
ISSN 2277-3916 CVR Journal of Science and Technology, Volume 3, December 2012

Architectural Design Patterns Customized and
Validated for Flight Software

U.V.R. Sarma1, N. Pavani2 and Dr. P. Premchand3

1 CVR College of Engineering, Department of CSE, Ibrahimpatan, R.R. District, A.P., India
Email: sarmauvr@yahoo.co.in

2 CVR College of Engineering, Department of CSE, Ibrahimpatan, R.R. District, A.P., India
Email: mee_pav@yahoo.com

3Osmania University, Department of CSE, Hyderabad, A.P., India
Email: p.premchand@uceou.edu

Abstract— Software design patterns are best practice solutions

to common software design problems. When they are properly

applied, software design patterns can greatly improve the

quality of software architectures. Leveraging the benefits of

design patterns is particularly important in the space Flight

Software (FSW) domain because better designs are needed to

help reduce the number of flight software related anomalies

and thus improve the quality of FSW architectures. This paper

provides a solution to build templates for common features of

Flight Software architecture using design patterns. This is

illustrated by using Student Nitric Oxide Explorer (SNOE)

spacecraft, which is a real world case study from National

Aeronautics and Space Administration (NASA). The

executable design pattern templates help an engineer when

building software architectures. This paper also provides a

foundation to perform validation for functional correctness

during the design phase.

Key Words: Software Architectural Design Patterns, UML,

Space Flight Software, IBM Rational Rhapsody.

I. INTRODUCTION

Software design patterns are best practice solutions to
common software problems. Design patterns are normally
captured to be domain and platform independent. There are
several benefits of capturing design patterns in this manner.
First, it makes them applicable across multiple domains and
platforms. Second, it makes design patterns applicable at
different levels of abstraction. Furthermore, in the majority
of cases, multiple design patterns can be applied in a single
application.

To achieve this goal, this paper provides a set of design
patterns that are applicable to a small satellite Student Nitric
Oxide Explorer (SNOE). This paper also describes a
validation approach that is used to validate the functionality
of software architectures.

This paper is applied and validated using the space Flight
Software (FSW) domain. FSW is an ideal domain to apply
this dissertation for multiple reasons. First, the amount of
requirements and responsibilities placed on FSW is growing.
FSW has evolved from performing simple operations to
controlling a majority of the spacecraft payloads. This paper
is a way to architect FSW using design patterns. Using
design patterns makes certain that best practices are
incorporated into FSW designs.

Secondly, the industry trend indicates that the number of
software related anomalies is growing. It is reported that “in
the period from 1998 to 2000, nearly half of all observed
spacecraft anomalies were related to software” [1]. These
software anomalies can cause mission disruption or even
mission loss. In the aerospace industry these losses cannot be
tolerated because of the high cost and length of time that is
required to build a spacecraft. Additionally, many
spacecrafts support very critical missions that can be
severely impacted from a small disruption of service. This
paper helps to alleviate the number of software related
anomalies by providing design time validation. Therefore,
design flaws that lead to software anomalies can be
identified and remedied early.

This paper is organized as follows. First it describes about
IBM Rational Rhapsody. Next, about UML 2.0 and how it
was used in the paper, then about SNOE and the process for
customizing general design patterns for SNOE using IBM
Rational Rhapsody is described in detail. Finally, this paper
includes a discussion on conclusions and areas of future
work.

II. IBM RATIONAL RHAPSODY

This project uses IBM Rational Rhapsody to build and
execute the state machines [2]. Therefore the actions
performed are captured using IBM Rational Rhapsody’s
action language and event handling infrastructure. IBM
Rational Rhapsody uses custom action language, which is a
subset of the Java language, to capture actions and to
execute the model. Thus, this action language is used to
implement the objects actions. The action language is similar
to Java, except there are a few additional reserved words and
functions. For example, GEN is a reserved word used to
generate asynchronous messages as events. The messages
must be specified on the consumer’s provided interface in
order to be invoked.

Ex: PClass1.gen(new msg());
Where PClass1 is the provided interface which also

specifies the port through which the message is sent and
msg() is event that is generated. When an event is generated,
IBM Rational Rhapsody event handling infrastructure
handles the routing of events from the producer to the
consumer. When the consumer component receives the
event, the appropriate state transition is taken and actions

20 CVR College of Engineering DOI: 10.32377/cvrjst0304

ISSN 2277-3916 CVR Journal of Science and Technology, Volume 3, December 2012

within that state are performed. IBM Rational Rhapsody is
an excellent tool to generate dynamic UML diagrams using
Real-time UML that is UML 2.0.

