
ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 7, December 2014

 CVR College of Engineering 1

Component based Frameworks for exporting
Graphic functionality through automation layer

Dr. Hari Ramakrishna,
Department of Computer Science and Engineering, C.B.I.T, Hyderabad, India

Email: dr.hariramakrishna@rediffmail.com

Abstract— The Component technology though complex to
implement has several advanced features in development of
graphic frameworks. Pattern Frames are evolved to solve
such complexities. This paper uses Microsoft COM
Technology for providing solution. These principles enable
common developer to use advanced technology for providing
solutions using complex technology in a simple way and
providing patterns to common client to use these in simple
processes. It presents procedure of building automation
process. As Microsoft changes procedures reorienting
structures, these processes work in all versions though they
are demonstrated in Visual Studio 6.0. Results obtained and
code segments are also presented. Abstract pattern frame,
Wrapper and other pattern frames and Helper object are
presented.

 Index Terms— Pattern- Frames, Automation Layer, IDL
ODL script, Helper Object, Wrapper, Display files, Semantic
graphic behavior, graphic components, graphic frameworks,
debug driver tool, Microsoft graphic applications, object
oriented models and frameworks. Dynamic display files.
Component Object Model COM, Macros, Wizards.

I. INTRODUCTION
The software Industry is adopting new procedures and

technologies for rapid development of software. The
requirements of the industry and client are also changing
rapidly. Though industry started with business and
information processing applications, mainly for railways
and other industries, now the industry’s concentration is
on total simulation of real time environment, knowledge
extraction, decision making, rapid application
development using frameworks, making developer
independent of development environments, using reuse
techniques and patterns and frameworks.

In this connection several frameworks are developed in
computer graphics, computer based design CAD,
Geographical Information system GIS, Industrial Plant
designed system and several military systems
[8,9,10,11].The Intergraph Solid Edge, Imaginer, Smart
Plant, Geological systems (GeoMedia) and several
graphic frameworks have been developed in Microsoft
Technology. They are exhibiting advanced technical
features using Microsoft Technologies, namely COM
Technology starting from Visual studio 2.0 from 1994
onwards.

COM technology has many advantages compared with
Object Oriented Technology. But its implementation is
very complex. Companies like Microsoft have provided
several Wizards and frameworks stating from Visual
Studio Versions 2.0, 4.0, 5.0, 6.0 and 7.0, and

subsequently .NET versions incorporating more and more
technical features. The COM Framework of Microsoft
implements almost all Design Patterns.

II. OBJECT ORIENTED TECHNOLOGY VERSUS
COMPONENT TECHNOLOGY

There are several unsolved problems in the present
Object Oriented Technologies. A simple Object Oriented
Technology cannot provide solutions to such problems.
Typical problems one faces with the present object
oriented technology are discussed below. [1-7,12]
1. In cases where new objects are formed inheriting from

more than one base class, if two base classes have the
same function, the inherited class cannot resolve to
which base class it has to map that function.

2. The object hierarchy is too complex for the developer.
For example, sometimes the MFC object hierarchy is
too confusing to the developer. A typical complex
object hierarchy is shown in Fig. 1 .

3. The encapsulation of objects is not perfect. The object
details are not encapsulated. The inherited object
should know everything about the base class along
with its full hierarchy for using it. We are giving extra
information to the user in this technology. Giving
more information than necessary to the user is against
abstraction and information hiding principles and is
not advisable in any technology.

4. One more problem is that the objects do not have a
common root and the C++ object hierarchies form a
disjoint set of trees.

5. We have no solution to handle an unknown objet
problem. That means, we cannot hold or perform
even a minimum set of operations on an object for
which information is unknown.

6. It is difficult to expose the behavior across process
boundary

 It is difficult to divide any task into independent
modules. Tightly coupled modules will enforce restrictions
on extendibility of the modules. If modules are loosely
coupled, they can be designed and extended independently,
without affecting other modules. There are several such
problems, for which there is no solution in direct Object
Oriented Technology. Today's Component Object Model is
providing solutions to such problems. The COM
technology is also an object-oriented technology. The
COM object is also a C++ object, but the way it manages
the data and behavior is entirely different. It adopts several

DOI:10.32377/cvrjst0701

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 7, December 2014

2 CVR College of Engineering

design patterns to solve above problems. Microsoft
provides several frameworks to implement these solutions.

