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Abstract: An image is defined as a function of weighted graph 
encoded with Laplacian matrices and its associated kernel 
similarities. An Iterative Graph (IG)-based Image Restoration 
with data-adaptive objective function is used to deblur the 
images that are degraded due to unconstrained conditions. From 
a normalized graph Laplacian, cost function is defined with a 
new regularization term and new data fidelity term. From the 
fast symmetry preserving balancing matrix, the normalizing 
coefficients are derived. This results in determining the spectral 
properties like symmetric, positive semi-definite and returning 
zero vector when applied to a constant Image. This algorithm 
has inner and outer iterations.  In the inner conjugate gradient 
iterations, an updated objective function is minimized and the 
similarity weights are recalculated with earlier estimate in each 
outer iterations. The performance of this method is more 
effective for various restoration problems like sharpening, 
deblurring and denoising. Experimental results show that IG-
based algorithm performs more powerfully in terms of objective 
criteria and visual quality.

Index Terms: Balancing matrix, Graph Laplacian, Conjugate 
Gradient, Deblurring, Kernel similarity matrix, Normalizing 
coefficients.

I. INTRODUCTION  

Many of the real world pictures or images are degraded in 
some sense due to variation in environmental conditions, 
camera setting, relative motion between camera and subject, 
etc. The purpose of restoration algorithm is to undo the 
undesirable distortions like noise, blur from a degraded 
image. This paper concentrates mainly on the distortions 
caused by blurring. The blurring process in linear shift 
invariant Point Spread Function (PSFs) is represented by a 
linear model as

y= Af + n (1) 
where, y is N x N ordered vector representation of a input 
blurred and noisy image, latent image in vector form is 
represented as f, n is the noise vector which is independent 
and equivalently distributed zero mean noise with standard 
deviation σ. Based on PSFs and type of assumptions, Blurring 
matrix A of size N2 x N2 is constructed.

Frequently used deblurring methods depend on optimizing 
the cost function which is expressed in the form

E(f) = ||y-Af||2 + η R(f)                                   (2)
with respect to unknown image vector f. The first term in
above equation is ‘data fidelity term’ and the second term is 
‘prior term’ which is used for regularizing the ill-posed 
problem. The amount of regularization is controlled by
parameter η. Based on nature of blurs and type of 

regularization parameter, many deblurring algorithms are 
classified. Most of the deblurring algorithms are based on 
Total Variation (TV)-type regularization [1]. Specific 
definition of TV term is varied and suitable optimization 
methods are chosen to define the cost function. Nonlocal 
differential operator as regularization term with different 
norms is used in other methods [2]. Example-based manifold 
priors are used for regularization in [3]. The prior term is 
added to estimate a gradient distribution in [4]. Hessian norm 
regularization is used to solve deblurring problem in 
biomedical applications [5]. BM3D method is one of the most 
recent algorithm uses generalized Nash equilibrium approach
[6], which balances the objective functions for denoising and 
deblurring. This algorithm is best deblurring method for 
symmetric blurs like Out-of-focus and Gaussian blurs. A 
hyper-Laplacian [7], is based on statistics is used for motion 
deblurring applications. In [8] a progressive inter-scale, intra-
scale approach is used for non-blind deconvolution. Different 
derivative terms are used as cost function for motion 
deblurring [9].  The proposed approach is kernel similarity-
based image deblurring with novel data adaptive objective 
function. This approach can also be used for image denoising 
and sharpening.

