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Abstract—We study a novel hierarchical wireless 

networking approach in which some of the nodes are more 

capable than others. In such networks, the more capable 

nodes can serve as Mobile Backbone Nodes and provide a 

backbone over which end-to-end communication can take 

place. Our approach consists of controlling the mobility of 

the Backbone Nodes in order to maintain connectivity. We 

formulate the problem of minimizing the number of 

backbone nodes and refer to it as the Connected Disk 

Cover (CDC) problem. We show that it can be 

decomposed into the Geometric Disk Cover (GDC) 

problem and the Steiner Tree Problem with Minimum 

Number of Steiner Points (STP-MSP). We prove that if 

these sub problems are solved separately by γ- and δ–

approximation algorithms, the approximation ratio of the 

joint solution is γ+δ. Then, we focus on the two sub 

problems and present a number of distributed 

approximation algorithms that maintain a solution to the 

GDC problem under mobility. We show that this 

approach can be extended in order to obtain a joint 

approximate solution to the CDC problem.  

Index Terms—Approximation algorithms, controlled 

mobility, distributed algorithms, disk cover, wireless 

networks.

I. INTRODUCTION

WIRELESS Sensor Networks (WSNs) and Mobile 

Ad Hoc Networks (MANETs) can operate without any 

physical infrastructure (e.g., base stations). Yet, it has 

been shown that it is sometimes desirable to construct a 

virtual backbone on which most of the multi-hop traffic 

will be routed [6]. If all nodes have similar 

communication capabilities and similar limited energy 

resources, the virtual backbone may pose several 

challenges. For example, bottleneck formation along 

the backbone may affect the available bandwidth and 

the lifetime of the backbone nodes. In addition, the 

virtual backbone cannot deal with network partitions 

resulting from the spatial distribution and mobility of 

the nodes. Alternatively, if some of the nodes are more 

capable than others, these nodes can be dedicated to 

providing a backbone over which reliable end-to-end 

communication can take place. 

A novel hierarchical approach for a Mobile 

Backbone Network operating in such a way was 

recently proposed and studied by Rubin et al. (see [7, 9] 

and references therein) and by Gerla et al. (e.g., [8]). 

We develop and analyze novel algorithms for the 

construction and maintenance (under node mobility) of 

a Mobile Backbone Network. We focus on controlling 

the mobility of the more capable nodes in order to 

maintain network connectivity and to provide a 

backbone for reliable communication. 

A Mobile Backbone Network is composed of two 

types of nodes. The first type includes static or mobile 

nodes (e.g., sensors or MANET nodes) with limited 

capabilities. We refer to them as Regular Nodes (RNs).

The second type includes mobile nodes with superior 

communication, mobility, and computation capabilities 

as well as greater energy resources (e.g., Unmanned- 

Aerial-Vehicles).We refer to them as Mobile Backbone 

Nodes (MBNs). The main purpose of the MBNs is to 

provide a mobile infrastructure facilitating network-

wide communication. We specifically focus on 

minimizing the number of MBNs needed for 

connectivity. Yet, the construction of a Mobile 

Backbone Network can improve other aspects of the 

network performance, including node lifetime and 

Quality of Service as well as network reliability and 

survivability.

The set of MBNs has to be placed such that (i) every 

RN can directly communicate with at least one MBN, 

and (ii) the network formed by the MBNs is connected. 

We assume a disk connectivity model, whereby two 

nodes can communicate if and only if they are within a 

certain communication range. We also assume that the 

communication range of the MBNs is significantly 

larger than the communication range of the RNs. 