Though it provides solutions to many of the problems, it
is too costly to manage. The COM object is not a single
object; it is a set of objects. A set of interfaces it supports
represents the behavior of a COM object. The COM object
encapsulation is perfect. It hides entire object including the
object source, object hierarchy and object name. Without
knowing even the name of the object, one uses the COM
object.

The modules in COM based applications are loosely
coupled. They communicate through a set of interfaces,
which the components of the module support. The
components are assembled with a set of interfaces. COM
does not support inheritance. The COM aggregation of
components will do the job of inheritance in a more
effective way. Aggregating existing components forms
new components.

Figure 1 : Typical Object Hierarchy

Figure 2 : 2 COM Hierarchy

Figure 3 COM Object Model

The Hierarchy of Component Technology is simple.
Fig. 2 presents a typical COM object hierarchy. Unlike
C++ objects, all COM objects belong to the same family.
The COM Hierarchy is a simple tree of depth two. All the
COM objects and their interfaces are inherited from the
common interface known as IUnknown interface. A
Typical COM object is presented in the Fig. 3.

III. FEATURES OF COMPONENT
TECHNOLOGY

The COM Concept of Ownership:The COM technology
introduces the concept of the ownership subsystem. Each
component has an owner. The owner of a component is
also a component. A component may be owner of more
than one component, but each component has only one
owner. Any COM object without an owner is not treated as
a full-fledged component. Such components cannot
participate in aggregation and other activities of the
software environment under consideration. A few special
types of components with a specific purpose are without
the owner. A class factory object of a COM object has no
owner as it is given a special purpose of implementing a
design pattern, namely ‘Class Factory’, which is a
creational pattern, the intent of which is to create
components in a uniform way through system registry
without class name, server location and the type in which
component it is implemented.

The owner of a component has full control over the
component. A pointer to IUnknown interface of the owner
component is stored along with the COM object. A
component can become owner of itself but the owner
IUnknown interface should not be null.

 Fig. 4 presents two COM objects with owners. The first
COM object holds its own IUnknown interface. In this
case, it is owner of itself. The second COM object has an
aggregated COM object in it. The owner of the aggregated
COM object is the outer COM object. The outer object also
should have an owner. In this case the outer object is the
owner of itself. When we query an interface on any
component, it will pass the call to the outer object, which is
the owner of the object. The outer object also passes the
call again to its owner. Finally, the call will reach the
owner itself. When we query on the IUnknown interface of
internal interfaces, the call will never pass the outer-
object. If IUnknown is passed, the system will collapse as
ownership gets collapsed, spoiling internal integrity and
security.

The IUnknown interface alone can make the object
unloaded, by making the interface count zero. That is why,
the IUnknown is known as the controlling interface. These
concepts will play an important role in the COM
aggregation. The IUnknown interface is hidden within the
outer-object. This is not given to the other components or
procedures. This is as powerful as a pointer to the object.

COM object is a set of assembled components, but the
user views it as a single object. Entire internal management
is encapsulated through these concepts. Loading, managing

DOI:10.32377/cvrjst0701

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 7, December 2014

 CVR College of Engineering 3

and unloading the inside components are the jobs of the
outer object.

Figure :4 COM Aggregation with Coupling Components with

IUnknown Interfaces

TABLE I
IUnknown Interface format

class IUnknown
{
 protected:
 ULONG m_cRef;
 public:
 STDMETHODIMP QueryInterface(REFIID, LPVOID FAR*);
 STDMETHODIMP_(ULONG) AddRef(void);
 STDMETHODIMP_(ULONG) Release(void);
}

The definition of IUnknown interface is presented in
Table 1.
i) The m_cRef means reference count to represent

number of objects using the components. Once the
count is zero, the object gets deleted automatically.

ii) The AddReff increases the reference count when the
new client objects start using the object and decreases
the count when it is released.

iii) When the object under the service leaves the
component, automatically the count will be decreased;
otherwise memory leak and runtime error crash the
system. These are major problems in Component
based systems.

iv) Query Interface of any Interface can ask other
Interfaces from the Component for further use with
the Interface ID. Depending on the permission, it
releases in a systematic way unlike simple objects for
which the number of clients is not known.

