
ISSN 2277-3916                                        CVR Journal of Science and Technology, Volume 3, December 2012 

Design Issues in Cloud-Hosted Applications 
A. Seetha Ram Nagesh

1 
and Suhail Afroz

2 

1 
CVR College of Engineering, Department of IT, Ibrahimpatan, R.R.District, A.P., India 

Email: asnagesh@rediffmail.com 
2 
CVR College of Engineering, Department of CSE, Ibrahimpatan, R.R.District, A.P., India Email: 

suhailafroz@hotmail.com 

 
Abstract – Cloud Computing is the hottest technology in the 

market these days, used to make storage of huge amounts of 

data and information easier for organizations. Maintaining 

servers to store all the information is quite expensive for 

individual and organizations. Cloud computing allows to 

store and maintain data on remote servers that are managed 

by Cloud Service Providers (CSP) .The concept of building 

or consuming services and applications that are hosted off-

premises is becoming more attractive both to independent 

software vendors (ISVs) and to enterprises as a way to 

reduce costs, maximize efficiency, and extend capabilities. 

This paper describes the nature and use of cloud-hosted 

services and applications. It describes the benefits and the 

typical design issues, and the constraints and technology 

considerations often encountered when building and 

consuming these kinds of applications.

I.  INTRODUCTION   

From initial concept building to current actual 

deployment, cloud computing is growing more and more 

mature. Nowadays many organizations, especially Small 

and Medium Business (SMB) enterprises, are increasingly 

realizing the benefits by putting their applications and 

data into the cloud. The adoption of cloud computing may 

lead to gains in efficiency and effectiveness in developing 

and deployment and save the cost in purchasing and 

maintaining the infrastructure  

Regarding definition of cloud computing model, the 

most widely used one is made by NIST as “Cloud 

computing is a model for enabling convenient, on-demand 

network access to a shared pool of configurable 

computing resources (e.g., networks, servers, storage, 

applications, and services) that can be rapidly provisioned 

and released with minimal management effort or service 

provider interaction. This cloud model promotes 

availability and is composed of five essential 

characteristics, three service models, and four deployment 

models.”[1] The cloud computing model NIST defined 

has three service models and four deployment models. 

The three service models, also called SPI model, are: 

Cloud Software as a Service (SaaS), Cloud Platform as a 

Service (PaaS) and Cloud Infrastructure as a Service 

(IaaS). The four deployment models are: Private cloud, 

Community cloud, Public cloud and Hybrid cloud. 

Cloud computing represents the converging evolution 

of computing infrastructure and application models for 

building and consuming scalable distributed solutions. As 

techniques for building these kinds of applications have 

advanced, so too have the capabilities of the infrastructure 

on which they run. This synergistic evolution allows the 

infrastructure to be provisioned and maintained largely 

independently of the applications that it hosts. This in turn 

allows applications to take advantage of supporting 

infrastructure services and capabilities while they focus 

on their specific business functionality. 

Many organizations have been able to realize the joint 

benefits of scalable application models and supporting 

infrastructure internally on-premises in their own data 

centres. However, it is the ability to leverage an off-

premises out sourced application hosting infrastructure 

that is behind much of the excitement around cloud 

computing. The infrastructure provider focuses on 

hardware, networking, power, cooling, and the operating 

environment that supports application manageability, 

reliability, and scalability; leaving the organization free to 

focus on their application's business functionality. This 

provides many benefits in terms of reduced capital outlay 

and operating costs; and increased capacity, scalability 

and availability. 

To leverage these benefits, cloud-hosted applications 

typically must be architected to follow a specific 

application model. This allows the cloud-hosting provider 

to generalize and optimize their operating environment 

support for application manageability, reliability, or 

scalability.  

Different cloud-hosting providers have different 

application model requirements. Some adopt a virtual 

machine approach, where the application is developed 

and packaged along with its operating system image and 

the dependent runtime frameworks. Others utilize an 

application model that provides higher level abstractions 

for data access and storage , and for computation and 

communication. Still others provide higher level 

application models based on highly configurable 

applications that focus on specific vertical application 

functionality, such as Enterprise Resource Planning (ERP) 

or Customer Relationship Management (CRM). Each of 

these approaches provides distinct advantages and 

disadvantages. 

