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Abstract—This paper discusses some of the popular design 

patterns employed in scheduling tasks in various categories 

of real-time applications and generalizes the guidelines for 

designing and developing real-time systems. A tool is 

proposed to automate the application of these patterns when 

creating a detailed design model. 
  

Index Terms—Design Pattern, Real-Time Systems, periodic, 

aperiodic and sporadic tasks, EDF, SETF, LETF, Rate-

Monotonic Scheduling, Deadline-Monotonic Scheduling, 

Priority Ceiling, Priority inversion, Least Laxity, Maximum 

Urgency First. 

I. INTRODUCTION   

A design pattern is a generalized solution to a 

commonly occurring problem [1].  It is not a finished 

design that can be transformed directly into code – rather, 
it is a description or template, which helps in solving a 

problem and can be used in many different situations.  

Good OO designs are reusable, extensible and 

maintainable.  Patterns show us how to build systems 

with good OO design qualities.  Gamma and others, 

popularly known as Gang of Four (GoF) list 23 design 

patterns [1].  Usage of design patterns helps to lower 

software costs.   

 A system is said to be real-time when 

quantitative expressions of time are necessary to describe 

the behavior of the system.  Usually, there are many real-
time tasks in such a system and are associated with some 

time constraints.  A real-time task is classified into either 

hard, firm or soft real-time depending on the 

consequences of a task failing to meet its timing 

constraints.  A real-time task is called hard if missing its 

deadline may cause catastrophic consequences on the 

environment under control.  It is called firm if missing its 

deadline makes the result useless, but missing does not 

cause serious damage  and it is called soft if meeting its 

deadline is desirable (e.g. for performance reasons) but 

missing does not cause serious damage. 

Typical Hard RT activities include sensory data 
acquisition, detection of critical conditions and low-level 

control of critical system components. Typical 

application areas are power-train control, air-bag control, 

steer by wire, brake by wire (automotive domain) and 

engine control, aerodynamic control (aircraft domain).  

Typical Firm RT Activities include decision support and 

value prediction.  Typical application areas are Weather 

forecast, Decisions on stock exchange orders etc.  Typical 

Soft RT Activities include command interpreter of user 

interface, keyboard handling, displaying messages on 

screen, representing system state variables and 

transmitting streaming data.  Typical application areas are 

communication systems (voice over IP), user interaction 

and comfort electronics (body electronics in cars). 

Appropriate scheduling of tasks is the basic 

mechanism adopted by a real-time operating system to 
meet the constraints of a task.  Therefore, selection of an 

appropriate task scheduling algorithm is central to the 

proper functioning of a real-time system. 

II. TYPES OF REAL-TIME TASKS 

A task is an executable entity of work, characterized 

by task execution properties, task release constraints, task 

completion constraints and task dependencies.  Tasks are 

executed in a system made up of a processor (CPU) and 

other resources (communication links, shared data etc.) 

Task execution properties include Worst-case 

execution time, Criticality level, Preemptive / non-
preemptive execution and whether a task can be 

suspended or not during execution. 

Based on the way real-time tasks recur over a period of 

time, it is possible to classify them into three main 

categories:  periodic, aperiodic and sporadic tasks. 

A periodic task is one that repeats after a certain fixed 

time interval. Deadlines have to be met with precision, 

and so they are hard real-time in nature, whereas an 

aperiodic task can arise at random instants but we can 

afford to miss few deadlines and hence soft real-time in 

nature.  A sporadic task is one that recurs at random 

instants and mostly hard real-time in nature. 

III. SCHEDULING APPROACHES 

Three commonly used approaches to scheduling Real-

Time Systems are [2]: 

1. Clock-Driven approach. 

2. Round-Robin approach 

3. Priority-Driven approach.  

3.1 Clock-Driven approach (also called time-driven) 

In this approach, decisions on task execution are 

made at specific time instants.  All the parameters of the 
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tasks are fixed and known apriority.  Schedules are 

computed off-line and stored for use at run-time.  Hence 

scheduler overhead during run-time is minimized.  H/W 

timer is used to regularly space time instants.  Scheduler 

selects the task, blocks, and after expiry of timer, awakes 

and repeats these actions. 