 The COM Aggregation:

The Components cannot be inherited; as they are
windows objects and they are registered objects. The name
and location of the header file and server is not known to
the client. The COM technology reuses the component
using a special technique known as aggregation. The COM
aggregation is managed in several ways depending up on
the requirement. The way of managing the aggregated
object will decides the type of aggregation.
i) Fig. 5 presents a typical COM aggregation. In this,

the outer object delegates all the queries to all the
aggregated objects in a specified order without seeing
the queried interface. This is known as perfect
delegation.

ii) Fig. 6 presents another type of COM aggregation. The
Line object aggregates two point components. The
Line query interface function will decide to which
object it has to pass the query.

iii) Fig. 7 presents the COM technique of interface
containment. The COM technology uses containment
for overwriting the behavior. The outer object will re-
implement the interface, which is available in the
aggregated object.

Figure: 5 COM aggregation

Figure: 6 Line Component Aggregating two Point Components

Figure: 7 COM Objects with interface containment

DOI:10.32377/cvrjst0701

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 7, December 2014

4 CVR College of Engineering

IV. FEATURES OF COMPONENT
DEVELOPMENT PROCEDURES AND CONCETS

The component development process is complex
compard with simple OOP based C++ application, but it
has lots of features that solve several client requirements.
The OLE features like cut and past, in place activation,
drag and drop, container and server, and several modern
requirements are possible only with this technology. As a
consequence, often IT industry is forced to adopt these
procedures. The steps required to build a simple Beeper
object are as follows:

 i) The beeper in a direct application needs a single class

and a single application to give a beep sound for the
given client input signal. In Component model
several project and directories are required in a
particular hierarchy; the files need to be shared across
several projects. Sample files SRC (source files),
INCLUDE (for header files), project files,
Registration files for registry entry, INTERFACE
files for interfaces, BIN for application's executable
files (EXE) and DLL for server dynamic link libraries
components.

i) The component needs a GUID globally unique ID

generated by a special application of Microsoft,
namely guidge.exe which generates a unique ID
which will be unique across the world. An ID
generated once will never get generated again so that
Components and interfaces are referred with that ID.
If two GUIDs match in any system totally, Windows
under use will crash as shown in Table 2.

ii) IDL and ODL files with Interface Description

language and Object Description language scripts are
used to build automation layer so that functionality is
exported to VB application. Compilation of this
script gives header file to C++ and type library to VB
layer. This exports C++ functionality to VB
application.

iii) Microsoft provides various wizards for generating all

these facilities automatically for unknown clients.
TABLE II

SAMPLE GUID FILE
#ifndef _H_GUID
 #define _H_GUID 1
 #include <windows.h>
 #include <objbase.h>

// {765BFF32-C207-11d0-BC7B-080036603003}
DEFINE_GUID(CLSID_CBeeper, 0x765bff32, 0xc207, 0x11d0,
0xbc, 0x7b, 0x8, 0x0, 0x36, 0x60, 0x30, 0x3);
#endif // _H_GUID

iv) The sample procedure to crate a beaper object

throught system registry and class fatory presented
in Table 3.

TABLE III
 COM OBJECT CREATION CODE

STDMETHODIMP CBeeperClassFactory::CreateInstance
(LPUNKNOWN punkOuter,

 REFIID riid, LPVOID FAR *ppvObj)
 {
 CBeeper* pObj;
 HRESULT hr;

 *ppvObj = NULL;
 hr=ResultFromScode(E_OUTOFMEMORY);

 if (NULL != punkOuter && !IsEqualIID(riid, IID_IUnknown))
 return ResultFromScode(E_NOINTERFACE);
 pObj = new CBeeper(punkOuter);
 if (NULL == pObj) return hr;
 if (pObj->Initialize())
 hr = pObj->QueryInterface(riid, ppvObj);
 if (FAILED(hr)) delete pObj;
 else ServerIncrementNumberOfObjects();
 return hr;
 }

STDMETHODIMP_(ULONG) CBeeper::AddRef(void)
{ return ++m_cRef; }

STDMETHODIMP_(ULONG) CBeeper::Release(void)
ULONG cRefT;
 cRefT = --m_cRef;
 if (!m_cRef) {
 delete this;
 ServerDecrementNumberOfObjects();
 } return cRefT;
 }

VI. COMPONENT BASED GRAPHIC
FRAMEWORKS

The Component Technology builds an application
environment to provide techical services to client
requirenents and providing resources without concern to
either application domain or funtionality. It provides a
communication environment that provides a session to
enable client and server to do busness. The same
procedures provided in this will be applicable in several
requirements and applicaton domains.