Furthermore, some off-premises hosted applications 

are self-contained and designed for users who interact 

with the application through a dedicated UI. Some of 

these applications are service-enabled, and provide both a 

UI and expose their functionality through an API (often 

exposed through standards such as REST or SOAP) so 

that they can be integrated into other applications, which 

themselves can be hosted either on-premises or off-

premises. Some off-premises hosted services are 

specifically designed to provide functionality for 

integration into other applications, and provide no UI at 

all. 

12                   CVR College of Engineering                                                                   
DOI: 10.32377/cvrjst0303

DOI: 10.32377/cvrjst0303



ISSN 2277-3916                                        CVR Journal of Science and Technology, Volume 3, December 2012 

The paper is organized as follows. Section II discusses 

the services provided by cloud environment. Section III 

explains the benefits of the Cloud applications. Section IV 

exploits the design issues for both the ISVs and 

Enterprise customers in developing Cloud-hosted 

applications. Section V summarizes the relevant patterns 

for design issues discussed in Section IV.  

II. CLOUD SERVICES 

Cloud-based services generally fall into categories such 

as storage/compute, business services, and 

retail/wholesale services. Some common examples of 

these remote services are: 

· Business services such as stocks and shares 

information, invoicing and payment systems, 

data interchange facilities, merchant services, 

and business information portals. 

· Retail/wholesale services such as catalogues, 

stock query and ordering systems, weather and 

traffic information, mapping services, and 

shopping portals. 

· Storage/compute services such as data storage 

and processing, data backup, source control 

systems, and technical or scientific processing 

services. 

These remote services can be consumed by software 

that runs on-premises, in an organization's data center or 

on a user's machine, which may be a desktop computer or 

any other Internet-enabled device. This typically involves 

a mix of technologies and techniques that are referred to 

as Software plus Services (S+S) [2]. S+S refers to an 

approach to application development that combines 

hosted services with locally executed software. The 

combination of the remote services and the software 

running locally, with rich seamlessly integrated interfaces 

and user experience, can provide a more comprehensive 

and efficient solution than traditional on-premises silo 

applications. S+S is an evolution of several other 

technologies including Service Oriented Architecture 

(SOA), Software as a Service (SaaS), Platform as a 

Service (PaaS), and Web 2.0 community-oriented 

architectural approaches.  

A.Cloud-hosted Services

· Building block service: A service designed to be 

consumed by or integrated with other 

applications or services. An example is a storage 

service or a hosted Security Token Service (STS) 

such as the Access Control Service in the Azure 

Services Platform. 

· Cloud-hosting environment: An environment that 

provides a core runtime for hosting applications; 

and, optionally, building block services, business 

services, social network services, and hosting 

services such as metering, billing, and 

management. 

· Home-built application: An application that you 

create in-house, usually specifically targeted at 

some task, scenario, or process you require; it 

will often address a need that cannot be sourced 

from a third party. 

· Hosted application: An application (packaged or 

home-built) hosted as a service. It may be hosted 

internally on your own system, or hosted 

externally by a partner or hoster. 

· Packaged application: An application created by 

a third party or vendor that may provide only 

limited customization capabilities based on 

configuration or plug-ins.  

· Platform as a Service (PaaS): A core hosting 

operating system, and optional plug-in building 

block services, that allow you to run your own 

applications or third-party applications obtained 

from vendors, in a remote cloud hosting 

environment.  

· Software as a Service (SaaS): Applications that 

perform comprehensive business tasks, or 

accomplish business services, and allow you to 

consume them as services with no internal 

application requirements other than composition 

and UI. 

III. BENEFITS OF CLOUD APPLICATIONS 

Cloud-hosted applications and services may be very 

beneficial to ISVs, and to service delivery or hosting 

companies that build, host and deliver services. They also 

offer benefits to large enterprises that generally consume 

hosted and cloud-based solutions. 

