment for

building web enabled applications

WEB BASED

FRAMEWORKS

This will provide environment for

building web based applications

14 CVR College of Engineering

ISSN 2277 –3916 CVR Journal of Science & Technology, Volume 2, June 2012

The catalog of frameworks listed above form a pattern

language for building frameworks. Some of the

frameworks are more general in the sense that they are

applicable in other domains. But a few frameworks are

specific to Graphic, CAD and GIS systems. This pattern

language starts its journey from a simple function country

to a complex component world.

CONCLUSIONS

The pattern methodology is useful for documenting,

communicating skill set of expert knowledge for the

purpose of reuse. Development of patterns, pattern

languages and frameworks are essential for every domain
for enabling complex technology useful to common user

and for the reuse and communication of domain expert

skill set.

Using pattern at unrequited conditions create over

engineering problem. Not adapting any such methods

leads to under engineering problems. Extreme

Programming referred as XP provides solutions for such

problems.

REFERENCES

[1] Christopher Alexander, “An Introduction for Object-
oriented Design”, A lecture Note at Alexander
Personal web site www.patternlanguage.com.

[2] Pattern Languages of Program Design. Edited by
James O. Coplien and Douglas C. Schmidt. Addison-
Wesley, 1995.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and

John Vlissides, "Design Patterns: Elements of
Reusable Software Architecture", Addison-Wesley,
1995.

[4] LNCS Transactions on Pattern Languages of
Programming
http://www.springer.com/computer/lncs?SGWID=0-
164-2-470309-0.

[5] Foote B, Yoder J. “Attracting Reuse”. Third
Conference on Pattern Languages of Programs

(PLoP'96), Monticello, Illinois, September 1996
[6] Foote B, Opdyke W. „Life Cycle and Refactoring

Patterns that Support Evolution and Reuse‟. First
Conference on Pattern Languages of Programs
(PLoP‟94). Monticello, Illinois, August, 1994.

[7] Roberts,Don, et Ralph Johnson, Evolving
Frameworks A Pattern Language for Developing
Object-Oriented Frameworks, Proceedings of Pattern

Languages of Programs, Allerton Park, Illinois,
September 1996 (PLoP '96), Addison-Wesley, 1997.

[8] “CHECKS Pattern Language of Information
Integrity” at http://c2.com/ppr/checks.html.

[9] Durham A, Johnson R. “A Framework for Run-time
Systems and its Visual Programming Language”.
Proceedings of OOPSLA ‟96, Object-Oriented
Programming Systems, Languages, and Applications.

San Jose, CA. October 1996.
[10] Dr.Hari Ramakrishna, “Design Pattern for

Graphic/CAD Frameworks”, Ph.D thesis submitted to
Faculty of Engineering Osmania University March
2003, “Architecture of the San Francisco
frameworks”–IEEE

eeexplore.ieee.org/iel5/5288519/5387143/05387145.p
df.

[11] Dirk Riehle and Heinz Züllighoven "Understanding
and Using Patterns in Software Development"
http://www.ubilab.com/publications/print_versions/pd
f/tapos-96-survey.pdf.

 CVR College of Engineering 15

