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I. INTRODUCTION

AND, OR and NOT. Focus of Jeremie Detrey et al [6] is on 
implementing floating-point elementary functions on 
FPGAs which is contemporary problem. They report 
trigonometric function approximation based on last bit 
accuracy. Derek Nowrouzezahrai et al [7] has presented a 
computationally efficient algorithm for cosine function 
based on Taylor's series approximation along with 
simulation results on Altera Stratix II FPGA. Series 
approximation is truncated based on accuracy in the last bit 
weight of the mantissas.  P. Graf [8] designed and 
implemented a VLSI circuit for neural network for 
classification, particularly for image processing application, 
consisting of an array of 54 amplifiers with inputs and 
outputs interconnected through a matrix of resistive 
elements. All of the coupling elements are programmable 
resistive connection which can be turned on or off. Ranjeet 
Ranade [9] et al describes a technique to realize a novel 
digital multiplier used in Artificial Neural Network (ANN)
and studied a generalized `Energy Function' for multiplier 
and its hardware realization by combining conventional 
digital hardware with a Neural Network. The design of 
Neurons, and the digital multiplier are described in this 
paper along with the simulation results. Valeriu Beiu [10] 
proposed a method to compute sigmoid function and its 
derivative in digital hardware by sum of steps and suggested 
that such algorithms are area-efficient. B.K. Bose [11] 
research was one of the earliest in floating point operation 
realizations in VLSI. Focus of research world over in the 
area of VLSI realization of ANN is on (a) efficient 
realization of floating point operations with real numbers (b) 
realization of efficient and accurate representation of 
functions (c) realization of artificial neuron and the feed 
forward ANN. Real time realization of the neural net with 
feed forward mode in FPGA is of recent interest to 
researchers. Both structural and behavioral models can be 
considered for implementation of ANN in FPGA. 
Behavioral Models and realization of an AN with different 
activation functions along with a floating point algebraic 
operator for real valued inputs, in FPGA environment is 
reported in this paper.

II. ARTIFICIAL NEURON

Fundamental building block of Artificial Networks is 
Artificial Neuron, also called as Perceptron. Figure 1 
describes a typical AN. 

Rapid progress in Machine Learning in the last decade is 
opening opportunities for application of Deep Neural 
Networks and Machine Learning in real time control, 
monitoring and diagnostics of power and process 
applications. Enthalpy based real time control and sensor 
data reconciliation of power plants require repeated usage of 
steam and gas properties along with their Jacobian and 
Hessians. Steam and gas properties are, generally, 
represented in the form of complex Gibbs free energy or 
Helmholtz free energy equations.  The properties are 
represented at discrete values and obtaining the function 
values and their derivatives is carried out by repeated calling 
of the above complex functions. This is computationally 
prohibitive. Krishna Dutt et al [1,2] reported a compact 
ANN representation of these properties for simultaneous 
obtaining of the properties and their derivatives along with 
their application to real time data reconciliation of power 
plant sensor data.  Arash Ardakani et al [3] proposed an 
integer form of stochastic computation for an efficient 
implementation of a Deep Neural Network based on integral 
stochastic computing. The proposed architecture was 
demonstrated on a Virtex7 FPGA, resulting in 45% and 62% 
average reductions in area and latency.  K.P. Sridhar et al [4]
studied a testing method for VLSI based single neuron 
architecture with multiple inputs and one output for bench 
marking against ISCAS85-C17 circuit. Experimental results 
were reported on XILINX Spartan III FPGA. Bapuray.D.
Yammenavar eta al [5] demonstrated an analog VLSI 
implementation with memory refresher circuits of a neural 
network; the design is adopted for digital operations like 
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Figure 1. Structure of Artificial Neuron (AN)

AN structure consists of m inputs and their associated 
weights, a summer of weighted inputs and a mapping 
function that transforms the sum to an output.  This function 
can be any differentiable function. Sigmoid, Tanh, ReLU are 
some of the widely used functions.  Figure 2 shows the 
output of these two functions i.e., tanh(x) and sigmoid.

