
ISSN 2277-3916 CVR Journal of Science and Technology, Volume 3, December 2012

Genetic Algorithm Based Dynamic Jobs
Scheduling in grid computing

Pritibahen Sumanbhai Patel1 and B.Jyoshna2

1 CVR College of Engineering, Department of CSE, Ibrahimpatan, R.R. District, A.P., India
Email: priti.patel0209@gmail.com

2 Nishitha College of Engineering and Technology, Department of CSE, Hyderabad, India
Email: bmjyoshna@gmail.com

Abstract-A computational grid is a large scale,

heterogeneous collection of autonomous systems,

geographically distributed and interconnected by low

latency and high bandwidth networks. The sharing of

computational resources is a major aspect of grids.

Scheduling is a key problem in emergent computational

systems, such as Grid and P2P, in order to benefit from

the large computing capacity of such systems. Our

approach is to dynamically generate an optimal schedule so

as to complete the different tasks in a minimum period of

time as well as utilizing the resources in an efficient way.

There are so many approaches for scheduling like Genetic

Algorithm (GA), Simulated Annealing (SA), Ant Colony

optimization (ACO) and Particle Swarm Optimization

(PSO) Algorithm. In this paper, We would like to present Genetic

Algorithms (GAs) based schedulers for efficiently

a l l o c a t i n g jobs to resources in a Grid system. We

would also like to implement GAs for designing efficient

Grid schedulers when makespan is minimized. Our GA-

based schedulers are very fast and hence they can be

used schedule jobs arrived in the Grid system.

Index Term - Genetic Algorithm, Makespan, Minimum

completion time, Fitness.

I. INTRODUCTION

Grid computing has emerged as an important field,
distinguished from conventional distributed computing
by its focus on large-scale resource sharing, innovative
applications and high-performance orientation. In grid
computing scheduling is challenging job. So we used
GAs for designing efficient Grid schedulers when
makespan is minimized. The GA operation is based on
the Darwinian principle of “survival of the fittest”. It
implies that the fitter individuals are more likely to
survive and have a greater chance of passing their good
genetic features to the next generation. In genetic
algorithm, each individual that is a member of the
population represents a potential solution to the problem.
GA starts with initial population of individuals
(chromosomes). Each individual is evaluated using
fitness function to produce a value known as goodness of
the solution. Then a new population is generated by
selecting best individuals from the current population and
applying crossover operator to produce new offspring
which would inherit good features of parents. Then each
offspring is mutated in order to prevent GA to be trapped
in local optima. Best individuals among current
population and new population are carried forwarded in
the next generation. The process is repeated until

stopping condition met and best solution in the current
generation is returned. We have used Genetic Algorithm
based approach forour paper because GA can search for
optimal/nearly optimal solution for scheduling quickly. It
is well understood and applicable to many real life
problems. GA can easily be combined with other meta-
heuristic approaches for multiple objectives.

II. LITERATURE SURVEY

The existing approach for grid scheduling
implemented with conventional algorithm techniques
may give optimal solution but not in reasonable amount
of time & the literature shows several limitations. These
are : Algorithms are studied using simulation, mostly
static algorithms which assume that all information is
known in advanced, do not react to dynamism involved
in the typical grid environment and The performance of
these algorithms has been studied for small sized
problems only. So in this paper, we proposed to
implement a grid scheduler which will address all of the
above problems. It is based on Genetic algorithms which
gives optimal/nearly optimal solution quickly. It uses
dynamic information received from Grid Information
System to determine optimal/ nearly optimal solution. It
can work with larger sized problems.

III. PROPOSED SYSTEM DESIGN

I used genetic algorithm to find optimal/nearly optimal
schedule when makespan is minimum which efficiently
utilize the resources. Proposed GA can quickly search
solution space in parallel to find optimal/nearly optimal
solution in very less time. It uses dynamic information
received from Grid Information System to determine
optimal/ nearly optimal solution. It can work with larger
sized problems. We are going to present a job scheduling
algorithm which can perform well.

IV. PROBLEM FORMULATION

Our GA is based on Expected Time to Compute (ETC)
Model. An ETC for any job j on any resource (machine) r
is expected execution time of job j on r if j is scheduled
on r. The problem for grid scheduling consists of
following:

• n – the number of jobs to be schedule at
particular instance of time. Any job has to be
processed entirely in unique resource.