3.2 Round-Robin approach 

This approach follows the fairness principle – justice 

to all.  It is commonly used for scheduling time-shared 

applications (time slice – in the order of tens of msec).  A 

FIFO queue of tasks ready for execution is maintained.  

An executing task is preempted at the end of time slice.  

1/nth share for n tasks in a round (hence called processor-

sharing algorithm).  A variation to this approach is 

weighted round robin.  Different tasks may have different 

weights – for ex., a task with weight wt gets wt time 
slices every round; the length of the round is equal to the 

sum of the weights of all the ready tasks; weights can be 

adjusted to speed up / retard the progress of each task. 

Round Robin approach is not suitable for tasks 

requiring good response time, particularly when we have 

precedence constrained tasks, but suitable for incremental 

consumption – for ex., UNIX pipe.  In case of pipelining, 

they can complete even earlier – ex: Transmission of 

messages by switches en route in a pipeline fashion.  The 

approach does not require a sorted priority queue; it uses 

only a round-robin queue; which is a distinct advantage, 

since priority queues are expensive. 

3.3 Priority-Driven approach 

These algorithms never leave any resource idle 

intentionally.  Scheduling decisions are made when 

events such as releases and completion of tasks occur; 

hence called event-driven.  Other names – greedy 
scheduling, list scheduling and work-conserving 

scheduling. 

Most scheduling algorithms used in non-real-time 

systems are priority-driven.  Examples include FIFO, 

LIFO – priorities based on release times; SETF (Shortest-

Execution-Time-First) and LETF (Longest-Execution-

Time-First) – priorities based on execution times.  

Priority-driven algorithms can be implemented with 

either preemptive or non-preemptive scheduling.  In some 

cases, non-preemptive scheduling may look attractive, 

but, in general, non-preemptive scheduling is not better 

than preemptive scheduling. 
Priority-based scheduling systems operate in one of 

three primary modes: 

1. Static priority systems, 

2. Semi-static or 

3. Dynamic priority systems. 

3.3.1 Static Priority System: In a static system, a task’s 

priority is determined at compile time and is not changed 

during execution. This has the advantages of simplicity of 

implementation and simplicity of analysis. The most 

common way of selecting task priority is based on the 

period of the task, or, for asynchronous event-driven 
tasks, the minimum arrival time between initiating events. 

This is called Rate Monotonic Scheduling (RMS). Static 

scheduling systems may be analyzed for schedulability 

using mathematical techniques such as Rate Monotonic 

Analysis.   

Another well-known fixed priority algorithm is the 

Deadline-Monotonic (DM) algorithm.  This algorithm 

assigns priorities to tasks according to their relative 

deadlines:  the shorter the relative deadline, the higher the 

priority.  Clearly, when the relative deadline of every task 

is proportional to its period, the RMS and DM algorithms 

are identical.  When the relative deadlines are arbitrary, 

the DM algorithm performs better in the sense that it can 

sometimes produce a flexible schedule when the RMS 
algorithm fails, while the RMS algorithm always fails 

when the DM algorithm fails. 

3.3.2 Semi-Static Priority System: Semi-static priority 

systems assign a task a nominal priority but adjust the 

priority based on the desire to limit priority inversion. 

This is the essence of the priority ceiling pattern.  If a low 

priority task locks a resource needed by a high priority 

task, the high priority task must block itself and allow the 

low priority task to execute, at least long enough to 

release the needed resource.  The execution of a low 

priority task when a higher priority task is ready to run is 
called priority inversion. The naïve implementation of 

semaphores and monitors allows the low priority task to 

be interrupted by higher priority tasks that do not need 

the resource.  Because this preemption can occur 

arbitrarily deep, the priority inversion is said to be 

unbounded. It is impossible to avoid at least one level of 

priority inversion in multitasking systems that must share 

resources, but one would like to at least bound the level 

of inversion. This problem is addressed by the priority 

ceiling pattern.  The basic idea of the priority ceiling 

pattern is that each resource has an attribute called its 
priority ceiling. The value of this attribute is the highest 

priority of any task that could ever use that particular 

resource. The active objects have two related attributes: 

nominal priority and current priority. The nominal 

priority is the normal executing priority of the task. The 

object’s current priority is changed to the priority ceiling 

of a resource it has currently locked as long as the latter is 

higher. 