Figure 1. Illustrates an example of the architecture of a Mobile 
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We term the problem of placing the minimum

number of MBNs such that both of the above 

conditions are satisfied as the Connected Disk Cover 

(CDC) problem. While related problems have been 

studied in the past [2], [6], [3] this papers are one of the 

first attempts to deal with the CDC problem. Our first 

approach is based on a framework that decomposes the

CDC problem into two sub problems. We view the 

CDC problem as a two-tiered problem. In the first 

phase, the minimum number of MBNs such that all 

RNs are covered (i.e., all RNs can communicate with at 

least one MBN) is placed. We refer to these MBNs as 

Cover MBNs and denote them in Fig. 1 by white 

squares. In the second phase, the minimum number of 

MBNs such that the MBNs’ network is connected is 

placed. We refer to them as Relay MBNs and denote 

them in Fig. 1 by gray squares. In the first phase, the 

Geometric Disk Cover (GDC) problem [1, 3] has to be 

solved, while in the second phase, a Steiner Tree 

Problem with Minimum Number of Steiner Points 

(STP-MSP) [4, 5, 10] has to be solved. We show that if 

these sub problems are solved separately by γ- and δ–

approximation algorithms, the approximation ratio of 

the joint solution is γ+δ.

We develop a number of practically implementable 

distributed algorithms for covering mobile RNs by 

MBNs. We assume that all nodes can detect their 

position via GPS or a localization mechanism. This 

assumption allows us to take advantage of location 

information in designing distributed algorithms. We 

obtain the worst case approximation ratios of the 

developed algorithms and the average case 

approximation ratios for two of the algorithms. Finally, 

we evaluate the performance of the algorithms via 

simulation, and discuss the tradeoffs between the 

complexities and approximation ratios. 

Our first main contribution is a decomposition result 

regarding the CDC problem. Other major contributions 

are the development and analysis of distributed 

approximation 1A δ approximation algorithm for a 

minimization problem always finds a solution with 

value at most δ times the value of the optimal solution. 

Algorithms for the GDC problem in a mobile 

environment, as well as the design of a novel 

Discretization Approach for the solution of the STP-

MSP and the CDC problem.   

II. PROBLEM FORMULATION

We consider a set of Regular Nodes (RNs) 

distributed in the plane and assume that a set of Mobile

Backbone Nodes (MBNs) has to be deployed in the 

plane.  We denote by N the collection of Regular Nodes 

{1,2,...n} , by M={d1
, d2

, …dn} collection of MBNs, and 

by dij the distance between nodes i and j. An RNi can 

communicate bi-directionally with another node j (i.e., 

an MBN) if the distance between i and j, dij <=r, we 

denote by D=2r the diameter of the disk covered by an 

MBN communicating with RNs.  Regarding the MBNs, 

we assume that MBNi can communicate with MBNj if 

dij <= R, where R>r.

We assume that the RNs and MBNs have both a 

communication channel (e.g., for data) and a low-rate 

control channel. For the communication channel, we 

assume the disk connectivity model. Namely, an RN 

can communicate bi-directionally with another node 

(i.e., an MBN) if the distance between i and j, dij <=r. 

We denote by D=2r the diameter of the disk covered by 

an MBN communicating with RNs. Regarding the 

MBNs, we assume that MBN i can communicate with 

MBN j if dij <=R, where R>r. For the control channel, 

we assume that both RNs and MBNs can communicate 

over a much longer range than their respective data 

channels. Since given a fixed transmission power, the 

communication range is inversely related to data rate, 

this is a valid assumption. 

A. Connected Disk Cover (CDC) problem 

Given a set of RNs (N) distributed in the plane, place 

the smallest set of MBNs such that: 

1) For every RNi ε N there exists at least one 

MBN j ε M such that dij <=r 

2) The undirected graph G = (M,E) imposed on 

M (i.e., ∀ k,l M, define an edge (k, l) ε E if dkl

<=R) is connected. 

The RNs are mobile and some of the MBNs move 

around in order to maintain a solution the CDC 

problem. We will study both the case in which the 

nodes are static, and the case in which the RNs are 

mobile and some of the MBNs move around in order to 

maintain a solution the CDC problem. We assume that 

there exists some sort of MBN routing algorithm, which 

routes specific MBNs from their old locations to their 

new ones.

We propose to solve the CDC problem by 

decomposing it into two NP-Complete sub problems: 

the Geometric Disk Cover (GDC) problem and the 

Steiner Tree Problem with Minimum number of Steiner 

Points (STP-MSP). 

