
ISSN 2277 –3916 CVR Journal of Science & Technology, Volume 2, June 2012

Design Patterns For Scheduling Tasks In Real-

Time Systems
U.V.R. Sarma

1
, Dr. K. V. Chalapati Rao

2
 and Dr. P. Premchand

3

1CVR College of Engineering, Department of CSE, Ibrahimpatan, R.R.District, A.P., India

Email: sarmauvr@yahoo.co.in
2CVR College of Engineering, Department of CSE, Ibrahimpatan, R.R.District, A.P., India

Email: chalapatiraokv@gmail.com
3Osmania University, Department of CSE, Hyderabad, A.P., India

Email: profpremchand.p@gmail.com

Abstract—This paper discusses some of the popular design

patterns employed in scheduling tasks in various categories

of real-time applications and generalizes the guidelines for

designing and developing real-time systems. A tool is

proposed to automate the application of these patterns when

creating a detailed design model.

Index Terms—Design Pattern, Real-Time Systems, periodic,

aperiodic and sporadic tasks, EDF, SETF, LETF, Rate-

Monotonic Scheduling, Deadline-Monotonic Scheduling,

Priority Ceiling, Priority inversion, Least Laxity, Maximum

Urgency First.

I. INTRODUCTION

A design pattern is a generalized solution to a

commonly occurring problem [1]. It is not a finished

design that can be transformed directly into code – rather,
it is a description or template, which helps in solving a

problem and can be used in many different situations.

Good OO designs are reusable, extensible and

maintainable. Patterns show us how to build systems

with good OO design qualities. Gamma and others,

popularly known as Gang of Four (GoF) list 23 design

patterns [1]. Usage of design patterns helps to lower

software costs.

 A system is said to be real-time when

quantitative expressions of time are necessary to describe

the behavior of the system. Usually, there are many real-
time tasks in such a system and are associated with some

time constraints. A real-time task is classified into either

hard, firm or soft real-time depending on the

consequences of a task failing to meet its timing

constraints. A real-time task is called hard if missing its

deadline may cause catastrophic consequences on the

environment under control. It is called firm if missing its

deadline makes the result useless, but missing does not

cause serious damage and it is called soft if meeting its

deadline is desirable (e.g. for performance reasons) but

missing does not cause serious damage.

Typical Hard RT activities include sensory data
acquisition, detection of critical conditions and low-level

control of critical system components. Typical

application areas are power-train control, air-bag control,

steer by wire, brake by wire (automotive domain) and

engine control, aerodynamic control (aircraft domain).

Typical Firm RT Activities include decision support and

value prediction. Typical application areas are Weather

forecast, Decisions on stock exchange orders etc. Typical

Soft RT Activities include command interpreter of user

interface, keyboard handling, displaying messages on

screen, representing system state variables and

transmitting streaming data. Typical application areas are

communication systems (voice over IP), user interaction

and comfort electronics (body electronics in cars).

Appropriate scheduling of tasks is the basic

mechanism adopted by a real-time operating system to
meet the constraints of a task. Therefore, selection of an

appropriate task scheduling algorithm is central to the

proper functioning of a real-time system.

II. TYPES OF REAL-TIME TASKS

A task is an executable entity of work, characterized

by task execution properties, task release constraints, task

completion constraints and task dependencies. Tasks are

executed in a system made up of a processor (CPU) and

other resources (communication links, shared data etc.)

Task execution properties include Worst-case

execution time, Criticality level, Preemptive / non-
preemptive execution and whether a task can be

suspended or not during execution.

Based on the way real-time tasks recur over a period of

time, it is possible to classify them into three main

categories: periodic, aperiodic and sporadic tasks.

A periodic task is one that repeats after a certain fixed

time interval. Deadlines have to be met with precision,

and so they are hard real-time in nature, whereas an

aperiodic task can arise at random instants but we can

afford to miss few deadlines and hence soft real-time in

nature. A sporadic task is one that recurs at random

instants and mostly hard real-time in nature.

III. SCHEDULING APPROACHES

Three commonly used approaches to scheduling Real-

Time Systems are [2]:

1. Clock-Driven approach.

2. Round-Robin approach

3. Priority-Driven approach.

3.1 Clock-Driven approach (also called time-driven)

In this approach, decisions on task execution are

made at specific time instants. All the parameters of the

 CVR College of Engineering 1 DOI: 10.32377/cvrjst0201

ISSN 2277 –3916 CVR Journal of Science & Technology, Volume 2, June 2012

tasks are fixed and known apriority. Schedules are

computed off-line and stored for use at run-time. Hence

scheduler overhead during run-time is minimized. H/W

timer is used to regularly space time instants. Scheduler

selects the task, blocks, and after expiry of timer, awakes

and repeats these actions.