4 CVR College of Engineering DOI: 10.32377/cvrjst0302

ISSN 2277-3916 CVR Journal of Science and Technology, Volume 3, December 2012

• m – the number of heterogeneous
resources(machines) available in the Grid for an
execution of a given set of jobs

• N = {j1, . . . ,jn} a set of n jobs

• R = {r1, . . . ,rm} set of available m resources.

• The workload Wi of each job i.

• The computing capacity CCr of each resource (in
millions of instruction per second) r.

• The expected time to compute ETC matrix of
size n×m(number of jobs * number of
resources).ETC[j][r] indicates the expected
execution time of job j in resource r.

I considered the scenario in which jobs submitted to
the Grid are independent and are not preemptive.

A. Fitness of a Schedule

We used uni-criteria optimization case for computing
optimal/nearly optimal schedule of a set of jobs on a set
of heterogeneous resources. The fundamental criterion is
that of minimizing the makespan.

B. Makespan

The time when latest job finishes. It is calculated as
follows:

In eq.(1) Fj denotes time when job j finalizes,
Schedules denotes the set of all possible schedules and N
denotes the set of all jobs to be scheduled. The goal of
scheduler is to maximize resource utilization and
minimize makespan. Completion time of machine i is
denoted by completion[r] and it is expressed as a total
time needed for the resource r to finalizing its previously
assigned jobs and jobs which are actually scheduled to
this resource. We can compute ETC and completion time
completion[r] for resource r as follows:

!

 Where,
ETC[r][j]=expected time to compute job j on
resource r.
Wj=workload of job j
CCr=computing capacity of resource r.
completion[r]=completion time for resource r.
readyr=time when resource r finishes previously
assigned jobs to it.

The makespan of eq.(1) can be redefined as the
maximal completion time and can be calculated as
follows:

A criteria makespan can be integrated in several ways
to establish the desired priority among them. In the multi-
objective optimization two fundamental models are the
hierarchical and the simultaneous approach. In
hierarchical approach, the optimization criteria are sorted
by their importance. The process starts by optimizing
most important criterion. When further improvements are
not possible, the second criterion is optimized while
keeping optimized value of first important criterion
unchanged. In grid scheduling, makespan may be
considered as most important criterion. We used
simultaneous approach to compute objective function or
fitness function.

 Fitness = 1 / makespan … … … … … … … … (5)

V. OVERALL SYSTEM ARCHITECTURE

We implemented GA based grid scheduler that
maximizes resource utilization by minimizing makespan.
It also determines schedules based on the current resource
information (dynamic and static information). And hence
can easily react to dynamism involved in grid
environment. Overall system architecture shown in fig.1.

We designed our system in 3 major modules.

A. Monitoring & Discovery Service (MDS) Module

This module is used to discover the new grid resources
and to monitor already discovered resources. When MDS
process starts first time it reads /var/grid resources file to
get list of the resources available initially. It also creates a
thread to periodically poll already discovered grid
resources to get current information about each of these
grid resources. The information includes static
information about resources such as processor
family/architecture, number of CPUs/resource, CPU
frequency, total RAM, total swap area etc., and dynamic
information such as resource computing status busy/free,
resource up/down status, free RAM, load, number of free
CPUs etc. It also periodically receives resource
information from grid resources. This information is sent
to manager process as well as GA based grid scheduler as
and when needed. GA scheduler uses current resource
information to compute optimal/nearly optimal solution
to assign jobs to resources. It also receives update
information from manager process and updates its data
structures accordingly.

 CVR College of Engineering 5 DOI: 10.32377/cvrjst0302

ISSN 2277-3916 CVR Journal of Science and Technology, Volume 3, December 2012

Send Node Information

 Resource Description for Job Jn

Update node

information

Get node

information

.....

Manager Process

J1 J2 J3 … Jn

submits a job

User1

gsub

delete a job

User2

gdel

query jobs

UserN

gstat

Monitoring and Discovery Service (MDS)

N1 N2 N3 … Nm

.…

Resource Description for Job J3

Before Scheduling

After Scheduling

poll node

information

Send node

information

Node M

poll node

information

Send node

information

Node1

Send schedule (Mapping of

Jobs to Nodes)

Send Information about

Jobs to be scheduled

Genetic Algorithm Based Grid Scheduler

J1 J2 J3 … Jn N1 N2 N3 … Nm

(J1,N3) (J2,N5) (J3,Nm) … (Jn,N1)

Genetic Mapping (JOBS↔NODES)

Figure 1. Proposed system design

6 CVR College of Engineering DOI: 10.32377/cvrjst0302

ISSN 2277-3916 CVR Journal of Science and Technology, Volume 3, December 2012

B. Manager Module

This module is the central part of our implementation.
It receives commands from users. It implements
following functions.