The block diagram of the proposed iterative deblurring 
method is shown in Fig. 1. This method consists of outer and 
inner iterations. In each outer iteration k, an updated objective 
function is minimized and corresponding estimate f’(k) is 
obtained in inner iterations using Conjugate Gradient (CG). 

f’(k-1)    M    W       f’(k)

Figure 1. Block diagram of Iterative Graph (IG)-based Image 
Restoration method

The cost function used in the proposed method is based on 
new interpretation of a normalized graph Laplacian. It 
contains a normalized regularization term and data fidelity 
term. Fast symmetry preserving matrix balancing algorithm 
is used to extract the Normalizing coefficients [10], which 
results in spectral properties (symmetric, positive semi-
definite) for the graph Laplacian. As the cost function is 
considered in quadratic form, the filtering operation of the 
objective function represents the spectral analysis for the 
restoration algorithm. This results in effective 
implementation of the algorithm using Conjugate Gradient 
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(CG) and fast sparse matrix-vector products. Kernel 
similarity values are initially computed differently by 
considering blurry image and denoised form of the noisy 
input. The contribution of ringing and noise articrafts is
avoided. Inner CG iterations are stopped when the denoised 
image is exploited as plug-in estimator of blurred clean image 
Af. This is used in Prediction of Mean Squared Error (PMSE) 
measure.  Performance of this algorithm is improved by 
updating the weights during the outer iterations. These are 
computed from similarity weights of the input image through 
outer iterations from their enhanced versions. Denoising and 
Sharpening methods are used as a special case in this 
proposed cost function. This approach can handle different 
varieties of Motion and symmetric blur PSFs.

The paper is organized as follows: Section II discusses on 
how to derive filtering and symmetric kernel similarity 
matrices, which are basic building blocks of the algorithm. 
Further the spectral properties of normalized Laplacian 
matrix are discussed. Section III presents the objective 
function and proposed procedure to optimize it for final 
estimate. Section IV focuses on the implementation details. 
Experimental evaluation for Gaussian, motion and out-of-
focus PSFs are presented in section V.  Section VI is devoted
to conclusion and discussion on future directions.

II. DERIVATION OF BASIC BUILDING BLOCK MATRICES

Kernel similarity matrix M and doubly stochastic 
symmetric matrix W are the main building blocks in the 
algorithm. A normalized Laplacian matrix is defined from 
these matrices whose spectral properties are significant for 
analyzing the nature of the algorithm.

A. Kernel Similarity Matrix (M) and Filtering Matrix (W)
From the valid kernel similarity function in [11], each

(i,j)th element of the kernel similarity matrix M is calculated
using non-local means (NLM) as [12]

M i j exp
2

k2                                   (3)
where f’i   and f’j are strip patches around the pixels i and j of 
a image f’ and k is called smoothing parameter. From the 
estimate of previous iteration, kernel similarity weights (M) 
in each outer iteration are recomputed. The resultant M is a 
symmetric non-negative matrix. M matrix is sparse, as it 
computes the similarity between each patch and 
neighborhood patches around it (window size is 9 x 9). The 
Sinkhorn matrix balancing procedure [13] is applied to matrix 
M that results in doubly stochastic filtering matrix W, where 
W = L-1/2ML-1/2 (L= diagonal scaling matrix. As W is 
symmetric, it can be decomposed with orthonormal matrix O 
as W= OSOT. The columns of O are Eigen vectors of W and 
S is a diagonal matrix that consists of Eigen values of W as 
its diagonal matrix, S= diag { λ1, λ2, λ3,....λN}. Applying W to 
a signal, preserves the DC component of the signal, as the 
largest Eigen value is equal to 1 exactly with corresponding 
DC vector. This property is more important in filtering 
operations and the spectral analysis of W matrix reveals its 
explicit low pass nature.

B. Normalized Graph Laplacian matrix
The normalized graph Laplacian matrix for image filters is 

defined as

(4)
The set of Eigen vectors of I-W are considered as basis 
function of the graph and its Eigen values are treated as graph 
frequencies. Basically the Laplacian of I-W is high pass in 
nature and it can be interpreted as data adaptive Laplacian 
filter when applied to an image [14]. Based on the type of 
application, it integrates different filters in data term which is 
attached with regularized term.  From the concept of Marcov 
chains, element (i,j) of D-1M represents the probability of 
shifting from one node i to node j of the graph in one step 
[15]. In Image deblurring applications, they provide fast 
methods in solving large linear system of equations when 
optimizing with CG methods. The linear equations are 
symmetric and positive definite. This normalized graph 
Laplacian I-W provides better performance than with un-
normalized graph Laplacian.