3.2 Round-Robin approach

This approach follows the fairness principle – justice

to all. It is commonly used for scheduling time-shared

applications (time slice – in the order of tens of msec). A

FIFO queue of tasks ready for execution is maintained.

An executing task is preempted at the end of time slice.

1/nth share for n tasks in a round (hence called processor-

sharing algorithm). A variation to this approach is

weighted round robin. Different tasks may have different

weights – for ex., a task with weight wt gets wt time
slices every round; the length of the round is equal to the

sum of the weights of all the ready tasks; weights can be

adjusted to speed up / retard the progress of each task.

Round Robin approach is not suitable for tasks

requiring good response time, particularly when we have

precedence constrained tasks, but suitable for incremental

consumption – for ex., UNIX pipe. In case of pipelining,

they can complete even earlier – ex: Transmission of

messages by switches en route in a pipeline fashion. The

approach does not require a sorted priority queue; it uses

only a round-robin queue; which is a distinct advantage,

since priority queues are expensive.

3.3 Priority-Driven approach

These algorithms never leave any resource idle

intentionally. Scheduling decisions are made when

events such as releases and completion of tasks occur;

hence called event-driven. Other names – greedy
scheduling, list scheduling and work-conserving

scheduling.

Most scheduling algorithms used in non-real-time

systems are priority-driven. Examples include FIFO,

LIFO – priorities based on release times; SETF (Shortest-

Execution-Time-First) and LETF (Longest-Execution-

Time-First) – priorities based on execution times.

Priority-driven algorithms can be implemented with

either preemptive or non-preemptive scheduling. In some

cases, non-preemptive scheduling may look attractive,

but, in general, non-preemptive scheduling is not better

than preemptive scheduling.
Priority-based scheduling systems operate in one of

three primary modes:

1. Static priority systems,

2. Semi-static or

3. Dynamic priority systems.

3.3.1 Static Priority System: In a static system, a task’s

priority is determined at compile time and is not changed

during execution. This has the advantages of simplicity of

implementation and simplicity of analysis. The most

common way of selecting task priority is based on the

period of the task, or, for asynchronous event-driven
tasks, the minimum arrival time between initiating events.

This is called Rate Monotonic Scheduling (RMS). Static

scheduling systems may be analyzed for schedulability

using mathematical techniques such as Rate Monotonic

Analysis.

Another well-known fixed priority algorithm is the

Deadline-Monotonic (DM) algorithm. This algorithm

assigns priorities to tasks according to their relative

deadlines: the shorter the relative deadline, the higher the

priority. Clearly, when the relative deadline of every task

is proportional to its period, the RMS and DM algorithms

are identical. When the relative deadlines are arbitrary,

the DM algorithm performs better in the sense that it can

sometimes produce a flexible schedule when the RMS
algorithm fails, while the RMS algorithm always fails

when the DM algorithm fails.

3.3.2 Semi-Static Priority System: Semi-static priority

systems assign a task a nominal priority but adjust the

priority based on the desire to limit priority inversion.

This is the essence of the priority ceiling pattern. If a low

priority task locks a resource needed by a high priority

task, the high priority task must block itself and allow the

low priority task to execute, at least long enough to

release the needed resource. The execution of a low

priority task when a higher priority task is ready to run is
called priority inversion. The naïve implementation of

semaphores and monitors allows the low priority task to

be interrupted by higher priority tasks that do not need

the resource. Because this preemption can occur

arbitrarily deep, the priority inversion is said to be

unbounded. It is impossible to avoid at least one level of

priority inversion in multitasking systems that must share

resources, but one would like to at least bound the level

of inversion. This problem is addressed by the priority

ceiling pattern. The basic idea of the priority ceiling

pattern is that each resource has an attribute called its
priority ceiling. The value of this attribute is the highest

priority of any task that could ever use that particular

resource. The active objects have two related attributes:

nominal priority and current priority. The nominal

priority is the normal executing priority of the task. The

object’s current priority is changed to the priority ceiling

of a resource it has currently locked as long as the latter is

higher.