• Command processing & Scheduler invocation

• Job queue management

• Job management

• Job monitoring
The Manager receives command requests (such as

submit a job, query jobs, delete a job) from users as
shown in figure 1. When a user submits a job using gsub
command, it sends job submission request to manager.
When manager receives a job submission request, unique
job id is generated for a job and its description is
appended to job queue. If a command request is to query
jobs(gstat), it simply loop through job queue and send
information such as job id, job status, job name, job
executable, assigned resource if it is already scheduled
etc. If command is to delete a job (gdel) and job is
scheduled then job management components forward
request to gatekeeper of the assigned host to clean the
job. Once the job is deleted on the resource, it will be
removed from the job queue otherwise an error is
reported. This component periodically checks if there are
unscheduled jobs in the job queue. If there are some jobs,
it connects to GA Grid scheduler, send information about
jobs to GA grid scheduler and wait for optimal/nearly
optimal mapping of jobs to suitable resources from the
scheduler. Once it receives, a optimal/nearly optimal
schedule from scheduler, for each (job, resource) pair in
the schedule, it submits to local resource manager for
execution purpose.

C. Scheduler Module:

This module uses Genetic Algorithm to find
optimal/nearly optimal solution by minimizing
makespan. It receives information about list of jobs from
manager and information about available resources from
MDS server. It then creates initial population of k
schedules using Minimum Completion Time heuristics. It
then evaluates the current population by computing
fitness function for each of k. It then creates a new
population by repeating selection, crossover, and
mutation and assignment steps until the size of new
population becomes k. It then evaluates the new
population and carries forward best schedules of the
current population as well as the new population in the
next generation in order to get optimal/nearly optimal
solution quickly. The algorithm evolves generation by
generation until termination criteria met. The Scheduler
then return best schedules in current population. This
schedule will then be sent to manager. Manager submits
this job description to the assigned resource.

VI. SYSTEM DESIGN

This section presents actual design of our system
which is Job scheduler using Genetic Algorithm in grid
computing. Dynamic task scheduling using Genetic
Algorithm in a computational grid, resources are shared

by many users, who submit their applications
concurrently. We implemented Genetic Algorithm based
Grid scheduling using following steps.

A. Schedule encoding

We used direct representation to encode each possible
schedule in a chromosome. We used array chromosome
of n(number of jobs) integer to represent a chromosome(a
schedule) as shown in Figure 2. Chromosome[j]
represents the resource number where job j is scheduled.

Job No:

1 2 3 4 5 6 7

Resource
No:

4 2 7 6 3 5 1

Figure 2. Encoding of a schedule (a chromosome)

B. Generation of Initial population

In GA, initial population is usually generated
randomly. But to guide the searching process and to get
optimal/nearly optimal solution in fewer generations,
several problem specific heuristics may be used such as
Min-Min, Minimum Completion Time (MCT) etc. We
used MCT heuristics to guide a searching process for
finding optimal/nearly optimal schedule quickly in fewer
generations. In the MCT heuristic, each job is assigned to
the resource where job completes in minimum time. Jobs
are considered for allocation at random.

C. Compute Fitness function

The scheduler aims to maximize resource utilization
by minimizing makespan. Good chromosomes have
higher fitness values. The fitness of each chromosome
(schedule) is computed using equation (5).

