
FPGA Realization of Hyperbolic Function
Subha Sri Lakshmi Thiruveedhi1 and P. Viswanath2

1Asst. Professor, CVR College of Engineering/ ECE Department, Hyderabad, India
Email: rupashubha@gmail.com

2 Professor, CVR College of Engineering/ ECE Department, Hyderabad, India
Email: panchagnulaviswanath@gmail.com

Index Terms: Artificial Neuron, Floating Point Unit (FPU),
Exponential Representation, Verilog HDL, Xilinx ISE.

I. INTRODUCTION

AND, OR and NOT. Focus of Jeremie Detrey et al [6] is on
implementing floating-point elementary functions on
FPGAs which is contemporary problem. They report
trigonometric function approximation based on last bit
accuracy. Derek Nowrouzezahrai et al [7] has presented a
computationally efficient algorithm for cosine function
based on Taylor's series approximation along with
simulation results on Altera Stratix II FPGA. Series
approximation is truncated based on accuracy in the last bit
weight of the mantissas. P. Graf [8] designed and
implemented a VLSI circuit for neural network for
classification, particularly for image processing application,
consisting of an array of 54 amplifiers with inputs and
outputs interconnected through a matrix of resistive
elements. All of the coupling elements are programmable
resistive connection which can be turned on or off. Ranjeet
Ranade [9] et al describes a technique to realize a novel
digital multiplier used in Artificial Neural Network (ANN)
and studied a generalized `Energy Function' for multiplier
and its hardware realization by combining conventional
digital hardware with a Neural Network. The design of
Neurons, and the digital multiplier are described in this
paper along with the simulation results. Valeriu Beiu [10]
proposed a method to compute sigmoid function and its
derivative in digital hardware by sum of steps and suggested
that such algorithms are area-efficient. B.K. Bose [11]
research was one of the earliest in floating point operation
realizations in VLSI. Focus of research world over in the
area of VLSI realization of ANN is on (a) efficient
realization of floating point operations with real numbers (b)
realization of efficient and accurate representation of
functions (c) realization of artificial neuron and the feed
forward ANN. Real time realization of the neural net with
feed forward mode in FPGA is of recent interest to
researchers. Both structural and behavioral models can be
considered for implementation of ANN in FPGA.
Behavioral Models and realization of an AN with different
activation functions along with a floating point algebraic
operator for real valued inputs, in FPGA environment is
reported in this paper.

II. ARTIFICIAL NEURON

Fundamental building block of Artificial Networks is
Artificial Neuron, also called as Perceptron. Figure 1
describes a typical AN.

Rapid progress in Machine Learning in the last decade is
opening opportunities for application of Deep Neural
Networks and Machine Learning in real time control,
monitoring and diagnostics of power and process
applications. Enthalpy based real time control and sensor
data reconciliation of power plants require repeated usage of
steam and gas properties along with their Jacobian and
Hessians. Steam and gas properties are, generally,
represented in the form of complex Gibbs free energy or
Helmholtz free energy equations. The properties are
represented at discrete values and obtaining the function
values and their derivatives is carried out by repeated calling
of the above complex functions. This is computationally
prohibitive. Krishna Dutt et al [1,2] reported a compact
ANN representation of these properties for simultaneous
obtaining of the properties and their derivatives along with
their application to real time data reconciliation of power
plant sensor data. Arash Ardakani et al [3] proposed an
integer form of stochastic computation for an efficient
implementation of a Deep Neural Network based on integral
stochastic computing. The proposed architecture was
demonstrated on a Virtex7 FPGA, resulting in 45% and 62%
average reductions in area and latency. K.P. Sridhar et al [4]
studied a testing method for VLSI based single neuron
architecture with multiple inputs and one output for bench
marking against ISCAS85-C17 circuit. Experimental results
were reported on XILINX Spartan III FPGA. Bapuray.D.
Yammenavar eta al [5] demonstrated an analog VLSI
implementation with memory refresher circuits of a neural
network; the design is adopted for digital operations like

Abstract: Machine Learning (ML) is applied in many real
world applications. Artificial Neuron (AN) is the main building
block of Artificial Neural Networks (ANN) which is the
backbone of ML. ML algorithms for different applications like
image and speech recognition etc., speech with large data are
implemented on workstations with GPUs. However, the power
of ML techniques for real time applications like monitoring,
control and diagnostics, typical in power and process plant is
still in nascent stage. Most of these applications require FPGA
realization of ANNs. Realization of AN with both sigmoid and
hyperbolic tangent activation functions along with results is
reported in this paper. Design of building blocks consisting of
Floating Point Unit (FPU) and Function approximation (FA)
are presented. Implementation using Verilog HDL along with
results of accuracy with simulated inputs and gate count and
timing diagrams are presented.

doi:10.32377/cvrjst1507

Figure 1. Structure of Artificial Neuron (AN)

AN structure consists of m inputs and their associated
weights, a summer of weighted inputs and a mapping
function that transforms the sum to an output. This function
can be any differentiable function. Sigmoid, Tanh, ReLU are
some of the widely used functions. Figure 2 shows the
output of these two functions i.e., tanh(x) and sigmoid.