3.3.3 Dynamic Priority System: Dynamic priority

systems assign task priority at run-time based on one of

several possible strategies. The three most common

dynamic priority strategies are:
1. Earliest Deadline First

2. Least Laxity

3. Maximum Urgency First

In Earliest Deadline First (EDF) scheduling, tasks are

selected for execution based on which has the closest

deadline. This algorithm is said to be dynamic because

task scheduling cannot be determined at design time, but

only when the system runs. In this algorithm, a set of

tasks is schedulable if the sum of the task loadings is less

than 100%. This algorithm is optimal in the sense that if

it is schedulable by other algorithms, then it is also
schedulable by EDF. However, EDF is not stable; if the

total task load rises above 100%, then at least one task

will miss its deadline, and it is not possible to predict in

general which task will fail. This algorithm requires

2 CVR College of Engineering

ISSN 2277 –3916 CVR Journal of Science & Technology, Volume 2, June 2012

additional run-time overhead because the scheduler must

check all waiting tasks for their next deadline frequently.

In addition, there are no formal methods to prove

schedulability before the system is implemented.

Laxity for a task is defined as the time to deadline

minus the task execution time remaining. Clearly, a task

with a negative laxity has already missed its deadline.

The algorithm schedules tasks in ascending order of their

laxity. The difficulty is that during run-time, the system

must know expected execution time and also track total

time a task has been executing in order to compute its
laxity. While this is not conceptually difficult, it means

that designers and implementers must identify the

deadlines and execution times for the tasks and update the

information for the scheduler every time they modify the

system. In a system with hard and soft deadlines, the

Least Laxity (LL) algorithm must be merged with another

so that hard deadlines can be met at the expense of tasks

that must meet average response time requirements (see

MUF, below). LL has the same disadvantages as the EDF

algorithm: it is not stable; it adds run-time overhead over

what is required for static scheduling, and schedulability
of tasks cannot be proven formally.

Maximum Urgency First (MUF) scheduling is a hybrid

of RMS and LL. Tasks are initially ordered by period, as

in RMS. An additional binary task parameter, criticality,

is added. The first n tasks of high criticality that load

under 100% become the critical task set. It is this set to

which the Least Laxity Scheduling is applied. Only if no

critical tasks are waiting to run are tasks from the

noncritical task set scheduled. Because MUF has a

critical set based on RMS, it can be structured so that no

critical tasks will fail to meet their deadlines.

IV. PATTERNS

With this background of various scheduling

approaches in Real-Time Systems, we can now suggest

suitable patterns known as Execution Control Patterns for

scheduling tasks. They deal with the policy by which

tasks are executed in a multitasking system. This is

normally executed by the Real-Time Operating System, if

present. Most Real-Time Operating Systems offer a

variety of scheduling options. The most important of

these are listed here as execution control patterns [3].

1. Cyclic Executive Pattern for simple task

scheduling.
2. Time Slicing – Round Robin Pattern –

fairness in task scheduling.

3. Static Priority Pattern – preemptive

multitasking for schedulable systems.

4. Semi-static priority – Priority Ceiling

Pattern.

5. Dynamic Priority Pattern – preemptive

multitasking for complex systems.

The primary difference occurs in the policy used for

the selection of the currently executing task.

4.1 Cyclic Executive Pattern

In the cyclic executive pattern the kernel (commonly

called the executive in this case) executes the tasks in a

prescribed sequence. Cyclic executives have the

advantage that they are “brain-dead” simple to implement

and are particularly effective for simple repetitive tasking

problems. Also, it can be written to run in highly

memory-constrained systems where a full RTOS may not

be an option. However, they are not efficient for systems

that must react to asynchronous events and not optimal in

their use of time. There have been well-publicized cases

of systems that could not be scheduled with a cyclic

executive but were successfully scheduled using

preemptive scheduling. Another disadvantage of the
cyclic executive pattern is that any change in the

executive time of any task usually requires a substantial

tuning effort to optimize the timeliness of responses.

Furthermore, if the system slips its schedule, there is no

guarantee or control over which task will miss its

deadline preferentially.

Figure 1.[4] shows how simple this pattern is. The set

of threads is maintained as an ordered list (indicated by

the constraint on the association end attached to the

Abstract Thread class). The Cyclic Executive merely

executes the threads in turn and then restarts at the
beginning when done. When the Scheduler starts, it must

instantiate all the tasks before cycling through them.

Figure 1.Cyclic Executive Pattern

4.2 Time Slicing – Round Robin Pattern

The kernel in the time slicing pattern executes each

task in a round-robin fashion, giving each task a specific

period of time in which to run. When the task’s time

budget for the cycle is exhausted, the task is preempted

and the next task in the queue is started. Time slicing has

the same advantages of the cyclic executive but is more

time based. Thus it becomes simpler to ensure that

periodic tasks are handled in a timely fashion. However,
this pattern also suffers from similar problems as the

cyclic executive. Additionally, the time slicing pattern

doesn’t “scale up” to large numbers of tasks well because

the slice for each task becomes proportionally smaller as

tasks are added.