A. Benefits for ISVs and Service Hosts

The key advantages for ISVs and service hosting 

companies building and offering cloud-based solutions 

are the following:  

· Architectural Flexibility: Vendors can offer their 

customers a range of deployment options, 

including hosting for the services they require, 

and allow users to choose from a range of 

prebuilt features or choose which features of the 

application they will implement themselves. This 

can reduce the architectural liabilities for end 

users who are developing services 

· Rich User Experience: ISVs and service 

providers can offer richer experiences to their 

customers by leveraging existing specialized 

services (such as Virtual Earth). Hosters can 

combine their offerings with other cloud services 

obtained elsewhere to offer additional value 

propositions, and make it easier for end users to 

integrate services.  

· Ubiquitous Access: Services in the cloud persist 

user data and state, and resynchronize when the 

user reconnects from any location. This supports 

both offline and occasionally connected 

scenarios, which is especially useful for mobile 

devices where a constant connection or 

bandwidth cannot be guaranteed.  

ISVs and service hosts may also consider entering the 

market for commercial reasons to take advantage of 

                                                                      CVR College of Engineering                                                                  13 
DOI: 10.32377/cvrjst0303



ISSN 2277-3916                                        CVR Journal of Science and Technology, Volume 3, December 2012 

monetization opportunities. The following are some 

examples: 

· Vendors may wish to take advantage of an 

untapped market opportunity by offering a 

product that is not currently or easily available 

elsewhere, or use the cloud to offer lower end 

versions of their products to protect a high end 

franchise.  

· Startup companies may use the cloud-hosted 

approach to minimize initial capital expenditure, 

and to take advantage of properties of the cloud 

such as elasticity (the capability to grow as 

required without high initial cost commitment).  

· Vendors and users can create applications that 

generate income more quickly by taking 

advantage of ancillary services that are already 

available. For example, they can take advantage 

of payment and accounting systems in the cloud. 

Users can even build virtual stores without 

requiring large investments in IT equipment and 

networking capabilities. 

B. Benefits for Enterprise Service Consumers

The key advantages for enterprises that consume cloud-

based solutions are the following: 

· Architectural Flexibility: In-house developers 

can create complete solutions that compose 

services in the cloud with local application code 

and their own services. IT departments can 

choose which features of the application they 

will implement themselves, and buy in other 

services that they require.  

· Cost and Time Savings:  IT departments can 

select the best cloud-based service for each task, 

and combine them to expose fully functional 

applications with shorter development times, and 

at a reduced cost. In addition, the reduction in 

the requirements for in-house IT infrastructure 

simplifies management, security, and 

maintenance costs. 

· Economies of Scale: Companies can leverage 

economies of scale for industry average 

capabilities, and focus on their core activities. 

The economies of scale available from hosted 

applications arise from a range of factors, 

including reduced in-house infrastructure costs 

to better utilization of hardware that offers 

opportunities for reduced running costs. 

However, the gains in economies of scale must 

be balanced with the loss of control inherent with 

moving from on-premises to fully hosted 

applications. 

· Offline Capability: The cloud can act as hub for 

roaming users. User data and state can be stored 

in the cloud and resynchronized when the user 

reconnects. Users can move between desktop 

and mobile clients seamlessly with fewer 

network configurations.  

IV. DESIGN ISSUES 

Several common issues are of concern to both ISVs 

and enterprise customers [3]. While they cover a range of 

different aspects of hosted and cloud-based scenarios, 

these issues can be categorized into specific areas.  

· Data Isolation and Sharing  

· Data Security  

· Data Storage and Extensibility  

· Multi-tenancy  

· Performance  

· Service Composition  

· Service Integration  

a) Data Isolation and Sharing

Hosters can implement isolation and sharing for 

databases and for database schemas. There are three basic 

models:  

· Separate Databases: Each tenant has a separate 

database containing their own data schemas. 

This has the advantage of being easy to 

implement, but the number of tenants per 

database server might be relatively low, with 

subsequent loss of efficiency, and the 

infrastructure cost of providing services can rise 

rapidly. It is most useful when tenants have 

specific data isolation or security requirements 

for which you can charge a supplement. 

· Shared Databases, Separate Schemas: All tenants 

use the same database, but have separate sets of 

predefined fields available. This approach is also 

easy to implement, maximizes the number of 

tenants per database server, and improves 

database efficiency. However, it usually results 

in sparsely populated tables in the database. It is 

most useful when storing data for different 

tenants in the same tables (commingling) is 

acceptable in terms of security and isolation, and 

when you can anticipate the predefined custom 

fields that will be required. 

