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Abstract— Software design patterns are best practice solutions 

to common software design problems. When they are properly 

applied, software design patterns can greatly improve the 

quality of software architectures. Leveraging the benefits of 

design patterns is particularly important in the space Flight 

Software (FSW) domain because better designs are needed to 

help reduce the number of flight software related anomalies 

and thus improve the quality of FSW architectures. This paper 

provides a solution to build templates for common features of 

Flight Software architecture using design patterns. This is 

illustrated by using Student Nitric Oxide Explorer (SNOE) 

spacecraft, which is a real world case study from National 

Aeronautics and Space Administration (NASA). The 

executable design pattern templates help an engineer when 

building software architectures. This paper also provides a 

foundation to perform validation for functional correctness 

during the design phase. 
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I. INTRODUCTION

Software design patterns are best practice solutions to 
common software problems. Design patterns are normally 
captured to be domain and platform independent. There are 
several benefits of capturing design patterns in this manner. 
First, it makes them applicable across multiple domains and 
platforms. Second, it makes design patterns applicable at 
different levels of abstraction. Furthermore, in the majority 
of cases, multiple design patterns can be applied in a single 
application.

To achieve this goal, this paper provides a set of design 
patterns that are applicable to a small satellite Student Nitric 
Oxide Explorer (SNOE). This paper also describes a 
validation approach that is used to validate the functionality 
of software architectures.

This paper is applied and validated using the space Flight 
Software (FSW) domain. FSW is an ideal domain to apply 
this dissertation for multiple reasons. First, the amount of 
requirements and responsibilities placed on FSW is growing. 
FSW has evolved from performing simple operations to 
controlling a majority of the spacecraft payloads. This paper 
is a way to architect FSW using design patterns. Using 
design patterns makes certain that best practices are 
incorporated into FSW designs. 

Secondly, the industry trend indicates that the number of 
software related anomalies is growing. It is reported that “in 
the period from 1998 to 2000, nearly half of all observed 
spacecraft anomalies were related to software” [1]. These 
software anomalies can cause mission disruption or even 
mission loss. In the aerospace industry these losses cannot be 
tolerated because of the high cost and length of time that is 
required to build a spacecraft. Additionally, many 
spacecrafts support very critical missions that can be 
severely impacted from a small disruption of service. This 
paper helps to alleviate the number of software related 
anomalies by providing design time validation. Therefore,  
design flaws that lead to software anomalies can be 
identified and remedied early. 

This paper is organized as follows. First it describes about 
IBM Rational Rhapsody. Next, about UML 2.0 and how it 
was used in the paper, then about SNOE and the process for 
customizing general design patterns for SNOE using IBM 
Rational Rhapsody is described in detail. Finally, this paper 
includes a discussion on conclusions and areas of future 
work.

II. IBM RATIONAL RHAPSODY

This project uses IBM Rational Rhapsody to build and 
execute the state machines [2]. Therefore the actions 
performed are captured using IBM Rational Rhapsody’s 
action language and event handling infrastructure. IBM 
Rational Rhapsody uses custom action language, which is a 
subset of the Java language, to capture actions and to 
execute the model. Thus, this action language is used to 
implement the objects actions. The action language is similar 
to Java, except there are a few additional reserved words and 
functions. For example, GEN is a reserved word used to 
generate asynchronous messages as events. The messages 
must be specified on the consumer’s provided interface in 
order to be invoked.

Ex: PClass1.gen(new msg()); 
Where PClass1 is the provided interface which also 

specifies the port through which the message is sent and 
msg() is event that is generated. When an event is generated, 
IBM Rational Rhapsody event handling infrastructure 
handles the routing of events from the producer to the 
consumer. When the consumer component receives the 
event, the appropriate state transition is taken and actions 
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within that state are performed. IBM Rational Rhapsody is 
an excellent tool to generate dynamic UML diagrams using 
Real-time UML that is UML 2.0. 

