
ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 5, December 2013

 CVR College of Engineering 1

 Pattern Language and Traditional Programming
Practices for Exporting Functionality

 Dr. Hari Ramakrishna, Professor,
 Department of Computer Science and Engineering, C.B.I.T Gandepet , Hyderabad- 500075

 Email: dr.hariramakrishna@rediffmail.com

Abstract— A set of programming practices and a model
pattern approach to document and communicate expert
programming tips are presented. Pattern approach is
adapted to the task of exporting functionality. Traditional
development frameworks which are presented in integrated
development environment are adopted to suit the
implementation of the presented models. Extreme
Programming (XP) approach for change management is
adopted. The model starts its journey from known simple
techniques to complex models. Such models are useful for
training programmers. The presented models depend on
concepts such as static function , polymorphism, virtual
functions, static and dynamic libraries, Object files,
managing project work spaces, code COM models, ATL and
Active X controls , Simple Object access protocol SOAP.
This paper presents a new approach to train the
programmers.

Index Terms— Pattern, Pattern-frames, Frameworks,
Pattern language, Extreme programming (XP), Refactoring,
Object oriented primitives, Component technology,
Function classes, Middleware frameworks

I. INTRODUCTION

Software industry is looking for rapid application
development mechanisms with client orientation and
short time span delivery, increasing quality and
withstanding rapid changes in technology and
requirements.

In this connection, exporting third party tools plays a
major role. Using third party tools decreases testing time.
Development of frameworks for increasing degree of
reuse has become an important focus. Customization of
such frameworks as per client requirements increases
importance of frameworks. Frameworks are different
from libraries; client code is embedded in frameworks
whereas client code includes and calls libraries.

Frameworks can be classified into three classes namely
‘system frameworks’, ‘middleware integration
frameworks’ and ‘business oriented frameworks’. System
frameworks provide basic reusable environment required
for the development, middleware integration frameworks
provide Integrated Development Environment (IDS); for
example, Microsoft MFC, Document view architecture,
COM Framework, ATL, .NET frameworks come under
such types. The third class of frameworks focuses on
building and exporting business functionality focused on
one or more domains. Such frameworks help in
increasing quality and decreasing development cost and
time.

Exporting data and functionality, and integrating and
assembling modules for building applications are

important tasks in such models. Several programming
practices and styles, useful for such purpose, are
presented as a series of techniques, in the increasing order
of complexity starting from basic known concepts.
Extreme Programming (XP) and refactoring also suggest
such practices.

Extreme Programming (XP) is a software development
methodology which is intended to improve software
quality and responsiveness to changing customer
requirements. It is an agile software process, it advocates
frequent "releases" in short development cycles. The
approach is intended to improve productivity and
introduce checkpoints at which new customer
requirements can be adopted. Such approaches enable
programmers to withstand and adopt multidimensional
rapid growth and changes in the software development
technologies.

The presented models which are experimented in
several applications are adopting such processes. They
focus on presenting various techniques in practice for
exporting functionality for the purpose of building
function libraries and frameworks, starting from
traditional basic concepts of refining code and adopting
object oriented concepts. At the end, a new concept
referred as ‘function classes, is presented. The paper
concludes with techniques for porting such models into
upcoming technologies in a simple and safe way. Pattern
approach of documentation and communication of
professional practices is advised for such purposes.

II. PATTERN APPROACH FOR DOCUMENTATION OF

PROFESSIONAL PRACTICES

Pattern approach for documenting and training expert
skills was introduced by Christopher Alexander and was
applied in architectural domain [4]. He has proposed a
pattern language consisting of a series of patterns for
improving quality of architectural designs. The same was
suggested by Grady Brooch to Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides who are well-
known by Group of four (GOF). They found a set of
solutions for problems in design issues which are known
as design patterns, which are classified as creational,
structural and behavioral patterns [6]. Microsoft COM
Technology uses several design patterns for building
COM frameworks. Programming in Component
Technology needs understanding of these design patterns.

GOV known as Group of Five presented Architectural
patterns. Frameworks are defined as semi completed
reusable applications, using patterns for building

DOI:10.32377/cvrjst0501

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 5, December 2013

2 CVR College of Engineering

applications in an efficient way. Frameworks are
domain specific unlike design patterns.

A series of patterns which address a common problem
are named as pattern language. Pattern language is useful
for documenting expert skills for communicating and
training professionals. Coplien presented C++
programming styles as a set of patterns. The pattern
language mechanism is in use for presenting Java-based
programming models. Coplien says that a good pattern
solves a problem, is a proven concept, describes
relationships, contains a significant human component
such as comfort, quality of life etc.