· Shared Databases, Shared Schema: All tenants 

use the same database and special techniques are 

used to store data extensions. This approach has 

the advantage that the number of custom fields 

you can offer is practically unlimited. However, 

indexing, searching, querying, and updating 

processes are more complex. It is most useful 

when storing data for different tenants in the 

same tables (commingling) is acceptable in terms 

of security and isolation but it is difficult to 

predict the range of predefined custom fields that 

will be required. 

b) Data Security

Cloud-hosted applications must implement strong 

security, using multiple defense levels that complement 

one another to provide data protection in different ways, 

under different circumstances, and against both internal 

and external threats [7]. When planning a security 

strategy, consider the following guidelines: 

 14                                                                  CVR College of Engineering                                                                   
DOI: 10.32377/cvrjst0303



ISSN 2277-3916                                        CVR Journal of Science and Technology, Volume 3, December 2012 

· Filtering: Use an intermediate layer between a 

tenant and a data source that acts as a sieve so 

that it appears to the tenant that theirs is the only 

data in the database. This is especially important 

if you use a shared database instance for all of 

your tenants. 

· Permissions:  Use access control lists (ACLs) to 

determine who can access data in the 

application, and what they can do with it.  

· Encryption: Obscure every tenant's critical data 

so that it will remain unreadable to unauthorized 

parties, even if they manage to access it.  

c) Data Security Patterns

Depending on the multi-tenant model adpoted, 

consider the following security patterns: 

· Trusted Database Connections (applies to all 

three multi-tenant models): The application 

always connects to the database using its own 

application process identity, independent of the 

identity of the user, and the server grants the 

application access to the database objects that it 

can read or manipulate. Additional security must 

be implemented within the application itself to 

prevent individual end users from accessing any 

database objects that should not be exposed to 

them. Each tenant (organization) that uses the 

application has multiple sets of credentials 

associated with their tenant account, and must 

grant their end users access to the application 

using these credentials. These end users access 

the application using their individual credentials 

associated with the tenant account, but the 

application accesses the database using the 

single set of credentials associated with that 

application. This means that a single database 

access account is required for each application 

(one for each tenant). Alternatively, you can use 

an STS to obtain encrypted login credentials for 

the tenant irrespective of the individual user, and 

use security code in the application to control 

which data individual users can access. 

· Secure Database Tables (applies to the Separate 

Database model and the Shared Database, 

Separate Schema model): Grant a tenant user 

account access to a table or other database 

object. In the Separate Database model, restrict 

access on a database-wide level to the tenant 

associated with that database. In the Shared 

Database, Separate Schema model, restrict 

access on a per table basis to the tenant 

associated with specific tables. 

· Tenant Data Encryption (applies to all three 

multi-tenant models): Secure the data using 

symmetric encryption to protect it, and secure 

the tenant's private key using asymmetric 

(public/private key pair) encryption. Use 

impersonation to access the database using the 

tenant's security context, and use the tenant's 

private key to decrypt the data in the database so 

that it can be used. The disadvantage is that you 

cannot index encrypted columns, which means 

that there is a tradeoff between data security and 

performance. Try to avoid using index fields that 

contain sensitive data.  

· Tenant Data Filter (applies to the Shared 

Database\Shared Schema model): Use SQL 

views to select subsets of data from tables based 

on the tenant or user ID, or the tenant account's 

security identifier. Grant tenants access to only 

their views, and not to the underlying tables. 

This prevents users from seeing or accessing any 

rows belonging to other tenants or users in the 

shared tables. 

d) Data Storage and Extensibility

Hosted data may be stored in variety of ways. Two 

different approaches are emerging for implementing data 

storage in hosted applications: hosted relational database 

management systems (RDBMS) and non-relational cloud-

based storage. Relational database systems provide 

storage for structured data, and are more suited to 

transactional systems or applications that are I/O 

intensive; they also typically provide lower latency and 

advanced query capabilities. In contrast, cloud storage 

refers to any type of data storage that resides in the cloud; 

including services that provide database-like functionality, 

unstructured data services (for example, file storage for 

digital media), data synchronization services, and 

network-attached storage (NAS) services. Data services 

are often consumed in a pay as you go model, or in this 

case a pay per GB model (including both stored and 

transferred data). 