III. UML 2.0 AS ARCHITECTURAL DESCRIPTION LANGUAGE

(ADL)

The Unified Modeling Language (UML) [3] is formal
graphical language considered as a de facto industrial
standard. Although the language has been created as
graphical language firstly to support object oriented software
analysis and design, the language has been revised couple of
times and today, it is a general formal language capable to
describe a software system. The UML has well defined
formal syntax and semantics and can be machine checked
and processed. UML includes a set of graphical notation
techniques to create abstract models of specific systems.

The expressive power of Architectures by UML is more
than any ADL. The UML profile for scheduling,
performance, and time specification described in [4] has
been adopted as an official OMG standard in March 2002. In
general, UML profile defines a domain specific
interpretation of UML; it might be viewed as a package of
specializations of general UML concepts that capture
domain-specific variations and usage patterns. To specify a
profile, UML extensibility mechanisms (i.e., stereotypes,
tagged values, constraints) are used.

Component and connector views (C&C views, for short)
present an architecture in terms of elements that have a
runtime presence (e.g., processes, clients, and data stores)
and pathways of interaction (e.g., communication links and
protocols, information flows, and access to shared
resources). Components are the principal units of run-time
interaction or data storage. Connectors are the interaction
mechanisms among components.

The components are created as Composite classes in
UML 2.0 and each of the components should have ports to
interact with the external environment. Each port again
requires an interface for it to interact. The interfaces are of
two types Provided Interface and Required Interface. Two
components with ports and their interfaces can be linked for
communication. The ports and their interfaces should be
compatible, that is one component having a required
interface (depicted as semi circle) can interact with only a
component that provides the interface (depicted as full
circle).

IV. STUDENT NITRIC OXIDE EXPLORER (SNOE)

This paper illustrates the construction of architecture for
Flight Software by taking up a case study of Student Nitric
Oxide Explorer (SNOE) [5]. SNOE, which was a real-
world, small satellite program funded by the National
Aeronautics and Space Administration (NASA) and
managed by the Universities Space Research Association
(USRA).

SNOE’s mission involves using a spin stabilized
spacecraft in a low earth orbit to measure thermospheric
Nitric Oxide (NO) and its variability. The SNOE spacecraft
is spin stabilized, meaning it maintains its orientation similar

to that of a top. SNOE is required to maintain a spin rate of 5
Rotations per Minute (RPM). The spin rate can be adjusted
having the Flight Software (FSW) send a command to
commutate the electromagnet transverse torque rod. The
spin axis direction is controlled in a similar fashion by
having the FSW send a command to commutate the
electromagnet spin axis torque rod. SNOE’s FSW does not
perform the attitude determination and control calculations.
Rather, the FSW collects the attitude measurements and
downlinks them to the ground for processing.

Then the ground uplinks attitude control commands back
to the spacecraft for the SNOE FSW to execute. The attitude
measurements are taken from two Horizon Crossing
Indicators (HCI) and three magnetometers. SNOE’s
spacecraft body is surrounded on all sides by stationary solar
panels which are used to generate power.

The spacecraft contains three payload instruments to
accomplish its scientific mission. These three instruments
are an Ultra Violet Spectrometer (UVS) that measures NO
density, an Auroral Photometer (AP) that measures the flux
of energetic electrons entering the Earth's upper atmosphere,
and a Solar soft X-ray Photometer (SXP) that measures the
solar irradiance.

Additionally, SNOE also contains a microGPS Bit-
Grabber Space Receiver (microGPS BGSR) instrument as a
technology experiment. The microGPS BGSR gathers
position information based on the Global Positioning System
(GPS) constellation for experimental orbital determination.

4.1 SNOE Design Pattern Selection

The pattern selection process is done using the command
execution functionality, which is a commonly seen in FSW.
This involves determining the order in which spacecraft
commands are executed. The design patterns that support
this feature are then selected. For example, on small
spacecraft the centralized control design pattern [6] can be
used. The centralized control design pattern involves a single
controller that provides overall control by conceptually
executing a state machine. This design pattern is useful on
small spacecraft because it encapsulates all the state-
dependent control in a single component thus making the
control logic easier to understand and maintain. Thus, the
design patterns that support SNOE specific features are
determined by selecting the Design Patterns that are suitable
for the working of SNOE.