III. UML 2.0 AS ARCHITECTURAL DESCRIPTION LANGUAGE

(ADL)

The Unified Modeling Language (UML) [3] is formal 
graphical language considered as a de facto industrial 
standard. Although the language has been created as 
graphical language firstly to support object oriented software 
analysis and design, the language has been revised couple of 
times and today, it is a general formal language capable to 
describe a software system. The UML has well defined 
formal syntax and semantics and can be machine checked 
and processed. UML includes a set of graphical notation 
techniques to create abstract models of specific systems. 

The expressive power of Architectures by UML is more 
than any ADL. The UML profile for scheduling, 
performance, and time specification described in [4] has 
been adopted as an official OMG standard in March 2002. In 
general, UML profile defines a domain specific 
interpretation of UML; it might be viewed as a package of 
specializations of general UML concepts that capture 
domain-specific variations and usage patterns. To specify a 
profile, UML extensibility mechanisms (i.e., stereotypes, 
tagged values, constraints) are used. 

Component and connector views (C&C views, for short) 
present an architecture in terms of elements that have a 
runtime presence (e.g., processes, clients, and data stores) 
and pathways of interaction (e.g., communication links and 
protocols, information flows, and access to shared 
resources). Components are the principal units of run-time 
interaction or data storage.  Connectors are the interaction 
mechanisms among components.

The components are created as Composite classes in 
UML 2.0 and each of the components should have ports to 
interact with the external environment. Each port again 
requires an interface for it to interact. The interfaces are of 
two types Provided Interface and Required Interface. Two
components with ports and their interfaces can be linked for 
communication. The ports and their interfaces should be 
compatible, that is one component having a required 
interface (depicted as semi circle) can interact with only a 
component that provides the interface (depicted as full 
circle).

IV. STUDENT NITRIC OXIDE EXPLORER (SNOE)

This paper illustrates the construction of architecture for 
Flight Software by taking up a case study of Student Nitric 
Oxide Explorer (SNOE) [5].  SNOE, which was a real-
world, small satellite program funded by the National 
Aeronautics and Space Administration (NASA) and 
managed by the Universities Space Research Association 
(USRA).

SNOE’s mission involves using a spin stabilized 
spacecraft in a low earth orbit to measure thermospheric 
Nitric Oxide (NO) and its variability. The SNOE spacecraft 
is spin stabilized, meaning it maintains its orientation similar 

to that of a top. SNOE is required to maintain a spin rate of 5 
Rotations per Minute (RPM). The spin rate can be adjusted 
having the Flight Software (FSW) send a command to 
commutate the electromagnet transverse torque rod. The 
spin axis direction is controlled in a similar fashion by 
having the FSW send a command to commutate the 
electromagnet spin axis torque rod. SNOE’s FSW does not 
perform the attitude determination and control calculations. 
Rather, the FSW collects the attitude measurements and 
downlinks them to the ground for processing.  

Then the ground uplinks attitude control commands back 
to the spacecraft for the SNOE FSW to execute. The attitude 
measurements are taken from two Horizon Crossing 
Indicators (HCI) and three magnetometers. SNOE’s 
spacecraft body is surrounded on all sides by stationary solar 
panels which are used to generate power. 

The spacecraft contains three payload instruments to 
accomplish its scientific mission. These three instruments 
are an Ultra Violet Spectrometer (UVS) that measures NO 
density, an Auroral Photometer (AP) that measures the flux 
of energetic electrons entering the Earth's upper atmosphere, 
and a Solar soft X-ray Photometer (SXP) that measures the 
solar irradiance. 

Additionally, SNOE also contains a microGPS Bit-
Grabber Space Receiver (microGPS BGSR) instrument as a 
technology experiment. The microGPS BGSR gathers 
position information based on the Global Positioning System 
(GPS) constellation for experimental orbital determination. 