Cloud storage offers a number of benefits, such as the 

ability to store and retrieve large amounts of data in any 

location at any time. Data storage services are fast, 

inexpensive, and almost infinitely scalable; however, 

reliability can be an issue as even the best services do 

sometimes fail [6]. Applications that are sensitive to high 

latency might also be affected as each interaction with the 

storage service requires network transversal. Finally, 

transaction support can be an issue with cloud-based 

storage systems. These systems generally focus heavily on 

partitioning and availability, and consistency cannot 

always be guaranteed. 

e) Multi-tenancy

The idea of multi-tenancy, or many tenants sharing 

resources, is fundamental to cloud computing. Service 

providers are able to build network infrastructures and 

data architectures that are computationally very efficient, 

highly scalable, and easily incremented to serve the many 

customers that share them. Multi-tenancy spans the layers 

at which services are provided [9]. In IaaS, tenants share 

infrastructure resources like hardware, computer servers, 

and data storage devices. With SaaS, tenants are sourcing 

the same application (e.g., Salesforce.com), which means 

that data of multiple tenants is likely stored in the same 

database and may even share the same tables. When it 

                                                                      CVR College of Engineering                                                                  15 DOI: 10.32377/cvrjst0303



ISSN 2277-3916                                        CVR Journal of Science and Technology, Volume 3, December 2012 

comes to security, the risks with multi-tenancy must be 

addressed at all layers. 

Individual tenants share the use of the hoster's 

hardware and infrastructure, as well as sharing databases 

and database systems. Service suppliers must provide a 

platform with appropriate capacity and performance for 

hosted services. They must also consider how to keep the 

cost structure under control, and how they will provide 

customization through configuration. There are four 

common stages in moving towards an efficient multi-

tenancy architecture with user-enabled configuration. The 

following sections describe these stages.  

· Custom: Each customer runs a separate copy of 

the software assigned only to that customer, and 

the only way to support multiple customers is to 

serve them with different copies of the software. 

Furthermore, because little is done to allow 

customization through configuration, each copy 

includes specific customer customizations in the 

form of custom extension code, custom 

processes, and/or custom data extensions. 

Although the software is, technically, delivered 

as a service (it does not run on the customer's 

premises), economy of scale cannot be achieved 

because each customer runs a different instance 

of the software. Although this could be a useful 

starting point to validate the business model, it 

must be avoided once the volume of customers 

increases. It is impractical to manage thousands 

of customers using this model. 

· Configurable: The software can be tailored for 

each tenant through configuration and by 

avoiding the use of custom code. All the tenants 

run the same code; however, the architecture is 

still not multi-tenant and each customer runs 

their own copy of the code, even though the 

copies are identical. The separation can be either 

virtual (virtual machines on a same server) or 

physical (running on separate machines). 

Although this model is a considerable 

improvement over the custom model described 

above, the architecture still allows customization 

through configuration, and the computing power 

is not shared among the instances. Therefore, the 

provider cannot achieve economy of scale.  

· Multi-tenant: The UI can be customizable per 

tenant, as can the business rules and the data 

model. The customization per tenant is entirely 

through configuration using a self service tool, 

which removes the requirement for the service 

provider to perform configuration. This level is 

almost the SaaS perfect case; the exception is 

any capacity to scale out. At this level, data 

partitioning means that growth can only be 

achieved by scaling up. 

· Scalable: The architecture supports multi-

tenancy and configuration, plus the capability to 

scale out the application. New instances of the 

software can be transparently added to the 

instance pool to dynamically support the 

increasing load. Appropriate data partitioning, 

stateless component design, and shared metadata 

access are part of the design. At this level, a 

Tenant Load Balancer (implemented using a 

round robin or a rule based mechanism) is 

introduced, maximizing the utilization of hosting 

resources such as CPU and storage. 