The difference operator to the proposed normalized graph 
Laplacian is represented as

df i j M i j f(j)
L j ,j

f(i)
L i,i

       (5)

where L(i,i) and L(j,j) corresponds to ith and jth elements of 
the diagonal matrix L, derived from Sinkhorn matrix 
balancing algorithm [13]. Considering the divergence 
operator [16] with Laplace operator, the normalized 
Laplacian I-L-1/2ML-1/2 is represented as

i 1
L i i

M i jj j~i
f(i)
L i i L j j

6)

Thus the resultant regularization term is obtained a

R
1

2
M i jj=i L i i L j j

2
N
i 0

      R f T I W f                                                  (7)
The Laplace operator in equation (6) is a second order 
derivative operator, which represents the effect of normalized 
laplacian at each pixel i, when applied to an input vector f.

III. DEBLURRING METHOD

This algorithm consists of inner and outer iterations. Data 
adaptive matrix M is computed to estimate the unknown 
image initially and it is gradually improved though iterations. 
The matrix W is estimated in each iteration and used to 
minimize the given objective with unknown image f

E f y Af T I β I W y Af ŋzT I W
(8)

where β > -1 and η > 0 are parameters related to noise and 
blur. First term determines the blurred and filtered version of 
Input y. Frequency selectivity is defined by β, based on 
amount of blur and noise. Second term is adaptive-data 
difference term which is based on normalized Laplacian 
matrix I-W. The filtering process of the cost function in [17] 
is more influenced on the objective function as 

I β I W (y Af |+ ŋ|| I W ||
      (9)

the term I+ β(I-W) = OɅOT is semi-definite and symmetric 
matrix. The matrix {I+ β(I-W)}1/2=OɅ1/2OT has filtering 
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nature identical to that of I+β(I-W). From Eigen 
decomposition of a filtering matrix W, the ith diagonal 
element (λi) of Ʌ matrix can be represented as 1+ β(1-λi). I+ 
β(I-W) behaves as sharpening filter on y-Af residuals where 
I-W is high pass filter with  β>0. The fidelity term undergoes 
different derivatives of the residuals to avoid deblurring 
problems in real images. Similar analysis is adapted to second 
term in equation (9) that forms adaptive high pass filters. This 
results in avoiding unpleasant artifacts due to noise, ringing 
artifacts, etc and maintains finest details in the restored image 
with best solution. Its gradient is set to zero by minimizing 
the cost function at each step

E f 2AT I β I W y Af
2ŋ I W f 0                                   ( )

which is symmetric and positive definite system of linear 
equations.

AT I β I W A ŋ I W f
AT I β I W y                       (11)

Further Conjugate Gradient is used and A and AT are 
interpreted as blurring with their power spectral functions. 
Experiments are carried out in three outer iterations to get 
expected deblurred output in many cases.

A. Spectral Analysis
The minimized cost function in equation (9) is represented

as
f' F A W AT I β I W (12)

The significance of equation 12 is that y is filter by I+ β(I-W), 
and it is multiplied by transpose of a blurring matrix A 
through back projection and applied to a symmetric matrix 
F(A,W). The spectral decomposition of symmetric matrix 
F(A,W) is represented as ΘϓΘT. The spectral filtering 
analysis of the corresponding deblurring result at each outer 
step is represented by the columns of a matrix Θ, which serves 
as orthonormal basis to filter the vector AT(I+β(I-W))y.  The 
basis Eigen vectors in Θ with their corresponding four largest 
Eigen values of F(A,W) are shown in figure 3. This reveals 
the data-adaptive character of the filter.

(a)           (b)                 (c)               (d)               (e)  
Figure 2. (a) Original 61 × 61 image, (b), (c), (d) and (e) are the  

Eigenvectors of F(A,W) that corresponds to four largest Eigen values for   β 
= 0.7 and η = 0.2.

B. Image Denoising
With A=I in equation 8, image denoising problem is 

reduced.  Based on SURE-based estimated MSE approach 
[17], optimal value of regularization parameter η is selected. 
Further improvement can be obtained by iterative approach 
with some existing kernel based denoising algorithms.