Several pragramming practices have been in use
before evolution of the pattern concepts. As they are
very common and well known they will be generally
referred to as primitive patterns. For example, Object
Oriented Programming addresses several programming
issues and presents several concepts and environment
implementation of these concepts. Programming
practices and concepts such as Polymorphism, function
overload, static functions and data, exception handling,
inheritance, interface, abstraction, encapsulation, friend
functions, inline functions and several object oriented
features are reffered to as primitive pattern.

The main reason to call existing programming features
like object oriented features as primitive patterns is to use
them as participating in forming a pattern language. Each
primitive practice has a purpose and design to solve a set
of problems. Giving pattern light to programming style
makes programmer understand the specified purpose of
usage of these concepts.

III. A JOURNEY TO OBJECT ORIENTATION

This section presents the need of object orientation in
the light of managing functionality in the Extreme
Programming way of development in small cycles,
refactoring for client requirements and change
management (from simple C to C++). A simple first step
programming in C for handling requirements of a list of
elements represented as a matrix is considered as base
requirement as presented in Table 1.

The purpose of the example C program is to read,
store, sort and print a list of elements of user choice.
Finding the limitations and reconsidering the
requirements is referred to as refactoring (in XP), and the
process helps in evolving and introducing new
concepts. By repeating such process leads to the
evolution of new programming methodologies and
models.

TABLE I.
 C PROGRAM FOR MANAGING MATRIX OPERATIONS

For example, generalizing concepts of given C

program in the light of reuse, the new concept, namely
template, evolved. Templates are created in several
languages to store and sort any element types to reuse the
procedures. Further generalization of concepts leads to
evolution of design pattern ‘Template’.

Template is a design pattern (behavioral pattern). As
per GOF, Template is intended to define the skeleton of
an algorithm in an operation, deferring some steps to
subclasses. The Template method lets subclasses define
certain steps of an algorithm without changing the
algorithms structure.

TABLE II.

A PROGRAM IN C FOR MANAGING A SIMPLE LIST
OPERATIONS

As a next step to the selected example, the following

modifications improve the quality of the program. The
new program structure with new changes is presented in
the Table 2.
i) Introducing functions, code segment are reused
ii) Defining a proper data type enables data binding
problems to be handled.

void main()
{
<< 1. code for Declare data variables >>

int List[10];
int Count, totalNoOfElements, temploc;

< < 2. Code for Initialize variables >>
<< 3. Code for Read the list of Elements >>
<< 4. Code for Print the Input List >>
<< 5. Code for Perform Sorting operation >>
<< 6. Code for Printing Sorted List >>
<< 7. Code segment for Exiting Application >>
}

typedef struct
{
 int List[101];
 int m_itotalnos;
} DataList;
<< Define function to perform operation on data >>
void ReadDataList(DataList* Data)
void DisplayDataList(DataList data)
void SortDataList(DataList* Data)
void AddToDataList(DataList* Data,int Ele)
void Exit()
<< Write main program which is a client for these above reusable code
segments >>
void main()
{
 DataList MyData; // Declare List
 ReadDataList(&MyData); // Read List
 printf("The input list is shown below \n "); // Print List
 DisplayDataList(MyData); // Sort DataList
 SortDataList(&MyData); // Print Sorted List
 DisplayDataList(MyData); // Print List
 Exit();// Exit program
}

DOI:10.32377/cvrjst0501

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 5, December 2013

 CVR College of Engineering 3

Refactoring the changed program creates scope for
new client requirements.
i) Requirements related to packing data and procedures
defined on it forming a single entity
ii) Techniques for exporting the functionality
iii) Addressing Encapsulated issues
iv) Requirements related to configuration of functionality
v) Exporting functionality across the process, in a
distributed environment and over the internet.

These questions raise the need to use object oriented
features. A simple sample class in C++ is presented in
table: 3.

TABLE III

 A CLASS IN C++ FOR MANAGING FOR SIMPLE LIST
OPERATIONS

class DataList
{
private:
 int m_ List[101];
 int m_iTotalNos;
public:
 DataList(void); // Constructor
 void ReadDataList();
 void DisplayDataList();
 void SortDataList();
 void AddDataList();
 void AddToDataList(int Ele);
 ~DataList(void); // distracter
}

Typical practices and techniques related to exporting
functionality are addressed in the following sections.