This means that the total load is distributed across the 

entire available infrastructure. The data is also 

reorganized periodically in order to average the data load 

per instance. The architecture is scalable, multi-tenant, 

and customizable through configuration. 

f) Performance

Cloud-hosted applications must be scalable to support 

increasing numbers of services, and increasing load for 

each service and tenant [11]. When designing services, 

consider the following guidelines for scaling applications:  

· Design services and components to be stateless 

where possible. This minimizes memory usage 

for the service, and improves the opportunity to 

scale out and load balance servers. 

· Use asynchronous input and output calls, which 

allow the applications to do useful work while 

waiting for I/O to complete. 

· Investigate the capabilities of the hosting 

platform that can improve performance. For 

example, in Microsoft Azure, use queues to 

manage requests and worker processes to carry 

out background processing. 

· Use resource pooling for threads, network, and 

database connections. 

· Maximize concurrency by using locking only 

where absolutely necessary. 

When scaling data storage and applications, consider 

the following guidelines: 

· When scaling the data partition, divide 

subscriber data into smaller partitions to meet 

performance goals. Use schemes such as 

Hashing (to subdivide content) and Temporal 

(based on the time or date range in which the 

data is valid). 

· Consider implementing dynamic repartitioning 

to repartition the data automatically when the 

database size reaches a specific maximum size. 

When scaling data storage and applications investigate 

standard patterns, and the specific techniques and 

implementations provided by the hosting platform—some 

examples are data partitioning, load balancing, failover, 

and geographical distribution. 

g) Service Composition

Users in enterprise-level organizations require access 

to many different document repositories, types of data, 

sources of information, and applications that perform 

specific functions. Traditionally, users interacted directly 

with each store or application, often using specific 

isolated applications. However, over time, enterprises 

have attempted to consolidate systems; often using 

 16                                                                     CVR College of Engineering                                                                   DOI: 10.32377/cvrjst0303



ISSN 2277-3916                                        CVR Journal of Science and Technology, Volume 3, December 2012 

intranet Web portals or façade-style applications that 

connect to the appropriate downstream applications. 

With the advent of services and SOA applications, IT 

departments can expose applications and data as services, 

either hosted in-house or bought in as SaaS. The service 

portfolios can still expose the combination of traditional 

local applications, internally hosted services, and remote 

services through portals, which hide the user from the 

implementations and allow IT departments to adapt the 

ranges of services quickly and easily. However, S+S and 

SaaS designs and technologies allow IT departments and 

enterprise customers to integrate services fully. Service 

integration can help to achieve the goal of a many to one 

model where all applications and services are available to 

the user through a composition architecture that 

effectively exposes them as a single application, as shown 

in Figure 1. A service integration mechanism combines 

the groups of applications in the portfolios and exposes 

them though a rich client that can interact with any service 

or application.  

 

Figure1. Service Integration 

h) Service Integration

Cloud-hosted solutions can help to mitigate some of 

the challenges encountered with traditional software, but 

add new and different challenges for the consumer of 

these services. Consider the following the challenges 

when moving to hosted cloud services and applications: 

· Identity Management: Enterprise procedures for 

adding, updating, and removing users must be 

extended to the remote services. If the external 

service depends on user identity, which is very 

likely for SaaS and for S+S, the provisioning and 

deprovisioning processes must be extended. In 

addition, translation of in-house user identity 

into specific roles may be required, possibly 

through a federated service, to minimize the 

migration or duplication of individual user 

identities at the remote service host. Enterprise 

user account policies such as password 

complexity and account lockouts must also be 

compatible with those of the remote service 

supplier. If no SSO facility is available, there can 

be increased liabilities, maintenance costs, and 

operational inefficiencies. 

· Data: Requirements of data operations, such as 

Extract, Transform, and Load and data 

integration, must be analyzed for compatibility 

with service capabilities. Hosted services may 

not support complex data storage patterns, which 

may affect the design of data entities and 

application architecture. In addition, data may 

need to be protected more securely to 

counterbalance the lack of physical security 

available when hosting in-house. However, 

applications can store sensitive or private data 

locally, and use the cloud services only for 

nonsensitive data.  