4.1 SNOE Design Pattern Selection 

The pattern selection process is done using the command 
execution functionality, which is a commonly seen in FSW. 
This involves determining the order in which spacecraft 
commands are executed. The design patterns that support 
this feature are then selected. For example, on small 
spacecraft the centralized control design pattern [6] can be 
used. The centralized control design pattern involves a single 
controller that provides overall control by conceptually 
executing a state machine. This design pattern is useful on 
small spacecraft because it encapsulates all the state-
dependent control in a single component thus making the 
control logic easier to understand and maintain. Thus, the 
design patterns that support SNOE specific features are 
determined by selecting the Design Patterns that are suitable 
for the working of SNOE.

The paper illustrates the customization of Design Patterns 
to suit the architecture of the satellite Student Nitric Oxide 
Explorer (SNOE). Seven different Design Patterns have 
been identified to reflect the functionality of SNOE.

The Design Patterns identified are listed in Table I. 
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Table I. SNOE Design Pattern Selection 

Feature Design Pattern 

Command Execution Centralized Control Design 
Pattern

Telemetry Storage and Retrieval Telemetry Client Server Design 
Pattern

Telemetry Formation Pipes and Filters Design Pattern

Ground Driven Payload Data 
Collection

Payload Multiple Client Multiple 
Server Design Pattern 

Ground Driven Housekeeping Data 
Collection

Housekeeping Multiple Client 
Multiple Server Design Pattern 

Spacecraft Clock Spacecraft Clock Multicast Design 
Pattern

Memory Storage Device 

Fault Detection

Memory Storage Device 

Watchdog Design Pattern 

The reason for selecting the above Design patterns is 
described below: 

4.1.1. Centralized Control Design Pattern:  SNOE is a 
small satellite with thirteen different components. Since it is 
a small satellite and the number of components is less, 
Centralized control architecture is better suitable than 
Distributed architecture. The Centralized controller is linked 
to every component and controls the functionalities of each 
of the components. 

4.1.2. Telemetry Client Server Design Pattern: The 
information collected by various components in SNOE is 
transformed into telemetry packets and is sent to the Ground 
Station. Every component has its own buffer and stores the 
information collected by them in their buffers. Next, the 
information is to be periodically transformed into telemetry 
packets and is to be sent to the Ground Station for 
processing. So a Client and Server component is created for 
each of the components which will be controlled by the 
Centralized Controller and will be responsible to collect the 
information. This pattern collects information from Payload 
Server as well as HouseKeeping Server and sends it to the 
controller.

4.1.3. Telemetry Formation Pipes and Filters Design 
Pattern: The transformation of information into telemetry 
packets is done by Pipes and Filters Design Pattern.  It 
increases throughput capacity of the system by adding 
multiple homogeneous (identical) channels. 

4.1.4. Payload Multiple Client Multiple Server Design 
Pattern: There are four payload instruments in SNOE. They 
are Ultra Violet Spectrometer, Micro GPS, Solar XRay 
Photometer and Auroral Photometer. A separate client and 
server for each of the payload instruments are created to 
collect the information whenever the controller signals to 
collect.

4.1.5. Housekeeping Multiple Client Multiple Server 
Design Pattern: The health of the satellite is maintained by 

collecting the information of the health or working of each 
of the component. This information is sent to the ground 
station. The ground station checks this information and 
sends any signals if necessary to check and modify the 
components. The collection of housekeeping information is 
done by this Design Pattern. Again a separate client and 
server component is created for 13 components of SNOE. 

4.1.6. Spacecraft Clock Multicast Design Pattern:  This 
pattern is used to send time signals to the Centralized 
controller and input and output components of the system. 

4.1.7. Memory Storage Device Watchdog Design Pattern: 
The memory storage device in SNOE is EEPROM. The 
Memory Storage Watchdog Design Pattern is selected to 
check the working of the memory storage device that is the 
EEPROM at regular intervals. 