The major components of any project environment are
client and server. Different types of servers in use are ‘In
process servers’. They support and provide services
through DDLs, local servers, and work in different
processes but on same system. The local server works on
the same network connected systems to distribute and
share services to enable different systems of the same
network to share services. An example of this is the
DCOM of Microsoft.

 New frame works provide several advanced
technological features of communicating over Internet
based protocol, for examples Simple Object Access
Protocols (SOAP), Web services, mobile communications
etc. All these Technologies can work like wrappers. The
code and traditional technologies still work. Several
Wizards are available to the developer for using all these
techniques. These Technologies and wizards are little
costly and complex. Developer will never get total control

DOI:10.32377/cvrjst0701

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 7, December 2014

 CVR College of Engineering 5

over internal procedures though they decrease the
development time and cost of development.

Several layers and code models of development of a
Graphic framework and code segments are presented in
this section without functional models. The functional
design concepts are presented in [1]. Without using code,
COM enables all these object oriented graphic frameworks
to be exported to VB layer or other web based or mobile
based technologies through wizards. But user will never
get total control over the requirements for configuration
other than using them.
i) The framework is a layered development. All the basic

functions required should be developed as libraries,
classes and generic object oriented frameworks [1,3].
For the domain considered, dynamic display files are
used to simulate several graphic systems like Logic
circuits, Printed circuit boards, Debugger driver tools
using dynamic display files, shown in Table 4 show
sample application oriented functional components [1].

TABLE IV(a)

DISPLAY ALGORITHMS LIBRARIES

 do-line3d (lc,bc,z,y,z),
do-point3d(lc,x,y,z),
do-circle3d(lc, cx,cy,cz,r,ax,ay,az),
doarc3d(lc,cx,cy,cz,r,sa,ea,ax,ay,az),
do-spehere)lc,cx,cy,cz,r) and
do-poly(lc,sadd,size:

etc…

TABLE:IV(b)
SAMPLE DISPLAY FILE INSTRUCTION ALGORITHM

void Component::LineTo(int x,int y)
{
 m_iNoOfInst++;
 DF[1][m_iNoOfInst] = 2;
 iPen_X = x;
 iPen_Y = y;
 DF[2][m_iNoOfInst] = iPen_X;
 DF[3][m_iNoOfInst] = iPen_Y;
}

TABLE IV(c) :
COMPONENT SEMANTIC DEFINITION FOR AN ELECTRONIC

DISPLAY LID COMPONENT

void VRLogicLID(Component* ge)
{// Component color
 ge->SetLineColor(ge->GetBkColor());
 ge->RectSolidAt(0,0,100,100);
// Inside Area
 ge->SetLineColor(LIGHTGRAY1);
 ge->RectSolidAt(0,0,96,96);
 ge->SetLineColor(DARKGRAY1);
 ….
// Designing light on/off status
int k=1;
for (int i=-35;i<=35;i+=10)
{
 if (ge->GetData(k)==1)
 ge->SetLineColor(RGB(0,255,0));
 else if (ge->GetData(k)==0)
 ge->SetLineColor(RGB(255,255,255));
 else if (ge->GetData(k)==2)
 ge->SetLineColor(RGB(255,0,0));
 else
 ge->SetLineColor(RGB(0,0,0));
// 255,255,255 is white(0 or OFF)
// all zeros black (junk data)
// 255 ,0,0 is red(error in output)

//0,255,0 is green(1 or ON)
 ge->RectSolidAt(12,i,15,8);
 ge->SetLineColor(RGB(0,0,0));
 ge->RectAt(12,i,-15,8);
 k=k+1;
}
ge->SetLineColor(DARKGRAY1);
for(int i= -35; i<= 35; i+=10)
{ ge->MoveTo(-45,i);
 ge->LineRel(-15,0);
}// displaying pins of the component
// displaying text of the components
 ge->TextBkColor(LIGHTGRAY1);
 ge->TextColor(RGB(255,0,0));
 ge->TextAt(-40,25);
 ge->Text11At(-40,-25);
} // end of the procedure