Selection operator: Selection operator is used to select
parents to which crossover operator is applied to produce
new offspring. In general, selection is directly
proportional to the fitness of chromosomes. Several
selection methods exist to select chromosomes for
crossover such as linear ranking, roulette wheel selection
etc. We used roulette wheel selection technique to select
good schedules to produce new offspring. In roulette
wheel selection method, the probability that a
chromosome selected is directly proportional to its fitness
value. Higher the fitness, higher chances the chromosome
will be selected. In this method, each schedule or
chromosome gets portion on the roulette wheel according
to its fitness value. Chromosomes with higher fitness
value get larger slice on roulette wheel. Selection is done
by spinning a roulette wheel. Since fittest schedule has
larger portion on the roulette wheel, they will have higher
chance of being selected. Circumference of roulette
wheel represents the total fitness of all chromosomes.
Pseudo code for roulette wheel selection method is

 CVR College of Engineering 7
DOI: 10.32377/cvrjst0302

ISSN 2277-3916 CVR Journal of Science and Technology, Volume 3, December 2012

7 3 1 4 6 2 5

7 3 1 5 6 2 5

Move

mutation

Schedule

(before mutation)

Schedule

(after mutation)

shown in Figure 3. The roulette wheel selection of among
4 chromosomes is shown in Figure 4. Chromosome 3 has
higher chance of getting selected as shown in Figure 4.
RouletteWheelSelection()

{

total_fitness=0.0; running_sum=0.0;

for each chromosome k in a current population

 total_fitness=fitness(k);

r=select random number r in the range [0,total_fitness-1].
for each chromosome k in a current population

 running_sum=running_sum+fitness(k);

 if(running_sum >= r)

 return(k);

}

Figure 3. Pseudo code Roulette Wheel Selection

Figure 4. Roulette wheel selection among 4 chromosomes

D. Crossover operator

With crossover operator, two selected parent
chromosomes can interchange their genes and produce
new offspring (children). The aim is to obtain better
quality solution and explore a new region of solution
space that has not been yet explored. One may use
several different types of crossover such as one-point
crossover, two-point crossover, uniform crossover etc.
We used one-point crossover operator to produce
offspring schedules. In this method, first, random
crossover point between 1 and n(number of jobs) is
selected, and then first parts of two parents are
interchanged to produce two offspring(schedules). Same
way, exchanging second parts of two parents to produce
two new offspring (schedules) which are same as those
produced by exchanging first parts. One point crossover
is explained in Figure 5.

Figure 5. One-point crossover operation to produce 4 offspring
schedules

E. Mutation operator

Mutation randomly changes gene(s) to different
values. It is used to provide diversification by changing
some gene(s) randomly and thereby prevent GA search
process getting stuck in to local optima. There are several
types of mutation such as move, swap etc., applied to a
schedule. We used move mutation which randomly
selects a job in a schedule (a chromosome) and assign it
to another machine as shown in Figure 6.

Fig 6: Mutation operation

F. Replacement operator

Replacement operator determines which of the
chromosomes (schedules) survives in the next generation.
Two kinds of replacement usually used to carry forwards
chromosomes to next generation (a) Generational
replacement (b) Partial replacement. In a generational
replacement, the current population is entirely replaced
by new population while in partial replacement worst
chromosomes in a current population are replaced by
good chromosomes of new population. We used partial
replacement strategy in which k best chromosomes from
combined current and new population are carried forward
to the next generation. First, fitness function is computed
for each offspring. Let CP(t) be the current population in
generation t and NP(t) be new population in generation t,
then current population of next generation t+1 will be

CP (t+1)=k best schedules from (CP(t) U NP(t))

!!"

#$"

%&"

$"

!"#$%$&$%'(&')'!*+$,

'()*+*,*+-#

'()*+*,*+-.

'()*+*,*+-!

'()*+*,*+-%

Offspring1

Parent1:

Parent2:
7 3 1 4 6 2 5

Crossover

point

Exchanging

 first parts

4 2 7 6 3 5 1

Exchanging

second parts

7 3 1 6 3 5 1

Offspring2

Offspring

3

Offspring

4

4 2 7 4 6 2 5

1

4 2 7 4 6 2

2

5

7 3 1 6 3 5 1

1

8 CVR College of Engineering DOI: 10.32377/cvrjst0302

ISSN 2277-3916 CVR Journal of Science and Technology, Volume 3, December 2012

G.. Termination Criteria:

Termination criteria could be:
(i) Maximum number of generations or iterations:

the genetic search process is terminated after
fixed number of generation.

(ii) Number of iterations without improvement: the
optimization process is terminated after some
fixed number of iterations without any
improvement.

We used (i) termination criterion for our genetic
algorithm based grid scheduler in which search process
terminates after 300 generations.

If termination criterion is not satisfied goto step 3 and
repeat the process.