IV. EXPORTING FUNCTIONALITY THROUGH

LIBRARIES

The project work space concepts and creating a
directory structure are essential for exporting
functionality. Microsoft Integrated development
environments (IDE) provide several frameworks for
managing project work spaces suiting several
requirements. The management of directory structure
provides good program code management practices; it is
also helpful for sharing files across different project
workspaces. Sample generic directories used frequently
are BIN, DEGUD, RELEASE, SRC, INCLUDE, OBJ,
LIB and DEF. Creating proper directory structure is an
essential feature of complex projects where several places
of project development share files across projects.
Sometimes the directories are shared across Internet using
FTP protocols. Visual sources like code management
tools also suggest proper directory structure for code
management where several programmers work in parallel
and share common files for development and bug fixing.

The static data and static function are known as class
members. But the token word static represents limited
scope, which means a static function defined in a source
file exists and extends its visibility to that file scope only.
This behavior of static functions can be used for
exporting functions across files within a project
workspace encapsulating the internal implementation

and dependent functions. Object files carry the
implementation code and headed files carry interface
function definitions which are exported to the client. This
procedure of exporting functions through object files is
presented in Table 4:

TABLE IV.
EXPORTING FUNCTIONS THROUGH OBJECT FILES

SERVER PROCEDURE:

i) Define internal functions which have no relevance to client and which
are required to perform client task through interface functions as static
functions.
ii) Define interface functions which are exported to the client as non-
static functions
iii) Define prototype of these in a header file and keep the header in a
INCLUDE directory.
iv) Compile the source file which generates an OBJ extension object
file; this can be directed to OBJ directory with suitable settings at
project workspace.

CLIENT PROCEDURE:

Include the header file in client code and attach the object to project
workspace.
Use the interface functions defined in header file at client code
irrespective of hidden dependent functions.

The next model presents exporting through static and

dynamic libraries using special project files. IDE of
Microsoft provides projects workspace for static and
dynamic libraries separately. The static libraries attach
functions to executables at the time of linking. This will
increase the size of executables in proportion to included
functionality.

In dynamic libraries, the functionality is attached
through a dll extension file at run time. In dynamic link
libraries the executable file needs to carry all the
dependent dlls. The lib file generated at the time of
building the server application carries the dll path and
other required information.

The dynamic library concept makes the executable
files lightweight. Large scale applications can be loaded
with limited RAM as the executable size is very low. In
huge applications, the total functionality supported and
implemented in an application is larger than the
functionality required at a particular time of execution for
performing task of that time. The operating system
automatically unloads the unused dlls and loads required
dlls dynamically for optimizing the internal memory.

This model of exporting functionality has another
advantage; it allows loading required (purchased or
permitted) functionality alone to be distributed to clients.
In case the required dll file is not available during run
time, due to some problem (or unauthorized usage), the
operating system will raise an exception and give a
message to the user, thus preventing runtime error
problems.

Implementations of these models need a ‘definition
file’ with def extension. A sample def file is presented in
the Table 5. The functions defined in def file alone will
be exported to the client project. The project space will

DOI:10.32377/cvrjst0501

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 5, December 2013

4 CVR College of Engineering

automatically encapsulate the internal details. Defining
internal functions as static functions is not required in this
model.

TABLE V.

A MODEL SAMPLE DEFINITION FILE FOR BUILDING A
DYNAMIC LINKED LIBRARY SCRIPT FOR THE SRC/Srever.def

FILE

LIBRARY DLLSERVER
;CODE PRELOAD MOVEABLE DISCARDABLE
;DATA PRELOAD MOVEABLE SINGLE
HEAPSIZE 1024
EXPORTS

 InterfaceFunction01 @1
 InterfaceFunction02 @2

In case of function overload (same name is used for
more than one function with different arguments), the
name of the functions along with arguments (generated
by the compiler) which are available in the library and
object file will need to be used in definition file.

V. FUNCTION CLASSES

This section presents framework model for exporting
functionality. This is referred to as ‘function classes’.
The function class is a class which has only functions or
methods defined without data like interfaces. Interface
classes are abstract but function classes are not abstract
classes; they include implementation. In general, a class
has data (to compute the state of object) and methods (to
implement behavior) that work on data to change object
state. The function class is coined only to export
functions with client-oriented features using object
primitives.

In applications like CAD, GIS we find lot of function
libraries at different levels. For managing and exporting
functions in a professional way function classes provide
solutions. Several object oriented features (primitive
patterns) can be applied on these classes to make these
libraries user friendly and allow client to configure the
inherent procedures as per requirements in an authorized
way. For example if client want to define his own model
which is used in building the interface function client can
do such operations using object oriented features for
managing multiple behavior.