V. IMPLEMENTATION 

5.1 SNOE Centralized Control Architectural Design Pattern 

SNOE utilizes the Centralized Control design pattern to 
execute commands and control the overall operation of the 
spacecraft. SNOE uses two torque rods, thus its multiplicity 
is one or many. Additionally, the ports and interfaces for the 
payload variants that are unique to SNOE are modeled. The 
component diagram for SNOE’s Centralized Control 
component diagram is shown in fig. 2, which contains the 
SNOE specific variants based on SNOE’s features. The 
ports, interfaces, and connecters for the common variants are 
captured in the diagram.

SNOE contains four payload devices - therefore four 
payload device variants are created. For each payload 
variant, the port name is updated to reflect the specific 
payload, such as the microGPS_IOC. The port’s interface is 
updated to reflect the specific actions that can be invoked on 
that payload.

Figure 2. Component diagram for SNOE Centralized Control Executable 
Design Pattern 

Next, the executable version of the design pattern 
involves potentially adding application specific states, 
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actions, and activities to the state machines based on the 
application’s features. For example, if the application 
features refine some behavior, then this can be modeled as 
sub-states. Also, if the component must send a message to an 
application specific variant or if application specific logic is 
required then this is modeled as an action or activity within a 
state or transition.

SNOE receives command to open the solar x-ray 
photometer door; it knows the precise operations to invoke 
on the Solar_Xray_Photometer_IOC. The state machine for 
the Solar_Xray_Photometer_IOC component is depicted in 
the fig. 3. The state machine for this Component is slightly 
more complicated because it acts as both an input and IO 
component. The component begins in the Idle state within 
the Working state. In the Idle state the Component waits for 
commands from the Centralized_Controller. When an action 
message is received, it transitions into the 
Executing_Command state where it performs the appropriate 
actions on the external hardware. After it performs the 
necessary actions, it generates the processingComplete event 
and transitions back to the Idle state to wait for the next 
command. When a read message is received, a similar set of 
states and transitions occurs, however, it occurs in the 
Gathering Data state. The IO_Component is also responsible 
for listening to external events from the hardware. Therefore 
if an externalEvent event is received, the IO_Component 
stops its current action in the Working state and transitions 
into the Preparing_Notification state. In the 
Preparing_Notification state it prepares a message to send to 
the Centralized_Controller. 

Once the message is ready, the IO_Component then sends 
the inputEventNotification message to the 
Centralized_Controller through the RIO port and transitions 
back to its previously interrupted location within the 
Working state. 

Figure 3. State Machine for Solar_XRay_Photometer_IOC 

Next the state machine for the SNOE’s Magnetometer_IC 
component is depicted in Figure 4. Magnetometer is an input 
component that provides attitude measurements. It is 
initialized by the Centralized Controller. It is first in the idle 
state and moves to the Preparing_Notification state when an 
external event occurs. Here it prepares the 
input_event_notification and sends it to the 
Centralized_Controller. A similar set of actions is performed 
in response to a read event message; however the requested 
data is collected and sent back the Centralized_Controller.

Figure 4. State Machine for Magnetometer_IC 

The Output Component begins in the Idle state where is 
waits for commands from the Centralized_Controller. Once 
a command message is received, the Output_Component 
transitions into the Executing_Command state where it 
performs the appropriate actions on the external hardware. 
At the DRE level, the actions the Output_Component 
performs are variable; therefore it is modeled using a code 
stub as seen in fig. 5. Once complete, it generates the 
processing Complete event and transitions back to the Idle 
state to wait for the next command. 

Figure 5. State Machine for Low_Gain_Antenna_OC 
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Finally, the state machines for the other variant input, 
output, and IO components, are also added.

5.2 SNOE Payload Multiple Client Multiple Server 

Executable Architectural Design Pattern 

The next executable design pattern realized in SNOE is 
the FSW Payload Multiple Client Multiple Server executable 
design pattern. This design pattern is used to selectively 
collect payload data. Since SNOE is required to selectively 
collect the payload data, separate data clients are created for 
each payload instrument. Additionally, since each payload 
instrument has its own data buffer, separate server 
components are created for each payload instrument. 