B. Geometric Disk Cover (GDC) 

Given a set N of RNs distributed in the plane, place 

the smallest set M of cover MBNs such that: 

1) For every RNi ε N there exists at least one 

MBN j ε M such that dij <=r 

2) A set of cover MBNs is given and there is a 

need to place the minimum number of relay 

MBNs such that formed network is connected. 

The second sub problem deals with a situation in 

which a set of Cover MBNs is given and there is a need 

to place the minimum number of Relay MBNs such that 

the formed network is connected (i.e., satisfies only 

property (2) in the CDC problem definition). This sub 

problem is equivalent to the Steiner Tree Problem with 

Minimum Number of Steiner Points (STP-MSP) [10]. 

                    CVR College of Engineering                            75 
DOI: 10.32377/cvrjst0316



ISSN 2277-3916       CVR Journal of Science and Technology, Volume 3, December 2012 

C. Steiner Tree Problem (STP) 

Given a set of cover MBNs ( Mcover ) distributed in 

the plane, place the smallest set of Relay MBNs ( Mrelay

) such that the undirected graph G = (M,E) imposed on 

M = Mcover  U Mrelay(i.e., ∀ k,l M, define an edge (k, l) ε
E if dkl <=R) is connected. 

Figure 2. Tight example of the approximation ratio of the 

decomposition algorithm (a) optimal solution and (b) decomposition 

algorithm solution. 

A tight example of this fact is illustrated in Fig. 2. 

Fig. 2(a) shows an node instance of the CDC problem, 

where ε<<r refers to a sufficiently small constant. Also 

shown is the optimal solution with cost n MBNs. Fig. 

2(b) shows a potential solution obtained by using the 

decomposition framework (with γ=δ=1), composed of 

an optimal disk cover and an optimal STP-MSP 

solution. The cost is n+n-1=2n-1MBNs. This example 

highlights the facts that under the Decomposition 

Framework, the cover MBNs are placed without 

considering the related problem of placing the relay 

MBNs.

III. PLACING THE COVER MBNS—STRIP COVER

Hochbaum and Maass[5, 11] introduced a method 

for approaching the GDC problem by (i) dividing the 

plane into equal width strips, (ii) solving the problem 

locally on the points within each strip, and (iii) taking 

the overall solution as the union of all local solutions. 

Below we present algorithms that are based on this 

method. These algorithms are actually two different 

versions of a single generic algorithm. The first version 

locally covers the strip with rectangles encapsulated in 

disks while the second version locally covers the strip 

directly with disks. We then generalize (to arbitrary 

strip widths) the effects of solving the problem locally 

in strips and use this extension to provide 

approximation guarantees. Finally, we discuss 

distributed implementations of these algorithms.

3.1 Centralized Algorithms 

For simplicity of the presentation, we start by 

describing the centralized algorithms. The two versions 

of the Strip Cover algorithm (Strip Cover with 

Rectangles—SCR and Strip Cover with Disks—SCD)

appear below. In line 6, the first version (SCR) calls the 

Rectangles procedure and the second one (SCD) calls 

the Disks procedure. The input is a set of points (RNs)  

N={1, 2, …n} and their (x, y) coordinates, ( ix, iy ) ∀ i. 

The output includes a set of disks (MBNs) M={d1
, d2

,

…dn} and their locations such that all points are 

covered. The first step of the algorithm is to divide the 

plane into K strips of width αD (D=2r). We denote the 

strips by Sj and the set of MBNs in strip by Msj. Figure  

3. shows an example of the SCR algorithm and in 

particular of step 9 in which disks are placed such that 

they compactly cover all points in the rectangular area 

with -coordinate range. 