The paper illustrates the customization of Design Patterns
to suit the architecture of the satellite Student Nitric Oxide
Explorer (SNOE). Seven different Design Patterns have
been identified to reflect the functionality of SNOE.

The Design Patterns identified are listed in Table I.

 CVR College of Engineering 21 DOI: 10.32377/cvrjst0304

ISSN 2277-3916 CVR Journal of Science and Technology, Volume 3, December 2012

Table I. SNOE Design Pattern Selection

Feature Design Pattern

Command Execution Centralized Control Design
Pattern

Telemetry Storage and Retrieval Telemetry Client Server Design
Pattern

Telemetry Formation Pipes and Filters Design Pattern

Ground Driven Payload Data
Collection

Payload Multiple Client Multiple
Server Design Pattern

Ground Driven Housekeeping Data
Collection

Housekeeping Multiple Client
Multiple Server Design Pattern

Spacecraft Clock Spacecraft Clock Multicast Design
Pattern

Memory Storage Device

Fault Detection

Memory Storage Device

Watchdog Design Pattern

The reason for selecting the above Design patterns is
described below:

4.1.1. Centralized Control Design Pattern: SNOE is a
small satellite with thirteen different components. Since it is
a small satellite and the number of components is less,
Centralized control architecture is better suitable than
Distributed architecture. The Centralized controller is linked
to every component and controls the functionalities of each
of the components.

4.1.2. Telemetry Client Server Design Pattern: The
information collected by various components in SNOE is
transformed into telemetry packets and is sent to the Ground
Station. Every component has its own buffer and stores the
information collected by them in their buffers. Next, the
information is to be periodically transformed into telemetry
packets and is to be sent to the Ground Station for
processing. So a Client and Server component is created for
each of the components which will be controlled by the
Centralized Controller and will be responsible to collect the
information. This pattern collects information from Payload
Server as well as HouseKeeping Server and sends it to the
controller.

4.1.3. Telemetry Formation Pipes and Filters Design
Pattern: The transformation of information into telemetry
packets is done by Pipes and Filters Design Pattern. It
increases throughput capacity of the system by adding
multiple homogeneous (identical) channels.

4.1.4. Payload Multiple Client Multiple Server Design
Pattern: There are four payload instruments in SNOE. They
are Ultra Violet Spectrometer, Micro GPS, Solar XRay
Photometer and Auroral Photometer. A separate client and
server for each of the payload instruments are created to
collect the information whenever the controller signals to
collect.

4.1.5. Housekeeping Multiple Client Multiple Server
Design Pattern: The health of the satellite is maintained by

collecting the information of the health or working of each
of the component. This information is sent to the ground
station. The ground station checks this information and
sends any signals if necessary to check and modify the
components. The collection of housekeeping information is
done by this Design Pattern. Again a separate client and
server component is created for 13 components of SNOE.

4.1.6. Spacecraft Clock Multicast Design Pattern: This
pattern is used to send time signals to the Centralized
controller and input and output components of the system.

4.1.7. Memory Storage Device Watchdog Design Pattern:
The memory storage device in SNOE is EEPROM. The
Memory Storage Watchdog Design Pattern is selected to
check the working of the memory storage device that is the
EEPROM at regular intervals.

V. IMPLEMENTATION

5.1 SNOE Centralized Control Architectural Design Pattern

SNOE utilizes the Centralized Control design pattern to
execute commands and control the overall operation of the
spacecraft. SNOE uses two torque rods, thus its multiplicity
is one or many. Additionally, the ports and interfaces for the
payload variants that are unique to SNOE are modeled. The
component diagram for SNOE’s Centralized Control
component diagram is shown in fig. 2, which contains the
SNOE specific variants based on SNOE’s features. The
ports, interfaces, and connecters for the common variants are
captured in the diagram.

SNOE contains four payload devices - therefore four
payload device variants are created. For each payload
variant, the port name is updated to reflect the specific
payload, such as the microGPS_IOC. The port’s interface is
updated to reflect the specific actions that can be invoked on
that payload.