Next, the component diagram in fig. 6 depicts the set of 
components in the system. The ports and connectors added 
between the appropriate clients and servers are also shown in 
the diagram. Additionally, the interfaces are also updated to 
reflect the SNOE’s unique variants. The diagram shows that 
the connected components have compatible interfaces. 

The four Payload instruments include 
Ultra_Violet_Spectrometer, Micro_GPS, 
Solar_XRay_Photometer and Aural_Photometer. A client 
and server component for each of the four payload 
instruments is depicted in the design pattern. 

Figure 6. Object Model Diagram for Payload Multiple Client Multiple 
Server

The SNOE Multiple Client Multiple Server design pattern 
involves selectively collecting payload data. The interaction 
diagram for collecting micro GPS (Global Positioning 
System) data is depicted in Figure 7.

Figure 7. Collect microGPS Data Scenario for SNOE 

5.3 SNOE Payload Multiple Client Multiple Server 

Executable Design Pattern 

In addition to updating the architectural views, the 
executable version of the design pattern also needs to be 
customized for SNOE. This is performed for each client and 
server in this design pattern. The specific steps involved in 
updating the state machine are follows. 

First, the microGPS_DClient component is responsible 
for collecting the microGPS data from the 
microGPS_DServer. The state machine for the SNOE 
specific microGPS_DClient component is depicted in fig. 8. 

When Controller requires data it sends 
requestPayloadDataNeeded message to microGPS_DClient. 
microGPS_DClient requests the data from the server, this 
information is added to the actions on the state machine. 
This information is captured on the transition from the 
Preparing_Request state to the Idle state. The event that 
occurs is the requestPayloadData and the action

RUVSDServer.gen(newrequestPayloadData(msg));
Indicates that a request for payload data is being sent to 

the microGPS_DServer component by specifying the 
required port (RmGPSDServer) of the client through which 
the components communicate. Finally, the SNOE specific 
processing logic within the Preparing_Request and 
Processing_Response states is added as On Entry actions. 
However, this information is not depicted in Figure in an 
effort to make the diagram readable. 
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Figure 8, State Machine for MicroGPS Client 

The state machine for microGPS_DServer in Figure 9. 
depicts the transitions that server takes. It is in Idle state first 
and moves to Processing_Client_Request state when client 
sends a requestPayloadData to server. After processing is 
complete, it prepares a response and moves back to the Idle 
state. During this transition it sends the mGPSDataResponse 
back to the client. 

Figure 9. microGPS_DServer state machine

Similarly, the state machines for client and server for the 
other three payload instruments which are 
Auroral_Photometer, Solar_Xray_Photometer and 
Ultraviolet_Spectrometer are also updated following a 
similar process. 

CONCLUSIONS

This paper describes an approach for building FSW 
software architectures from software architectural patterns. 
This approach improves the quality of FSW software 
architectures because it leverages best practices captured in 
software design patterns. Additionally, the executable  
design pattern templates not only help an engineer when 
building software architectures, but they also provide the 
foundation for performing design time validation on the 
software architecture produced using this approach. The 
engineers also can use the design patterns to form the core 
base for building the software architecture of any other 
system in this domain. Thus enabling to develop using the 
Software Product Line (SPL) based product development. 

FUTURE ENHANCEMENTS

There are several avenues of future research that can be 
taken to extend this project.  First, the SNOE case study can 
be expanded to include performance validation using 
MARTE (Modeling and Analysis of Real-Time Embedded 
systems) stereotypes. Second, this work should be extended 
to address feature modeling to help organize and structure 
the functionality of design patterns. Thirdly, this work can 
be applied to other DRE domains to illustrate the approach’s 
applicability across DRE domains. Additionally, future 
research can include illustrating the functionality of the 
design patterns using the “animation” feature of IBM 
Rational Rhapsody.
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