TABLE IV(d) :
INTERFACE IDisplayFileInstructions

class IDisplayFileInstructions
{
public:
 // Display File Functions
 void virtual MoveTo(int x,int y) = 0; // 1
 void virtual LineTo(int x,int y) = 0; // 2
void virtual TextAt(int x,int y) = 0; // 3 horizontal
void virtual MoveRel(int x,int y) = 0; // logical 1
 ____ ____ _______
void virtual RectAt(int x,int y,int a,int b) = 0;
// 14 Set TextColor
void virtual TextColor(COLORREF col) = 0;
void virtual Text11At(int x,int y) = 0; // 15 Text
 --- ------- ------- ---------
};

ii) The COM needs to define interfaces and COM
environment to export these components over
application environment to the client through proper
channel as per permissions and requirements, as shown
in the following sample code segments in Table 5.

TABLE V:

TYPICAL GRAPHIC INTERFACE

#undef INTERFACE
#define INTERFACE IGPersist
 DECLARE_INTERFACE_(IGPersist, IUnknown)
 {
 STDMETHOD(QueryInterface) (THIS_ REFIID riid, LPVOID FAR
*ppvObj) PURE;
 STDMETHOD_(ULONG, AddRef)(THIS) PURE;
 STDMETHOD_(ULONG, Release)(THIS) PURE;
STDMETHOD(Serialize)(THIS_ CArchive &ar) PURE;
STDMETHOD_(CLSID,GetClsid) (THIS) PURE;
 };
 typedef IGPersist FAR* LPIGPersist;

iii) The class and Interface ID models are presented in table 6

TABLE VI
THE CLASS INTERFACE GUIDS AND REGISTRATION FILE

MODEL

REGEDIT

HKEY_CLASSES_ROOT\CLine = CLine Object

DOI:10.32377/cvrjst0701

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 7, December 2014

6 CVR College of Engineering

HKEY_CLASSES_ROOT\CLine\Clsid = {0D8BAFE2-33C8-11d1-
A0B3-0060974FF0B9}

HKEY_CLASSES_ROOT\Clsid\{0D8BAFE2-33C8-11d1-A0B3-
0060974FF0B9} = CLine Object

HKEY_CLASSES_ROOT\Clsid\{0D8BAFE2-33C8-11d1-A0B3-
0060974FF0B9}\INPROCSERVER32 =
H:\COm_PHD\HCOM\COM-CODE\GPCOM1\bin\GCOM.dll

HKEY_CLASSES_ROOT\CComp = CComp Object

HKEY_CLASSES_ROOT\CComp\Clsid = {A445E8CA-216C-11d6-
B98C-204C4F4F5020}

HKEY_CLASSES_ROOT\Clsid\{A445E8CA-216C-11d6-B98C-
204C4F4F5020} = CComp Object

HKEY_CLASSES_ROOT\Clsid\{A445E8CA-216C-11d6-B98C-
204C4F4F5020}\INPROCSERVER32 =
H:\COm_PHD\HCOM\COM-CODE\GPCOM1\bin\GCOM.dll

vi) Pattern Frames to mke COM procedures simple

The development procedure of adding components from
the frame work need to follow entire COM procedure. For
this purpose, the following Abstract COM pattern
framework is useful. [4]. Fig. 6 shows a block diagram of
abstract component which enables the developer to use
COM component like a simple C++ object without
complex procedures and with Component features.

Figure 6 : a model block diagram of abstrat component

The VC client can use the framework like a simple object
oriented framework using wrapper object as shown in
Fig. 7.

Figure : 7 Block diagram of Wrapper pattern frame

TABLE VII
MODEL WRAPPER DEFINITION

#ifndef HGraphicElement
#define HGraphicElement 0
#include <objbase.h>
#include "IGraph.h"
#include "Guid.h"
#ifdef HGraphicSERVER

 class __declspec(dllexport) HGraphic
#else
 class __declspec(dllimport) HGraphic
#endif
{

private:
 LPUNKNOWN m_IUnknown;
 LPIGPersist m_IPersist;
 LPIGAttributes m_IAttributes;
 LPIGDisplay m_IDisplay;
 LPIGEdit m_IEdit;
 LPIGLocate m_ILocate;

public:
 HGraphic(CLSID);
 ~HGraphic();

 HRESULT Serialize(CArchive &ar);
 CLSID GetClsid(void);
 HRESULT SetPoints(ULONG,ULONG,ULONG,ULONG);
 HRESULT GetColor(void);
 HRESULT SetName(CString);
 CString GetName(void);
 HRESULT GetName(CString*);
 ---- ------
 }

The Visual Basic can extract services from automation
layer through wizards and ODL and IDL file outputs.

a) VC++ client

b) C++ Client

DOI:10.32377/cvrjst0701

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 7, December 2014

 CVR College of Engineering 7

c) VB client

d) Semantic logic application in VC++ in dot net
2010

Figure 8 : Graphic application outputs of the framework
A simple visual base code to use server through wrapper
objects and wizards is presented in Table 8.