Equation (1) describes the functioning of an AN

Z = (∑wi xi + b) (1)
y= f(Z) (2)

In general, an AN has a multivariate input (xi), weight
vector and a mapping function. A summer block which (Z) a
weight sum y the input vector (xi). The mapping function (f)
transforms the weighted input to the output (y). The
mapping function can be any analytic function of at least
first order continuity. The inputs (x) are normalized to be
within (-1,1) or (0,1) band an application, however, the
weights can be any real number. The output of y is obtained
to be within (0,1) or (-1,1) for sigmoid or tanh respectively.
There are many other possible functions of which ReLu has
become very popular, particularly for dealing with binary
inputs, where the above two functions are useful in case of
real valued inputs. ReLu is generally used in deep beleif
networks. Sigmoid is more popularly used in multi layer
neural networks (MLP) or deep neural networks. The
structure on learning functions of an AN is based on studies
of biological neuron focus in mammalian brains. These
biological neurons reveal that learning is either
discriminative or generative in nature. A single AN tries to
emulate these two capabilities through the learning function.

Figure 2. Activation Functions of AN

The output of these two functions is limited to [-1,1].
However, functions like ReLU, figure 3 does not limit the
output to be within [-1,1]. From the above general purpose
Floating Point Unit (FPU) with basic operations,
multiplication, division, addition and subtraction, and a
function mapping units are required for realization of an AN
model in FPGA. Following describes design of these two
with results obtained from the implementation in Verilog
Code.

Figure 3. ReLU Activation Function.

 III. FLOATING POINT UNIT

Floating point unit is defined as math coprocessor.
Mainly it is designed to perform various operations such as
addition, subtraction, multiplication, division, square root
and bit shifting etc. It even can perform other operations
such as exponential & trigonometric operations which are
defined as transcendental functions. In computer
architecture applications one or more floating point units can
be inserted within the central processing units (CPU's).
Design and realization of FPU are based on IEEE 754
standard as shown in figure 4. Generally IEEE 754 standard
specifies the interchange and arithmetic equation formats
and methods for binary and decimal floating point arithmetic
in computer & signal processing applications. Even this
standard interchanges the bit strings that may be used to
exchange the floating point data in an efficient form to
compact form. Real number inputs (OP1,Op2) are converted
to IEEE 754 representation and algebraic operators ADD,
SUB, MULTI and DIV are operated on the converted
operands. Figure 9 shows the summary details of device
utilization, in which highest utilization is on number of slots
(slices) to the extent of 35%, which can be considered
reasonable.

Figure 4. Block Diagram of Floating Point Unit

IV. FUNCTION APPRIXIMATION

Both Sigmoid and tanh functions are modelled as below
for realization in FPGA.

Sigmoid(z) = 1.0/(1.0+e-z) (3a)

tanh(z) = (ez - e-z) / (ez + e-z) (3b)

Common to both equations (3) and (4) is the function
block exponentiation of the variable z. This is approximated
as

Equation 3(a), approximates the exponentiation with a
maximum error of 0.04% at the maximum input range. This
is considered reasonable approximation for AN. Based on
this approximation, equations (1) and (2) are realized in
FPGA as shown in figures 5 and 6, respectively.

Figure 5. Internal Operational Structure of tanh Function Realization in
FPGA

Figure 6. Internal Operational Structure of Sigmoid Function
Realization in FPGA

The block level structures of tanh function and sigmoid
function i.e., equation 3a and 3b are designed as shown in
figures 7 and 8 respectively. The Floating point unit (FPU)
is analyzed and designed by using Figure 4. The floating
point operations are defined by parameter named as opcode.
For example opcode = 00 indicates addition operation, 01
indicates subtraction operation, 11 indicates multiplication
operation and finally 10 indicates division operation of
floating point arithmetic unit. All the operands are defined in
terms of floating point arithmetic and represented with IEEE
754 format.

Figure 7. Block Diagram of Sigmoid Function Realization

Fig re 5 Internal Operational Str ct re of tanh F nction Reali ati

Figure 8. Block Diagram of tanh Function Realization in FPGA

All the TEMP variables in the above figures are defined
as respectively, to derive the mathematical expressions such
as equation (1), (2) & (3).
Temp 1= 2 -> 32’b 0000 0000 0000 0000 0000 0000 0000 0010
Temp 2= 6 -> 32’b 0000 0000 0000 0000 0000 0000 0000 0110
Temp 3= 24 -> 32’b 0000 0000 0000 0000 0000 0000 0001 1000
Temp 4= 120 -> 32’b 0000 0000 0000 0000 0000 0000 0111 1000
Temp 5= 720 -> 32’b 0000 0000 0000 0000 0000 0010 1101 0000
Temp 6 & Temp 7= 1 -> 32’b 0000 0000 0000 0000 0000 0000 0000 0001

V. IMPLEMENTATION & RESULTS

All the blocks of Artificial Neuron i.e., Floating Point
Unit (FPU), Tanh function and Sigmoid Function are
designed using Verilog HDL and simulated using Xilinx
ISE simulator of 14.7 versions. The device utilization for
Floating Point Unit, Tanh and Sigmoid expressions are
shown in the figures 9, 10 & 11 respectively. They are
shown in terms of no. of slices & no. of Flip-flop’s used in
the design.