Table 7 will present sample code segment required to
export a function class. In the given sample macros are
defined to manage a uniform header file for class
definition which will present the definition as per the
requirements of client and server. A brief description of
function class is presented in Table: 6

TABLE VI
THE FUNCTION CLASS PATTER-FRAME

Name: Function-class pattern-frame

Intent: The intent of this framework is to manage scalable function
libraries.

Motivation and Applicability: Several scalable function-groups are
required in the domain of graphic, CAD and GIS. Such requirements
are managed using such pattern-frame models.

Structure: The Architecture of function–class frameworks is presented
in Figure 1.

Participants: Abstract Function class: This class defines the function –
groups.

Function class: This class implements the function groups

Abstract Primitive: This class is used for defining the configurable
function-groups.

Primitive Library: This class is used for implementation of
configurable function-groups

Collaboration and consequences: The Function class implements the
abstract function class which is an interface. This implementation
depends on Abstract Primitive which is another interface. The primitive
library which is supposed to implement the abstract primitives is used
for configuring the function-groups. The client can add his own
primitive library for configuring the function group as per the
requirements. Sample Code segment for implementation is presented in
table 8.

TABLE VII
 A MODEL CLASS DEFINITION FOR EXPORTING A CLASS

#ifdef BEEPSERVER
class __declspec(dllexport) CBeep
#else
class __declspec(dllimport) CBeep
#endif
{
public:
void Interface Function01(void);
void Interface Function01(void);
};

TABLE VIII

 SAMPLE CODE SEGMENT FOR FUNCTION CLASS
class AbstractPrimitive
{
public:
 virtual Line (<<list of argument >>) = 0;
 virtual EllipticalArc (<<list of argument >>) = 0;
}
class AbstractGraphicFunctions
{
public:
virual Rectangle(<<list of argument >>)) = 0 ;
virual Square(<<list of argument >>)) = 0;
virual Polygon(<<list of argument >>)) = 0;
virual Circle(<<list of argument >>)) = 0;
virual Ellipse(<<list of argument >>)) = 0;
};Class GraphicFunction : public AbstractGraphicFunctions,
AbstractPrimitives
{
 << Implements Abstract functions and depends on AbstractPrimitives
>>
};class PrimitiveLibary: public AbstractPrimitives,GraphicFunctions
{<< Implementation of AbstractPrimitives >>
}

DOI:10.32377/cvrjst0501

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 5, December 2013

 CVR College of Engineering 5

.

The above classes do not have any data members.
They have only functions. The Architecture of this
function class framework is named as function class
pattern-frame. This is different from the set of function
libraries. Important features of function class framework
as compared with a function library are listed below.
i) The Function class frameworks allow user to configure
to the user requirements. As an example, the user of the
above class wants to use the above class, but he wants to
use another DDA algorithm instead of the simple DDA
algorithm both for line and elliptical arc. For achieving
this, client will inherit from the abstract-primitive class
and will implement the virtual functions.
ii) The client can extend the function class by adding
some more graphic primitive procedures. In this case, the
client defines another abstract function class. The
abstract-function class of the existing framework will
become abstract primitive for the new extended
framework. This procedure can be used in an iterative
way.
iii) Exporting a class is more efficient than exporting a
set of functions.
iv) These function classes are not objects and they do
not have state. They exhibit behavior. They can be treated
as a package of functions.
v) It is possible to implement these function classes even
in other languages like Java. Any language that
implements Object oriented patterns such as inheritance
and polymorphism, and supports Dynamic linked
libraries, is suitable for implementing function classes.
vi) The Dynamic Linked Libraries make the function
classes loosely coupled with the Applications. This will
enable changing the implementation of function classes
without affecting the client application or modules,
thereby making function-classes scalable.

V. MIDDLE WARE FRAMEWORKS FOR CREATING

COMPONENTS

The middle ware frameworks provided in IDE allow
exporting functionality in modern and other complex
technical environment in a simple way through a set of
wizards. The COM DLL enables a procedure to export
functionality over COM interfaces which are more
efficient in management but core COM object
implementation is complex. Several frameworks like
Active Template Library for creating ATL objects are
available in IDE for exporting over COM interfaces.
Several pattern-frames are designed to handle COM
model simple to use [3]. The SOAP simple object access
protocol is also providing frameworks for exporting
functionality as web services. All these frameworks work
like wrappers over existing traditional models of
exporting. Figure 2 presents a middleware integration
framework for exporting object oriented frameworks
using IDE and middleware interaction frameworks for
components. The same can be adopted for other IDE
models.