Figure 2. Component diagram for SNOE Centralized Control Executable
Design Pattern

Next, the executable version of the design pattern
involves potentially adding application specific states,

22 CVR College of Engineering DOI: 10.32377/cvrjst0304

ISSN 2277-3916 CVR Journal of Science and Technology, Volume 3, December 2012

actions, and activities to the state machines based on the
application’s features. For example, if the application
features refine some behavior, then this can be modeled as
sub-states. Also, if the component must send a message to an
application specific variant or if application specific logic is
required then this is modeled as an action or activity within a
state or transition.

SNOE receives command to open the solar x-ray
photometer door; it knows the precise operations to invoke
on the Solar_Xray_Photometer_IOC. The state machine for
the Solar_Xray_Photometer_IOC component is depicted in
the fig. 3. The state machine for this Component is slightly
more complicated because it acts as both an input and IO
component. The component begins in the Idle state within
the Working state. In the Idle state the Component waits for
commands from the Centralized_Controller. When an action
message is received, it transitions into the
Executing_Command state where it performs the appropriate
actions on the external hardware. After it performs the
necessary actions, it generates the processingComplete event
and transitions back to the Idle state to wait for the next
command. When a read message is received, a similar set of
states and transitions occurs, however, it occurs in the
Gathering Data state. The IO_Component is also responsible
for listening to external events from the hardware. Therefore
if an externalEvent event is received, the IO_Component
stops its current action in the Working state and transitions
into the Preparing_Notification state. In the
Preparing_Notification state it prepares a message to send to
the Centralized_Controller.

Once the message is ready, the IO_Component then sends
the inputEventNotification message to the
Centralized_Controller through the RIO port and transitions
back to its previously interrupted location within the
Working state.

Figure 3. State Machine for Solar_XRay_Photometer_IOC

Next the state machine for the SNOE’s Magnetometer_IC
component is depicted in Figure 4. Magnetometer is an input
component that provides attitude measurements. It is
initialized by the Centralized Controller. It is first in the idle
state and moves to the Preparing_Notification state when an
external event occurs. Here it prepares the
input_event_notification and sends it to the
Centralized_Controller. A similar set of actions is performed
in response to a read event message; however the requested
data is collected and sent back the Centralized_Controller.

Figure 4. State Machine for Magnetometer_IC

The Output Component begins in the Idle state where is
waits for commands from the Centralized_Controller. Once
a command message is received, the Output_Component
transitions into the Executing_Command state where it
performs the appropriate actions on the external hardware.
At the DRE level, the actions the Output_Component
performs are variable; therefore it is modeled using a code
stub as seen in fig. 5. Once complete, it generates the
processing Complete event and transitions back to the Idle
state to wait for the next command.

Figure 5. State Machine for Low_Gain_Antenna_OC

 CVR College of Engineering 23 DOI: 10.32377/cvrjst0304

ISSN 2277-3916 CVR Journal of Science and Technology, Volume 3, December 2012

Finally, the state machines for the other variant input,
output, and IO components, are also added.

5.2 SNOE Payload Multiple Client Multiple Server

Executable Architectural Design Pattern

The next executable design pattern realized in SNOE is
the FSW Payload Multiple Client Multiple Server executable
design pattern. This design pattern is used to selectively
collect payload data. Since SNOE is required to selectively
collect the payload data, separate data clients are created for
each payload instrument. Additionally, since each payload
instrument has its own data buffer, separate server
components are created for each payload instrument.

Next, the component diagram in fig. 6 depicts the set of
components in the system. The ports and connectors added
between the appropriate clients and servers are also shown in
the diagram. Additionally, the interfaces are also updated to
reflect the SNOE’s unique variants. The diagram shows that
the connected components have compatible interfaces.

The four Payload instruments include
Ultra_Violet_Spectrometer, Micro_GPS,
Solar_XRay_Photometer and Aural_Photometer. A client
and server component for each of the four payload
instruments is depicted in the design pattern.

Figure 6. Object Model Diagram for Payload Multiple Client Multiple
Server

The SNOE Multiple Client Multiple Server design pattern
involves selectively collecting payload data. The interaction
diagram for collecting micro GPS (Global Positioning
System) data is depicted in Figure 7.