In general, this genetic search process can be summarized
as follows:

GAGridScheduling() {

1. ENCODING: Represent a schedule(a chromosome)
using array of n(numof jobs) integer chromosome
such that chromosome[i] represents the resource on
which job is scheduled

2. INITIALIZATION: Generate a initial population
CP(t=0) of k schedules using MCT(Minimum
Completion Time) heuristic.

3. FITNESS: Evaluate schedule in CP(t) using eq. (5)

4. TERMINATION CRITERIA: Check if termination
criteria satisfied, if ‘yes’ return the best solution from
current population CP(t).

5. NEW POPULATION: Repeat following steps until
size of new population NP(t) becomes k.

(a) Selection: Select two parents schedules p1 & p2
from CP(t) using roulette wheel method.

(b)Crossover: With crossover probability pc perform
one-point crossover to produce two new offspring
schedules o1 & o2.

(c) Mutation: With very low mutation probability pm,

change the assignment of randomly chosen job to
new grid resources in each offspring o1 and o2.

(d)Assignment: Place o1 & o2 in NP(t)

NP(t)=NP(t) U{ o1,o2}

6. FITNESS: Evaluate schedule in NP(t) using eq.(5).

7. REPLACEMENT:

(a) Select k best schedules from CP(t) and NP(t) to
carry forward in the next generation. CP(t+1)=k
best schedules from (CP(t) U NP(t))

(b) Increment generation count

 t=t+1

 Goto Step 4

}

Table I. List of grid resources with corresponding computing capacity

VII. RESULTS & ANALYSIS

For the experimental purpose consider following
problem instance consisting of 10 grid resources and 20
jobs. List of grid resources with existing workload is
shown in the Table I.

Table II. List of jobs with corresponding workload

Job No Workload

1 126

2 233

3 759

4 858

5 829

6 255

7 789

8 898

9 547

10 110

11 595

12 394

13 582

14 394

15 908

16 310

17 568

18 530

19 125

20 804

Resource No.

Computing

Capacity

(MIPS)

Existing workload

(pending processing in

ms)

1 3380 72.88

2 931 43.44

3 2969 69.92

4 3120 97.47

5 3728 47.61

6 1815 32.22

7 3170 22.67

8 2084 46.86

9 2014 26.48

10 3318 46.09

 CVR College of Engineering 9 DOI: 10.32377/cvrjst0302

ISSN 2277-3916 CVR Journal of Science and Technology, Volume 3, December 2012

To find out optimal/nearly optimal solution for this
problem instance, we tuned our genetic algorithm based
scheduler with following parameters.

Number of Generations=300
Size of population=256
Crossover probability (Pc)=0.90
Mutation probability (Pm)=0.0001

We got makespan=26.0183 in generation number 189
and then it retains this value until last generation. So if
we reduce number of generations to less then 189, we got
makespan=26.6066. The graph of generation numbers vs
makespan for this problem is shown in fig. 7 where Y-
axis represents makespan values and X-axis represents
generation number.

Figure 7. Makespan vs. generation numbers

CONCLUSION

We presented an extensive study on the usefulness of
Genetic Algorithms (GAs) for designing efficient Grid
schedulers when makespan parameter is minimized under
hierarchic and simultaneous approaches. The
experimental study reveals the quality of the proposed
GA-based schedulers as compared well to the existing
GA-schedulers in the literature. Our GA-based schedulers
can be used to design dynamic schedulers. A dynamic
scheduler would run our GA in batch mode to schedule
jobs arrived in the system since last activation of the
scheduler.

As part of our future work we plan to extend focus on
workflow based scheduling. Workflow management
system allows the user to specify their requirements
along with the descriptions of tasks and their
dependencies using the workflow specification. Many
Grid applications such as bioinformatics and astronomy
require workflow processing in which tasks are executed
based on their control or data dependencies. It will be
integrated with various grid middleware such as
UNICORE, LIGEON etc. Study of implementing same
scheduler with different heuristics such as min-min, max-
min, MET etc. Extending scheduler for multi match
making between user’s requirement and resource
characteristics.

REFERENCES

[1] Abraham, A. H. Liu, W. Zhang and T. G. Chang, Job
scheduling on computational grids using fuzzy
particle swarm algorithm, Proc. of the 10th
International Conference on Knowledge-Based and
Intelligent Information and Engineering Systems, B.
Gabrys et al. (eds.): Part II, Lecture Notes on
Artificial Intelligence 4252, 500507, Springer, 2006.