Figure 9. Device Utilization for FPU in FPGA

Figure 10. Device Utilization for Tanh Function in FPGA

Figure 11. Device Utilization for Sigmoid Function in FPGA

Simulation Waveforms are shown in the figures 12 & 13.
Figure 12 shows the simulation waveform of floating point
unit with multiplication operation. Input A[31:0] is defined
as 01000000001000000000000000000000, input B[31:0] is
defined as 01000000101000000000000000000000 and
output is observed as

O[31:0]= 01000000110010000000000000000000

Figure 12. Simulation Waveform for FPU in FPGA

Figure 13 shows the Simulation analysis of Tanh
mathematical expression in which x is defined in terms of
floating point arithmetic values.

Figure 13. Simulation Waveform for Tanh Function in FPGA

Table 1 gives the details of Floating point unit, Sigmoid
expression and tanh expression in terms of gate count
(Number of Slices), CPU time and Power usage (in terms of
watts).

All the blocks are implemented on FPGA with the
respective specifications.
Family – Spartan 3
Device – XC3S400
Package – PQ208
Speed - -4/-5

TABLE I.
AREA VS CPU TIME VS POWER USAGE

Blocks Gate
Count

CPU
Time

Power
Usage

Floating
Point Unit

2432 0.36 sec 0.016

Sigmoid
Expression

2826 0.39 sec 0.019

Tanh
Expression

2703 0.41 sec 0.025

VI. CONCLUSIONS

Realization of Hyperbolic Function in FPGA is
demonstration through Verilog code in Xilinx, ISE 14.7, and
simulation tool. Popularly known two activation functions,
generally used with real number feature vector, are realized
with an overall device utilization of 35%. The design is
based on behavioral model. However, it is also possible to
realize the Artificial Neuron based on structural model for
improving the efficiency of device utilization. The function
approximation is reported with an accuracy of 0.5. With an
overall cycle time 0.41 seconds with a clock period of 100
MHz. The work reported is considered as building block for
realizing a deep neural network of any number of hidden
layers with each layer having a finite number of Artificial
Neurons. The work can easily be extended to cover other
activations functions like ReLU, used in deep belief
networks.

REFERENCES

[1] “Neural Nets for Thermodynamic properties”, R.V.S
Krishna Dutt, J Krishnaiah, Proceedings of the First
International conference on Computational Intelligence and
Informatics, Advances in Intelligent Systems and
Computing, vol 507, Spinger, Singapore., 2017

[2] “System and Neural Net Methods for Signal Validation of
Power Plant Measurement Data”, R.V.S.Krishna Dutt,
J.Krishnaih, Patent No.160123RD

[3] “VLSI Implementation of Deep Neural Network Using
Integral Stochastic Computing”, Arash Ardakani,, François
Leduc-Primeau, Naoya Onizawa, Takahiro Hanyu, Warren
J. Gross, arXiv:1509.08972v2 [cs.NE] 24 Aug 2016

[4] “Design and Implementation of Neural Network Based
circuits for VLSI testing”, K.P. Sridhar, B. Vignesh, S.
Saravanan, M. Lavanya and V. Vaithiyanathan, World
Applied Sciences Journal 29 (Data Mining and Soft
Computing Techniques): 113-117, 2014.

[5] “Design and Analog VLSI Implementation of Artificial
Neural Network”, Bapuray.D.Yammenavar,
Vadiraj.R.Gurunaik,Rakesh.N.Bevinagidad
Vinayak.U.Gandage, International Journal of Artificial
Intelligence & Applications (IJAIA), Vol.2, No.3, July
2011.

[6] “Floating Point Trigonometric Functions for FPGAS”,
Jeremie Detrey, Florent de Dinechin, IEEE, 2007.

[7] “Efficient Double-Precision Cosine Generation”, Derek
Nowrouzezahrai et al, Department of Electrical and
Computer Engineering University of Waterloo, 2006.

[8] “VLSI implementation of a Neural Network Model”, Hans
P. Graf, Lawrence D. Jackel, and Wayne E. Hubbard
AT&T Bell Laboratories, IEEE Computer, 1988

[9] “VLSI implementation of artificial neural network based
digital multiplier and adder”, Ranjeet Ranade, Sanjay
Bhandari, A.N.Chandorkar, VLSID '96 Proceedings of the
9th International Conference on VLSI Design: VLSI in
Mobile Communication, January 03 - 06, 1996

[10] “Close Approximations of Sigmoid Functions by Sum of
Steps for VLSI Implementation of Neural Networks”,
Valeriu Beiu, Jan Peperstraete, Joos Vandewalle, Rudy
Lauwereins, The Scientific Annals, Section: Informatics,
vol. 40 (XXXX), no. 1, 1994.

[11] “VLSI Design Techniques for Floating Point
Computation”, B.K.Bose, Ph.D Thesis, UC Berkeley, 1988.