Figure 7. Collect microGPS Data Scenario for SNOE

5.3 SNOE Payload Multiple Client Multiple Server

Executable Design Pattern

In addition to updating the architectural views, the
executable version of the design pattern also needs to be
customized for SNOE. This is performed for each client and
server in this design pattern. The specific steps involved in
updating the state machine are follows.

First, the microGPS_DClient component is responsible
for collecting the microGPS data from the
microGPS_DServer. The state machine for the SNOE
specific microGPS_DClient component is depicted in fig. 8.

When Controller requires data it sends
requestPayloadDataNeeded message to microGPS_DClient.
microGPS_DClient requests the data from the server, this
information is added to the actions on the state machine.
This information is captured on the transition from the
Preparing_Request state to the Idle state. The event that
occurs is the requestPayloadData and the action

RUVSDServer.gen(newrequestPayloadData(msg));
Indicates that a request for payload data is being sent to

the microGPS_DServer component by specifying the
required port (RmGPSDServer) of the client through which
the components communicate. Finally, the SNOE specific
processing logic within the Preparing_Request and
Processing_Response states is added as On Entry actions.
However, this information is not depicted in Figure in an
effort to make the diagram readable.

24 CVR College of Engineering DOI: 10.32377/cvrjst0304

ISSN 2277-3916 CVR Journal of Science and Technology, Volume 3, December 2012

Figure 8, State Machine for MicroGPS Client

The state machine for microGPS_DServer in Figure 9.
depicts the transitions that server takes. It is in Idle state first
and moves to Processing_Client_Request state when client
sends a requestPayloadData to server. After processing is
complete, it prepares a response and moves back to the Idle
state. During this transition it sends the mGPSDataResponse
back to the client.

Figure 9. microGPS_DServer state machine

Similarly, the state machines for client and server for the
other three payload instruments which are
Auroral_Photometer, Solar_Xray_Photometer and
Ultraviolet_Spectrometer are also updated following a
similar process.

CONCLUSIONS

This paper describes an approach for building FSW
software architectures from software architectural patterns.
This approach improves the quality of FSW software
architectures because it leverages best practices captured in
software design patterns. Additionally, the executable
design pattern templates not only help an engineer when
building software architectures, but they also provide the
foundation for performing design time validation on the
software architecture produced using this approach. The
engineers also can use the design patterns to form the core
base for building the software architecture of any other
system in this domain. Thus enabling to develop using the
Software Product Line (SPL) based product development.

FUTURE ENHANCEMENTS

There are several avenues of future research that can be
taken to extend this project. First, the SNOE case study can
be expanded to include performance validation using
MARTE (Modeling and Analysis of Real-Time Embedded
systems) stereotypes. Second, this work should be extended
to address feature modeling to help organize and structure
the functionality of design patterns. Thirdly, this work can
be applied to other DRE domains to illustrate the approach’s
applicability across DRE domains. Additionally, future
research can include illustrating the functionality of the
design patterns using the “animation” feature of IBM
Rational Rhapsody.

REFERENCES

[1] Julie Street Fant, Hassan Gomaa, Robert G. Pettit,
Architectural Design Patterns for Flight Software, 14th
IEEE International Symposium on
Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops, 2011.

[2] D. Harel, Executable object modeling with statecharts,
18th International Conference on Software Engineering,
1997.

[3] B.Bharathi, Dr.D.Sridharan, UML as an Architecture

Description Language, International Journal of Recent
Trends in Engineering, Vol. 1, No. 2, May 2009

[4] Clements. P. et.al.: Documenting Software Architectures,

Views and Beyond, Addison-Wesley, Boston, MA,
USA,2002.

[5] Laboratory For Atmospheric and Space Physics at the
University of Colorado at Boulder, Student Nitric Oxide

Explorer Homepage, http://lasp.colorado.edu/snoe/.
[Online]. Available: http://lasp.colorado.edu/snoe/.
[Accessed: 21-Apr-2010].

[6] H. Gomaa, Designing Software Product Lines with UML:

From Use Cases to Pattern-Based Software

Architectures, Addison-Wesley Object Technology
Series,, 2005.

 CVR College of Engineering 25

mGPSDataResponse/PmGPS
DServer.gen(new

mGPSDataResponse(data));

DOI: 10.32377/cvrjst0304