3.3.3 Dynamic Priority System: Dynamic priority 

systems assign task priority at run-time based on one of 

several possible strategies. The three most common 

dynamic priority strategies are: 
1. Earliest Deadline First 

2. Least Laxity 

3. Maximum Urgency First 

In Earliest Deadline First (EDF) scheduling, tasks are 

selected for execution based on which has the closest 

deadline. This algorithm is said to be dynamic because 

task scheduling cannot be determined at design time, but 

only when the system runs. In this algorithm, a set of 

tasks is schedulable if the sum of the task loadings is less 

than 100%. This algorithm is optimal in the sense that if 

it is schedulable by other algorithms, then it is also 
schedulable by EDF. However, EDF is not stable; if the 

total task load rises above 100%, then at least one task 

will miss its deadline, and it is not possible to predict in 

general which task will fail. This algorithm requires 
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additional run-time overhead because the scheduler must 

check all waiting tasks for their next deadline frequently. 

In addition, there are no formal methods to prove 

schedulability before the system is implemented. 

Laxity for a task is defined as the time to deadline 

minus the task execution time remaining. Clearly, a task 

with a negative laxity has already missed its deadline. 

The algorithm schedules tasks in ascending order of their 

laxity. The difficulty is that during run-time, the system 

must know expected execution time and also track total 

time a task has been executing in order to compute its 
laxity. While this is not conceptually difficult, it means 

that designers and implementers must identify the 

deadlines and execution times for the tasks and update the 

information for the scheduler every time they modify the 

system. In a system with hard and soft deadlines, the 

Least Laxity (LL) algorithm must be merged with another 

so that hard deadlines can be met at the expense of tasks 

that must meet average response time requirements (see 

MUF, below). LL has the same disadvantages as the EDF 

algorithm: it is not stable; it adds run-time overhead over 

what is required for static scheduling, and schedulability 
of tasks cannot be proven formally. 

Maximum Urgency First (MUF) scheduling is a hybrid 

of RMS and LL. Tasks are initially ordered by period, as 

in RMS. An additional binary task parameter, criticality, 

is added. The first n tasks of high criticality that load 

under 100% become the critical task set. It is this set to 

which the Least Laxity Scheduling is applied. Only if no 

critical tasks are waiting to run are tasks from the 

noncritical task set scheduled. Because MUF has a 

critical set based on RMS, it can be structured so that no 

critical tasks will fail to meet their deadlines.   

IV.  PATTERNS 

With this background of various scheduling 

approaches in Real-Time Systems, we can now suggest 

suitable patterns known as Execution Control Patterns for 

scheduling tasks.  They deal with the policy by which 

tasks are executed in a multitasking system.  This is 

normally executed by the Real-Time Operating System, if 

present.  Most Real-Time Operating Systems offer a 

variety of scheduling options.  The most important of 

these are listed here as execution control patterns [3]. 

1. Cyclic Executive Pattern for simple task 

scheduling. 
2. Time Slicing – Round Robin Pattern – 

fairness in task scheduling. 

3. Static Priority Pattern – preemptive 

multitasking for schedulable systems. 

4. Semi-static priority – Priority Ceiling 

Pattern. 

5. Dynamic Priority Pattern – preemptive 

multitasking for complex systems. 

The primary difference occurs in the policy used for 

the selection of the currently executing task. 

4.1 Cyclic Executive Pattern 

In the cyclic executive pattern the kernel (commonly 

called the executive in this case) executes the tasks in a 

prescribed sequence. Cyclic executives have the 

advantage that they are “brain-dead” simple to implement 

and are particularly effective for simple repetitive tasking 

problems. Also, it can be written to run in highly 

memory-constrained systems where a full RTOS may not 

be an option.  However, they are not efficient for systems 

that must react to asynchronous events and not optimal in 

their use of time. There have been well-publicized cases 

of systems that could not be scheduled with a cyclic 

executive but were successfully scheduled using 

preemptive scheduling. Another disadvantage of the 
cyclic executive pattern is that any change in the 

executive time of any task usually requires a substantial 

tuning effort to optimize the timeliness of responses. 

Furthermore, if the system slips its schedule, there is no 

guarantee or control over which task will miss its 

deadline preferentially. 