· Operations: In-house integration services and 

client applications may not be compatible with 

services exposed by the service supplier, even 

when using industry standard protocols. You 

must also ensure that the service provider can 

generate appropriate reporting information, and 

determine how you will integrate this with your 

own management and reporting systems. In 

terms of service levels, Service Level 

Agreements (SLAs) may require revision to 

ensure that they can still be met when depending 

on the service provider for escalated support. 

Enterprises must also be prepared to implement 

help desk facilities that act as the first contact 

point for users, and define procedures for 

escalating issues with the service provider. 

· Security: Enterprise privacy policies must be 

compatible with those of the service provider, 

and rules for actions that users can execute, such 

as limits on transaction size and other business 

rules, must be maintained—even if these are not 

part of the remote service capabilities. This may 

make the service integration infrastructure more 

complex. Procedures and policies for 

maintaining the security and integrity of data in 

the event of service or interconnectivity failure 

will also be required. Authentication, encryption, 

and the use of digital signatures will require the 

purchase of certificates from certified providers, 

and may require implementation of a Public Key 

Infrastructure (PKI). In addition, integration may 

require changes to firewall rules, and updates to 

firewall hardware and software may need to be 

required to provide filtering for application data 

and XML Schema validation. 

· Connectivity: Some types of cloud-based 

applications rely on good quality broadband 

Internet connections to function well. Examples 

are online transaction processing and real time 

services such as voice over IP (VoIP) and 

Microsoft Office Communications Server. In 

some areas and some countries, this may not be 

available. In addition, services that require large 

data transfers such as backup services and file 

delivery services will generally run more slowly 

over an Internet connection compared to a local 

or in-house implementation, which may be an 

issue. However, messaging and other similar 

services may not be as dependent on connection 

                                                                   CVR College of Engineering                                                                     17 DOI: 10.32377/cvrjst0303



ISSN 2277-3916                                        CVR Journal of Science and Technology, Volume 3, December 2012 

bandwidth or severely affected by occasional 

loss of connectivity. 

· Service Level Agreements: Skills and expertise 

will be required to assess suppliers more 

comprehensively, and make choices regarding 

service acquisition and contracts. SLAs may also 

require revision to ensure that they can still be 

met when depending on the services hosted by a 

remote provider. 

· Compliance and Legal Obligations: Compliance 

with legal and corporate directives may be 

affected by the performance of the service 

supplier, or these compliance directives and legal 

obligations may conflict if the service provider is 

located in another country or region. There may 

also be costs associated with obtaining 

compliance reports from the service supplier. 

Local laws and policies may prevent some types 

of applications, such as banking applications, 

from running in hosted scenarios. 

V  RELEVANT DESIGN PATTERNS 

Key patterns are organized into categories such as Data 

Availability, Data Transfer, Data Transformation, 

Integration and Composition, Performance and 

Reliability, and User Experience as shown in the 

following table. Consider using these patterns when 

making design decisions for each category. 
 

Table I. 

Patterns to be considered while Designing Cloud-Hosted Applications 

Category Relevant patterns 

Data Availability 

Polling:  One source queries the other for changes, 

typically at regular intervals. 

Push:  A source with changed data communicates 

changes to the data sink every time data in a data 

source changes, or only at regular intervals.     

Publish/Subscribe:  A hybrid approach that combines 

aspects of both polling and pushing. When a change 

is made to a data source, it publishes a change 

notification event, to which the data sink can 

subscribe. 

Data Transfer 

Asynchronous Data Transfer: A message-based 

method where the sender and receiver exchange data 

without waiting for a response.    

Synchronous Data Transfer. An interface-based 

method where the sender and receiver exchange data 

in real time. 

Data 

Transformation 

Shared Database: All applications that you are 

integrating read data directly from the same database. 

Maintain Data Copies: Maintain copies of the 

application's database so that other applications can 

read the data (and potentially update it).         

File Transfer: Make the data available by transporting 

a file that is an extract from the application's database 

so that other applications can load the data from the 

files. 

Integration and 

Composition 

Broker: Hide the implementation details of remote 

service invocation by encapsulating them into a layer 

other than the business component itself.         

Composition: Combine multiple services, 

applications, or documents into an integrated 

interface while performing security, validation, 

transformation, and related tasks on each data source.    