Figure 3. Illustrating step 9 of SCR algorithm 

Algorithm 1: Strip Cover with Rectangles/Disks 

(SCR/SCD):

1. Divide the plane into K strips of width qsc =αD

2. Msj , j = 1,…,K 

3. For all strips Sj, j = 1,…,K do 

4. While there exist uncoverd RNs in Sj

5. Let I be the leftmost uncovered RN in Sj

6. Call Rectangles(i) or call Disks(i) 

7. Msj  Msj  dk

8. Return j Msj

Procedure Rectangles(i): 

9. Place an MBN dk such that it covers all RNs in 

the rectangular area with x-coordinates [ix,ix+

D]

10. Return dk

Procedure Disks(i): 

11. Pdk  {set of RNs covered by the current 

MBN dk}

12. While Pdk  i coverable by a single MBN 

(disk) do 

13. Pdk  Pdk  i 

14. If there are no more RNs in the strip then 

15. Break

16. Let i be the nest leftmost uncovered RN in Sj

not currently in Pdk

17. Place MBN (disk) dk, such that it covers the 

RNs Pdk

18. Return dk

3.3 Distributed Implementation 

The SCR and SCD algorithms can be easily 

implemented in a distributed manner. The algorithms 

are executed at the RNs and operate within the strips. 

The SCR algorithm executed at an RN is described 

below. Recall that we denote the RNs within a strip 

according to their order from the left (i.e., i<j if  ix <= 

jx).Ties are broken by node ID. Every RN that has no 

left neighbors within distance D initiates the disk 

placement procedure that propagates along the strip. 

The propagation stops once there is a gap between 

nodes of at least. If an RN arrives from a neighboring 

strip or leaves its MBN’s coverage area, it initiates the 

disk placement procedure that may trigger an update of 
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the MBN’s locations within the strip. Notice that MBNs 

only move when a recalculation is required. Although 

the responsibility to place and move MBNs is with the 

RNs, simple enhancements would allow the MBNs to 

reposition themselves during the maintenance phase. If 

after a recalculation, an MBN is not repositioned, then 

it is not required and can be used elsewhere. The time 

complexity (i.e., number of rounds) is O(n). The 

computation complexity is Olog n). Control 

information has to be transmitted between RNs over a 

Distance D=2r. 

Algorithm 2: Distributed SCR (at RN i) 

Initialization: 

1. Let Gi be the set of RNs j such that j<i and ix – 

jx  D 

2. If Gi =  then 

3. Call place MBN 

Construction and Maintenance: 

4. If MBN placed message received then 

5. Call place MBN 

6. If i is disconnected from its MBN or enters 

from a neighboring strip then 

7. If there is at least one MBN within distance r 

then

8. Join one of these MBNs 

9. Else call place MBN 

Procedure place MBN 

10. Let iR be the rightmost RN s.t (iR)x  ix+

D

11. Place MBN dk covering RNs j, where jx  [ix,

(iR)x]

12. If (iR +1)x - (i
R)x  D then 

13. Send an MBN placed message to iR +1 

Algorithm 3: Simple 1-D [13] with D = 2/3 

1. Initialize the cover greedily {using the SCR 

algorithm} 

2. Maintain the leftmost RN and rightmost RN of 

each MBN rectangle 

3. If two adjacent MBN rectangles come into 

contact then exchange their outermost RNs 

4. If a set of RNs covered by an MBN becomes 

too long {the separation between its leftmost 

ad rightmost RNs become greater than 2/3} 

then

Split off its rightmost RN into a singleton 

MBN 

Check whether rule 4 applies 

5. If two adjacent MBN rectangles fit in a 2/3 

rectangle then 

Merge the two MBNs 

CONCLUSION

The architecture of a hierarchical Mobile Backbone 

Network has been presented only recently. Such a 

design can significantly improve the performance, 

lifetime, and reliability of MANETs and WSNs. We 

concentrate on placing and mobilizing backbone nodes, 

dedicated to maintaining connectivity of the regular 

nodes. We formulated the Backbone Node Placement 

problem as the Connected Disk Cover problem and 

showed it can be decomposed into two sub problems. A 

new approach for the solution of the second sub 

problem (STP-MSP) and of the joint problem (CDC) 

has also been discussed. We showed that when it is 

used to solve the CDC problem in a centralized manner, 

the number of the required MBNs is significantly 

reduced. 
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