Figure 1: Structure of Function class Framework

Abstract
Function Class

Function Class

-Nil -

< Abstract
Function

Implementation
>

Abstract
Primitives

Primitives
Library

Client

Figure 2: Middleware integration based frameworks

Object
Oriented

Frameworks

Middleware
Interaction

framework for
components

Component
based

Graphic
System

Middleware
Component

Frameworks

DOI:10.32377/cvrjst0501

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 5, December 2013

6 CVR College of Engineering

CONCLUSIONS

Various programming practices for exporting
functionality are presented starting from simple
unstructured first level programming is C. The method of
refactoring for changing to new model as specified in
extreme programming XP is adopted along with a pattern
way of presentation. The former presented models
referred to as programming tips are styles and latter are
known as pattern-frames. The later models use object
oriented pattern primitives to solve the problems.
Presented pattern frame exports functionality in a user
friendly way, enabling client applications to configure
the functionality as per requirement. These models can
be further exported to new technologies using
frameworks available in IDE. Some of the pattern frames
are not discusses in detail as they are beyond the scope of
this paper. The solutions are aimed at training
programmers for efficient programming related to a
particular problem. Such sequence of models for domain
specific problems forming a pattern language is
suggested.

ACKNOWLEDGMENT

The author wishes to thank Dr. K.V.Chalapati Rao,
Dean-Research, CVR College of Engineering and also
the faculty of the Department of Computer Science and
Engineering C.B.I.T, for their support and
encouragement.

REFERENCES

[1] Dr.Hari Ramakrishna, Dr. K.V Chalapati Rao,“Pattern
Methodology of Documenting and Communicating
Domain Specific Knowledge”, CVR Journal of Science &
Technology , Volume 2, June 2012 ISSN 2277-3916.

[2] Dr.Hari Ramakrishna, ”Pattern Approach to Build
Traditional Graphic Frame works”, International Journal
of Computer Applications Volume 59– No.15, p35-42,
December 2012. Published by Foundation of Computer
Science ISSN :(0975 – 8887), New York, USA.

[3] Dr. Hari Ramakrishna, “Design Pattern for Graphic/CAD
Frameworks”, Ph.D thesis submitted to Faculty of
Engineering Osmania University March 2003.

[4] Christopher Alexander, “An Introduction for
Objectoriented Design”, A lecture Note at Alexander
Personal web site www.patternlanguage.com.

[5] Pattern Languages of Program Design. Edited by James O.
Coplien and Douglas C. Schmidt. Addison-Wesley, 1995.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, "Design Patterns: Elements of Reusable
Software Architecture", Addison-Wesley, 1995.

[7] LNCS Transactions on Pattern Languages of
Programming
http://www.springer.com/computer/lncs?SGWID=0-164-2-
470309-0

[8] Hari RamaKrishna “COM Applications for Real time
Electrical Engineering Applications” IEEE sponsored
International Conference at Bangalore - 2000.

[9] Hari RamaKrishna “COM as new Object Oriented
Technology”, Proceedings of CSI conference, December
1999 at Visakhapatnam.

[10] Hari RamaKrishna, “Application of computer graphics in
interior design” Proceedings of Conference 1998 at
Institutes of Engineers at Hyderabad.

[11] Hari RamaKrishna “Generation of flooring and wallpaper
patterns using computer graphics” Proceedings of the First
National Conference on Computer Aided Structural
Analysis and Design, Jan 3-5,1996, Engineering Staff
College of India and University College of Engineering,
Osmania University, Hyderabad.

AUTHOR’S PROFILE

Dr. Hari Ramakrishna was awarded B.E in Computer Science
and Engineering in 1989 by Osmania University, Hyderabad,
A.P., INDIA, M.S., in Computer Science by BITS PILANI,
INDIA and Ph.D. in Computer Science and Engineering by the
Faculty of Engineering Osmania University in “Pattern
languages for graphic /CAD frameworks”. He has worked in
Software Industry for several years developing Graphic, CAD
/GIS products using Microsoft environment. He has about 16
years of teaching experience. Presently he is working as a
Professor for last 8 years in the Department of Computer
Science and Engineering at Chaitanya Bharathi Institute of
Technology, Hyderabad INDIA. He is involved in the design
and development of several graphic frameworks for various
Engineering applications

DOI:10.32377/cvrjst0501