 Portal Integration: Create a portal application that 

displays the information retrieved from multiple 

applications within a unified UI. The user can then 

perform the required tasks based on the information 

displayed in this portal. 

Performance and 

Reliability  

Server Clustering: Design your application 

infrastructure so that your servers appear to users and 

applications as virtual unified computing resources to 

enhance availability, scalability, or both.    

Load-Balanced Cluster. Install your service or 

application onto multiple servers that are configured 

to share the workload. The load-balanced hosts 

concurrently respond to different client requests, even 

multiple requests from the same client.    

Failover Cluster. Install your application or service on 

multiple servers that are configured to take over for 

one another when a failure occurs. Each server in the 

cluster has at least one other server in the cluster 

identified as its standby server.  

  18                                                                 CVR College of Engineering                                                                   DOI: 10.32377/cvrjst0303



ISSN 2277-3916                                        CVR Journal of Science and Technology, Volume 3, December 2012 

CONCLUSION 

Cloud Computing is the cost, time and performance 

effective. Some basic issues are the key concern in the 

Cloud Computing use and in the implementation for  the 

Client as well as for Vendors.Cloud computing allows to 

store and maintain data on remote servers that are 

managed by Cloud Service Providers (CSP) .The concept 

of building or consuming services and applications that 

are hosted off-premises is becoming more attractive both 

to independent software vendors (ISVs) and to enterprises 

as a way to reduce costs, maximize efficiency, and extend 

capabilities.The current technology does not provide all 

the requirements needed by the cloud computing. There 

are many challenges to be addressed by the researchers 

for making cloud computing work well in reality. Some of 

the challenges like security issues and Data issues are 

very much required for the customers to use the services 

provided by the cloud. Similarly challenges like Security, 

performance issues and other issues like service 

comspostion etc are important for the service providers to 

improve the services. In this paper we have identified the 

challenges in terms of security issues, data challenges, 

performance challenges and other design challenges. We 

have provided an insight into the possible solutions to 

these problems even though lot of work is needed to be 

done in this regard 

REFERENCES 

[1] Peter Mell, and Tim Grance,“The NIST Definition of 

Cloud Computing,” Version15, 10-7-09       

http://www.wheresmyserver.co.nz/storage/media/faq-

files/ cloud-def-v15.pdf. 

[2] "Software + Services (S+S)" at  

http://msdn.microsoft.com/en-

us/architecture/aa699384.aspx 

[3] Traian Andrei, ”Cloud Computing Challenges and 

Related Security Issues”, Survey Paper 

[4] Kresimir Popovic, et al., “Cloud Computing issues 

and challanges” MIPRO 2010 May 24-28 Opatija, 

Croatia, pages 344-349. 

[5] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing 

Lou, "Achieving Secure, Scalable, and Fine-grained 

Data Dccess Control in Cloud Computing", The 29th 

IEEE Conference on Computer Communications 

(INFOCOM'10), San Diego, CA, March 15-19, 2010.  

[6] Bhavani Thuraisingham, Vaibhav Khadilkar, Anuj 

Gupta, Murat Kantarcioglu, Latifur Khan, “Secure 

Data Storage and Retrieval in the Cloud”, The 

University of Texas at Dallas 

[7] L. Kaufman. “Data security in the world of cloud 

computing”. IEEE SECURITY & PRIVACY, 7(4), 

July- August 2009. 

[8] Kevin Hamlen, Murat Kantarcioglu, Latifur Khan, 

Bhavani Thuraisingham, “Security Issues for Cloud   

Computing”, International Journal of Information 

Security and Privacy, 4(2),  April-June 2010 

[9] "Multi-Tenant Data Architecture" at 

http://msdn.microsoft.com/en-

us/architecture/aa479086.aspx 

[10] Sadie Creese, Paul Hopkins, Siani Pearson, Yun Shen, 

“Data Protection-Aware Design for Cloud 

Computing”,HPL-2009-192 

[11] Michael Olson, K. Mani Chandy,“Performance issues 

in cloud computing for cyber-physical applications” 

 
 

 

 

 

                                                                      CVR College of Engineering                                                                  19 DOI: 10.32377/cvrjst0303