The Round Robin Pattern is a simple variation of the

Cyclic Executive Pattern. The difference is that the

Scheduler has the ability to preempt running tasks and

 CVR College of Engineering 3

ISSN 2277 –3916 CVR Journal of Science & Technology, Volume 2, June 2012

does so when it receives a tick message from its

associated Timer. Two forms of the Round Robin Pattern

are shown below. The complete form (Figure 2a [4])

shows the infrastructure classes Task Control Block and

Stack. The simplified form (Figure 2b [4]) omits these

classes.

Figure 2. Round Robin Pattern

4.3 Static Priority Pattern

In a static system, a task’s priority is determined at

compile time and is not changed during execution. This
has the advantages of simplicity of implementation and

simplicity of analysis.

Figure 3. [4] shows the basic structure of the pattern.

Each «active» object (called Concrete Thread in the

figure) registers with the Scheduler object in the

operating system by calling createThread operation and

passing to it, the address of a method defined. Each

Concrete Thread executes until it completes (which it

signals to the OS by calling Scheduler::return()), it is

preempted by a higher-priority task being inserted into

the Ready Queue, or it is blocked in an attempt to access

a Shared Resource that has a locked Mutex semaphore.

Figure 3. Static Priority Pattern

4.4 Semi-static Priority - Priority Ceiling Pattern

The Priority Ceiling Pattern, or Priority Ceiling

Protocol (PCP) as it is sometimes called, addresses both

issues of bounding priority inversion (and hence

bounding blocking time) and removal of deadlock. It is a

relatively sophisticated approach, more complex than the

previous methods. It is not as widely supported by

commercial RTOSs, however, and so its implementation

often requires writing extensions to the RTOS. Figure 4.

[4] shows the Priority Ceiling Pattern structure.

Figure 4. Priority Ceiling Pattern

4.5 Dynamic Priority Pattern

The Dynamic Priority Pattern is similar to the Static

Priority Pattern except that the former automatically

updates the priority of tasks as they run to reflect

changing conditions. There are a large number of possible

strategies to change the task priority dynamically. The

most common is called Earliest Deadline First, in which

4 CVR College of Engineering

ISSN 2277 –3916 CVR Journal of Science & Technology, Volume 2, June 2012

the highest-priority task is the one with the nearest

deadline. The Dynamic Priority Pattern explicitly

emphasizes urgency over criticality.

Figure 5.[4] shows the Dynamic Priority pattern

structure.

Figure 5. Dynamic Priority Pattern

V. TOOL SUPPORT

It is proposed to develop a GUI based tool, which will

help the users in selecting appropriate scheduling strategy

depending upon the nature and parameters of the real-

time tasks in the application being developed. The tool
will educate the users about merits and demerits of each

scheduling strategy and help in identifying appropriate

design pattern. Further, the tool will also generate the

code for the chosen design pattern in real-time java.

Thus, the design and development activities may be

completed in less time and with more accuracy, as the

code is generated automatically.

CONCLUSIONS

In this paper, we have reviewed and summarized

various scheduling approaches for real-time systems.

Further, we have listed suitable design patterns for these

varied scheduling strategies. The proposed tool to
generate code for a chosen design pattern will greatly

help the developer in reducing development effort,

reducing development time and provides ready-made

code, which can be plugged into the developer’s

application.

REFERENCES

[1] Gamma, Erich, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, MA: Addison-Wesley, 1995.

[2] Jane W.S. Liu, Real-Time Systems, Pearson Education
2006.

[3] Bruce Powel Douglass, White Paper on Real-Time Design
Patterns 1998

[4] Bruce Powel Douglass Real-Time Design Patterns: Robust
Scalable Architecture for Real-Time Systems, Addison
Wesley 2002

[5] Stankovic, J., M. Spuri, K. Ramamritham, and G.
Buttazzo. Deadline Scheduling for Real-Time Systems,
Norwell, MA: Kluwer Academic Press, 1998.

[6] Douglass, Bruce Powel. Doing Hard Time: Developing
Real-Time Systems with UML, Objects, Frameworks, and

Patterns, Reading, MA: Addison-Wesley, 1999.
[7] A System of Patterns: Pattern-Oriented Software

Architecture Buschmann, et. al., John Wiley & Sons, 1996.

 CVR College of Engineering 5