Equation (1) describes the functioning of an AN

Z = (∑wi xi + b) (1)
y= f(Z) (2)

In general, an AN has a multivariate input (xi), weight 
vector and a mapping function. A summer block which (Z) a 
weight sum y the input vector (xi). The mapping function (f) 
transforms the weighted input to the output (y). The 
mapping function can be any analytic function of at least 
first order continuity. The inputs (x) are normalized to be 
within (-1,1) or (0,1) band an application, however, the 
weights can be any real number. The output of y is obtained 
to be within (0,1) or (-1,1) for sigmoid or tanh respectively. 
There are many other possible functions of which ReLu has 
become very popular, particularly for dealing with binary 
inputs, where the above two functions are useful in case of
real valued inputs. ReLu is generally used in deep beleif 
networks. Sigmoid is more popularly used in multi layer 
neural networks (MLP) or deep neural networks. The 
structure on learning functions of an AN is based on studies 
of biological neuron focus in mammalian brains. These 
biological neurons reveal that learning is either 
discriminative or generative in nature. A single AN tries to 
emulate these two capabilities through the learning function.

Figure 2. Activation Functions of AN

The output of these two functions is limited to [-1,1]. 
However, functions like ReLU, figure 3 does not limit the 
output to be within [-1,1].  From the above general purpose 
Floating Point Unit (FPU) with basic operations, 
multiplication, division, addition and subtraction, and a 
function mapping units are required for realization of an AN 
model in FPGA. Following describes design of these two 
with results obtained from the implementation in Verilog 
Code.

Figure 3. ReLU Activation Function.

        III. FLOATING POINT UNIT

Floating point unit is defined as math coprocessor. 
Mainly it is designed to perform various operations such as 
addition, subtraction, multiplication, division, square root 
and bit shifting etc. It even can perform other operations 
such as exponential & trigonometric operations which are
defined as transcendental functions. In computer 
architecture applications one or more floating point units can 
be inserted within the central processing units (CPU's).  
Design and realization of FPU are based on IEEE 754 
standard as shown in figure 4. Generally IEEE 754 standard 
specifies the interchange and arithmetic equation formats 
and methods for binary and decimal floating point arithmetic 
in computer & signal processing applications. Even this 
standard interchanges the bit strings that may be used to 
exchange the floating point data in an efficient form to 
compact form. Real number inputs (OP1,Op2) are converted 
to IEEE 754 representation and algebraic operators ADD, 
SUB, MULTI and DIV are operated on the converted 
operands. Figure 9 shows the summary details of device 
utilization, in which highest utilization is on number of slots
(slices) to the extent of 35%, which can be considered 
reasonable.



Figure 4. Block Diagram of Floating Point Unit

IV. FUNCTION APPRIXIMATION

Both Sigmoid and tanh functions are modelled as below 
for realization in FPGA.

Sigmoid(z) =  1.0/(1.0+e-z)                                         (3a)

tanh(z) = (ez - e-z) / (ez + e-z)                                       (3b)

Common to both equations (3) and (4) is the function 
block exponentiation of the variable z. This is approximated 
as

Equation 3(a), approximates the exponentiation with a 
maximum error of 0.04% at the maximum input range. This 
is considered reasonable approximation for AN. Based on 
this approximation, equations (1) and (2) are realized in 
FPGA as shown in figures 5 and 6, respectively. 

Figure 5. Internal Operational Structure of tanh Function Realization in 
FPGA

Figure 6. Internal Operational Structure of Sigmoid Function 
Realization in FPGA

The block level structures of tanh function and sigmoid
function i.e., equation 3a and 3b are designed as shown in 
figures 7 and 8 respectively. The Floating point unit (FPU) 
is analyzed and designed by using Figure 4. The floating 
point operations are defined by parameter named as opcode.
For example opcode = 00 indicates addition operation, 01 
indicates subtraction operation, 11 indicates multiplication 
operation and finally 10 indicates division operation of 
floating point arithmetic unit. All the operands are defined in 
terms of floating point arithmetic and represented with IEEE 
754 format.