Figure 1.[4] shows how simple this pattern is. The set 

of threads is maintained as an ordered list (indicated by 

the constraint on the association end attached to the 

Abstract Thread class). The Cyclic Executive merely 

executes the threads in turn and then restarts at the 
beginning when done. When the Scheduler starts, it must 

instantiate all the tasks before cycling through them. 

 
 

Figure 1.Cyclic Executive Pattern 

4.2 Time Slicing – Round Robin Pattern 

The kernel in the time slicing pattern executes each 

task in a round-robin fashion, giving each task a specific 

period of time in which to run. When the task’s time 

budget for the cycle is exhausted, the task is preempted 

and the next task in the queue is started. Time slicing has 

the same advantages of the cyclic executive but is more 

time based. Thus it becomes simpler to ensure that 

periodic tasks are handled in a timely fashion. However, 
this pattern also suffers from similar problems as the 

cyclic executive. Additionally, the time slicing pattern 

doesn’t “scale up” to large numbers of tasks well because 

the slice for each task becomes proportionally smaller as 

tasks are added. 

The Round Robin Pattern is a simple variation of the 

Cyclic Executive Pattern. The difference is that the 

Scheduler has the ability to preempt running tasks and 
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does so when it receives a tick message from its 

associated Timer. Two forms of the Round Robin Pattern 

are shown below. The complete form (Figure 2a [4]) 

shows the infrastructure classes Task Control Block and 

Stack. The simplified form (Figure 2b [4]) omits these 

classes. 

 
 

 
Figure 2. Round Robin Pattern 

4.3 Static Priority Pattern 

In a static system, a task’s priority is determined at 

compile time and is not changed during execution. This 
has the advantages of simplicity of implementation and 

simplicity of analysis. 

Figure 3. [4] shows the basic structure of the pattern. 

Each «active» object (called Concrete Thread in the 

figure) registers with the Scheduler object in the 

operating system by calling createThread operation and 

passing to it, the address of a method defined. Each 

Concrete Thread executes until it completes (which it 

signals to the OS by calling Scheduler::return()), it is 

preempted by a higher-priority task being inserted into 

the Ready Queue, or it is blocked in an attempt to access 

a Shared Resource that has a locked Mutex semaphore. 

 

 
 

Figure 3. Static Priority Pattern 

 

4.4 Semi-static Priority - Priority Ceiling Pattern 

The Priority Ceiling Pattern, or Priority Ceiling 

Protocol (PCP) as it is sometimes called, addresses both 

issues of bounding priority inversion (and hence 

bounding blocking time) and removal of deadlock. It is a 

relatively sophisticated approach, more complex than the 

previous methods. It is not as widely supported by 

commercial RTOSs, however, and so its implementation 

often requires writing extensions to the RTOS.  Figure 4. 

[4] shows the Priority Ceiling Pattern structure.  

 

 
Figure 4. Priority Ceiling Pattern 

4.5 Dynamic Priority Pattern 

The Dynamic Priority Pattern is similar to the Static 

Priority Pattern except that the former automatically 

updates the priority of tasks as they run to reflect 

changing conditions. There are a large number of possible 

strategies to change the task priority dynamically. The 

most common is called Earliest Deadline First, in which 
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the highest-priority task is the one with the nearest 

deadline. The Dynamic Priority Pattern explicitly 

emphasizes urgency over criticality. 

Figure 5.[4] shows the Dynamic Priority pattern 

structure. 

 

 
 

Figure 5. Dynamic Priority Pattern 

V.  TOOL SUPPORT 

It is proposed to develop a GUI based tool, which will 

help the users in selecting appropriate scheduling strategy 

depending upon the nature and parameters of the real-

time tasks in the application being developed.  The tool 
will educate the users about merits and demerits of each 

scheduling strategy and help in identifying appropriate 

design pattern.  Further, the tool will also generate the 

code for the chosen design pattern in real-time java.  

Thus, the design and development activities may be 

completed in less time and with more accuracy, as the 

code is generated automatically. 

CONCLUSIONS 

In this paper, we have reviewed and summarized 

various scheduling approaches for real-time systems.  

Further, we have listed suitable design patterns for these 

varied scheduling strategies.  The proposed tool to 
generate code for a chosen design pattern will greatly 

help the developer in reducing development effort, 

reducing development time and provides ready-made 

code, which can be plugged into the developer’s 

application. 
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