TABLE VIII
SAMPLE VB CLIENT CODE SEGMENT

Private Sub Command1_Click ()
 HGP3D1.Sp3d Text1.Text, Text2.Text, Text3.Text, Text4.Text
End Sub

Private Sub Command10_Click ()
HGP3D1.S1
End Sub
4r
Private Sub Command11_Click()
HGP3D1.S2
End Sub

Private Sub Command4_Click()
HGP3D1.RoteteSegmentAbs Text7.Text, Text4.Text, Text5.Text,
Text6.Text
 HGP3D1.ShowAll
End Sub

CONCLUSIONS
The component based frameworks, their processes,

advantages, problems and features, various processes to
make implementation simple, sample graphic application
code segments, and outputs of several sample applications
have been presented. Details of models are described in
some of the papers in references, as indicated at various
places in the paper. It is suggested that same procedures
can be applied to other domains for the development of the
framework for the other domain environment not
concerned with domain or application requirements. The

application presented can be treated as a model for
demonstration of environment. Several wizards are
available to pack the Object Oriented Frameworks. They
can be used for exporting into new technical
environments, but clients will not get total control over
configuring the requirements and use totally Component
features. The user can use only assigned or permitted
services. So implementing core Component features as per
layers is advised. Using and developing new pattern frames
to make use of Component Technology is also advised.

REFERENCES
[1] Dr.Hari Ramakrishna, “Managing semantic of graphic

components through remodeling traditional display files” ,
Journal of Science & Technology Journal, Volume VII, June
2014 ISSN 2277-3916

[2] Dr.Hari Ramakrishna, “A pattern language and traditional
programming practices for exporting functionality” CVR
Journal of Science & Technology, released in December
2013 ISSN 2277-3916

[3] Dr.Hari Ramakrishna, ”Pattern Approach to Build
Traditional Graphic Frame works”, International 1 Journal
of Computer Applications Volume 59– No.15, p35-42,
December 2012. Published by Foundation of Computer
Science ISSN :(0975 – 8887), New York, USA

[4] Dr. Hari Ramakrishna, “Design Pattern for Graphic/CAD
Frameworks”, Ph.D thesis submitted to Faculty of
Engineering Osmania University March 2003,

[5] Christopher Alexander, “An Introduction for Object-oriented
Design”, A lecture Note at Alexander Personal web site
www.patternlanguage.com

[6] Hari: Dec 2000 Hari RamaKrishna “COM as new
Object Oriented Technology”, Procedings of CSI
conference, December 2002 at Visakapatnam .

[7] Hari RamaKrishna “COM Applications for Real time
Electrical Engineering Applications” IEEE sponsored
International Conference at Bangalore - 2000.

[8] Hari Ramaakrishna, “COM based CAD” Proceedings of
International Conference on xxx, July 2000 at Jaipure, India

[9] Hari RamaKrishna “Application of computer graphics in
interior design” Proceedings of Conference 1998 at
Institutes of Engineers At Hyderabad.

[10] Hari RamaKrishna “Generation of flooring and wallpaper
patterns using computer graphics” Proceedings of the First
National Conference on Computer Aided Structural Analysis
and Design, Jan 3-5,1996, Engineering Staff College of
India and University College of Engineering, Osmania
University, Hyderabad

[11] Hari RamaKrishna, “Object Oriented Graphic
Frameworks”, International Journal of Engineering Research
& Technology, Vol.2 - Issue 1 (January - 2013) e-ISSN:
2278-0181 This work is licensed under a Creative Commons
Attribution 4.0 International License.

[12] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides, "Design Patterns: Elements of
Reusable Software Architecture", Addison-Wesley,
1995

DOI:10.32377/cvrjst0701