Figure 7.  Block Diagram of Sigmoid Function Realization

Fig re 5 Internal Operational Str ct re of tanh F nction Reali ati



Figure 8. Block Diagram of tanh Function Realization in FPGA

All the TEMP variables in the above figures are defined 
as respectively, to derive the mathematical expressions such 
as equation (1), (2) & (3).
Temp 1= 2 -> 32’b 0000 0000 0000 0000 0000 0000 0000 0010
Temp 2= 6 -> 32’b 0000 0000 0000 0000 0000 0000 0000 0110
Temp 3= 24 -> 32’b 0000 0000 0000 0000 0000 0000 0001 1000
Temp 4= 120 -> 32’b 0000 0000 0000 0000 0000 0000 0111 1000
Temp 5= 720 -> 32’b 0000 0000 0000 0000 0000 0010 1101 0000
Temp 6 & Temp 7= 1 -> 32’b 0000 0000 0000 0000 0000 0000 0000 0001

V. IMPLEMENTATION & RESULTS

All the blocks of Artificial Neuron i.e., Floating Point 
Unit (FPU), Tanh function and Sigmoid Function are 
designed using Verilog HDL and simulated using Xilinx 
ISE simulator of 14.7 versions. The device utilization for 
Floating Point Unit, Tanh and Sigmoid expressions are 
shown in the figures 9, 10 & 11 respectively. They are 
shown in terms of no. of slices & no. of Flip-flop’s used in 
the design.

Figure 9. Device Utilization for FPU in FPGA

Figure 10. Device Utilization for Tanh Function in FPGA

Figure 11. Device Utilization for Sigmoid Function in FPGA

Simulation Waveforms are shown in the figures 12 & 13. 
Figure 12 shows the simulation waveform of floating point 
unit with multiplication operation. Input A[31:0] is defined 
as 01000000001000000000000000000000, input B[31:0] is 
defined as 01000000101000000000000000000000 and 
output is observed as 

O[31:0]= 01000000110010000000000000000000

Figure 12. Simulation Waveform for FPU in FPGA

Figure 13 shows the Simulation analysis of Tanh 
mathematical expression in which x is defined in terms of 
floating point arithmetic values.



Figure 13. Simulation Waveform for Tanh Function in FPGA

Table 1 gives the details of Floating point unit, Sigmoid 
expression and tanh expression in terms of gate count
(Number of Slices), CPU time and Power usage (in terms of 
watts).

All the blocks are implemented on FPGA with the 
respective specifications.
Family – Spartan 3
Device – XC3S400
Package – PQ208
Speed - -4/-5

TABLE I.
AREA VS CPU TIME VS POWER USAGE

Blocks Gate 
Count

CPU 
Time

Power 
Usage

Floating 
Point Unit

2432 0.36 sec 0.016

Sigmoid 
Expression

2826 0.39 sec 0.019

Tanh
Expression

2703 0.41 sec 0.025

VI. CONCLUSIONS

Realization of Hyperbolic Function in FPGA is 
demonstration through Verilog code in Xilinx, ISE 14.7, and 
simulation tool. Popularly known two activation functions, 
generally used with real number feature vector, are realized 
with an overall device utilization of 35%. The design is 
based on behavioral model. However, it is also possible to 
realize the Artificial Neuron based on structural model for 
improving the efficiency of device utilization. The function 
approximation is reported with an accuracy of 0.5. With an 
overall cycle time 0.41 seconds with a clock period of 100 
MHz. The work reported is considered as building block for 
realizing a deep neural network of any number of hidden 
layers with each layer having a finite number of Artificial 
Neurons. The work can easily be extended to cover other 
activations functions like ReLU, used in deep belief 
networks.   
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