[2] Abramson, D., R. Buyya and J. Giddy, A
computational economy for grid computing and its
implementation in the Nimrod-G resource broker,
Future Generation Computer Systems Journal,
vol.18,no.8, pp.1061-1074, 2002.

[3] Alba, E., F. Almeida, M. Blesa, C. Cotta, M. Daz, I.
Dorta, J. Gabarr, C. Le, G. Luque, J. Petit,C.
Rodrguez, A. Rojas and F. Xhafa, Efficient parallel
LAN/WAN algorithms for optimization,Parallel
Computing, vol.32, no.5-6, pp.415-440, 2006.

[4] Buyya, R., Economic-based Distributed Resource
Management and Scheduling for Grid Computing, Ph.
D. Thesis, Monash University, Melbourne, Australia,
2002.

[5] Buyya, R., D. Abramson and J. Giddy, Nimrod/G: An
architecture for a resource management and
scheduling system in a global computational grid,
Proc. of the 4th International Conference on High
Performance Computing, Asia-Pacific Region, China,
2000.

[6] Javier Carretero, Fatos Xhafa, Ajith Abraham. Genetic
algorithm based schedulers for grid computing
systems. In International Journal of Innovative
Computing, Information and Control ICIC
International °c 2005 ISSN 1349-4198 Volume 3,
Number 6, December 2007.

[7] A. Abraham, R. Buyya, and B. Nath. Nature’s
heuristics for scheduling jobs on computational grids.
In The 8th IEEE International Conference on
Advanced Computing and Communications
(ADCOM 2000), India, 2000.

[8] Jia Yu and Rajkumar Buyya. Workflow Schdeduling
Algorithms for Grid Computing Grid Computing and
Distributed Systems (GRIDS) Laboratory Department
of Computer Science and Software Engineering The
University of Melbourne, Australia.

[9] Guangchang Ye, Ruonan Rao, Minglu Li. A
Multiobjective Resources Scheduling Approach
Based on Genetic Algorithms in Grid Environment. In
Fifth International Conference on Grid and
Cooperative Computing Workshops (GCCW'06)
IEEE computer society.

[10] Taras S. Shapovalov, Alexey G. Tarasov. Genetic
Algorithm Based Parallel Jobs Scheduling. In
program “Research and scientific-pedagogical
personnel of innovative Russia”(project No. 02-740-
11-0626) and Grant of Russian Foundation for Basic
Research and Far eastern branch of Russian academy
of sciences No. 10-III-B- 01I-009.

[11] Wei Sun , Yuanyuan Zhang , Yanwei Wu, and Yasushi
Inoguchi Practical Task Flow Scheduling for High
Throughput Computational Grid. In International
Conference on Parallel Processing Workshops
(ICPPW'06) 0-7695-2637-3/06 $20.00 © 2006 IEEE
computer society.

10 CVR College of Engineering
DOI: 10.32377/cvrjst0302

ISSN 2277-3916 CVR Journal of Science and Technology, Volume 3, December 2012

[12] T. Casavant, and J. Kuhl, A Taxonomy of Scheduling
in General-purpose Distributed Computing Systems,
in IEEE Trans. on Software Engineering Vol. 14,
No.2, pp. 141--154, February 1988.

[13] Arash Ghorbannia Delavar, Mohsen Nejadkheirallah,
Mehdi Motalleb. A New Scheduling Algorithm for
Dynamic Task and Fault Tolerant in Heterogeneous
Grid Systems Using Genetic Algorithm. In IEEE
computer society 2010.

[14] Jing Liu, Li Chen, Yuqing Dun, Lingmin Liu,
Ganggang Dong. The Research of Ant Colony and
Genetic Algorithm in Grid Task Scheduling. In
International Conference on MultiMedia and
Information Technology 2008.

[15] S. Prabhu, V.Naveen Kumar. Multi-Objective
Optimization Based on Genetic Algorithm in Grid
Scheduling. International Journal of advanced
research in technology. IJART, Vol. 1 Issue 1, 2011.
ISSN NO: 6602 3127 RR.

[16] Dr. K.Vivekanandan, D.Ramyachitra A Study on
Scheduling in Grid Environment Dr. K.
Vivekanandan et al. / International Journal on
Computer Science and Engineering (IJCSE).

 CVR College of Engineering 11
DOI: 10.32377/cvrjst0302