C. Image Sharpening
Set A=I and η = 0, then the cost function in equation 8 

becomes as
E y T I β I W y (13)

Simple steepest decent method is used to optimize the above 
objective function

f' ′ 1 μ I β I W y f' 1            (14)
By selecting zero initialization with f’0=0 and assigning step 
size with μ=1, the first iteration is in the form

′ I β I W y (15)
Some part of high pass filtered version of the input image is 
added adaptively with β>0. W consists of some amount of 
information of the original image and also about the nature of 
blurring process. Therefore, data-adaptive sharpening 
technique was implemented in equation 15.

IV. IMPLEMENTATION DETAILS

Initially calculate kernel similarity matrix M, from final 
estimate of the preceding step, i.e from   for each outer 
iteration. For all the test images, the regularization parameter 
values η and β are kept fixed and these values are chosen 
based on blurring and noise variance. The parameters η and β 
are selected between [0, 0.4] and [0, 1]. Based on the amount 
of noise and severity of blurring, these values are chosen 
accordingly. Each step is initialized with suitable estimate 
from earlier step so that this iterative algorithm converges 
very quickly. Based on the amount of degradation, the 
maximum number of outer and inner iterations is set in 
advance. The iterations will be stopped according to the 
estimate of Predicted Mean Square Error (PMSE) which is 
represented as

              (16) 
where Af’is the required deblurred image. The Conjugate 
Gradient Iterations can be stopped when the following 
condition is satisfied.

     (17)

V. RESULTS

The effectiveness of this algorithm is verified with some 
number of experiments. Experiments are set up for Gaussian, 
nonlinear camera motion and out-of-focus blur. To get the 
final estimate for color image, this algorithm is applied 
separately to R, G and B channels. These experiments are 
implemented using MATLAB functions. Structurally
Similarity (SSIM) index and PSNR in dB are used for 
comparison purposes. A 25 x 25 Gaussian blur with standard 
deviation σ =1.6 is convolved with a set of color images. A 
disk function with radius r= 5 is used to produce Out-of-focus 
blur and based on [18] motion blur images are generated. 
These blurred images are added with white Gaussian noise 
with variance equal to 0.2 and 1 respectively. The experiment 
is performed by considering i) Patch size of 5x5, ii) Number 
of outer iterations as 3, iii) Search neighborhood size as
11x11 and iv) Number of inner iterations as 30. Table I 
summarizes h, η, β parameter values and maximum number 
of inner CG iterations that are used for Gaussian and out-of-
focus blur images.
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TABLE I.
DIFFERENT SET OF PARAMETERS IN COLOR IMAGE DEBLURRING METHOD

This method runs four times faster than implemented on 
IDDBM3D algorithm on a 2.8GHz Intel Core i7 processor. 
The two-step IDDBM3D algorithm decouples deblurring and 

denoising process. It depends on suitable estimate from other 
deblurring algorithm in its grouping phase. But Iterative 
Graph based method relies on initial denoising and it handles
noise amplification issues in much better way. Table II and 
III summarizes the numerical deblurring results for the 
images degraded with Gaussian and out-of-focus blur. This 
method is compared with IDDBM3D algorithm with σ2 = 0.2 
and σ2 = 1.  Images of Book-Shelf, Brain Tumor, Human 
Face, Satellite Image and Scenery are collected. Figure 3 
shows the deblurring results for the images degraded with 
Gaussian blur. The original images are in first row. Gaussian 
blur images are in second row and third row shows deblurred 
images. Figure 4 shows Out-of-focus blurred and deblurred 
images. This algorithm performs better visual quality which 
can be noticed in smooth face parts of an image. Table IV 
illustrates the significant results in case of motion deblurring. 
These are compared with Hyper-Laplacian Method. Figure 5 
shows motion blurred and deblurred images. It is observed 
that Iterative Graph (IG)-based Image Restoration method
produces high quality outputs.

TABLE II.
PSNR AND SSIM PERFORMANCE OF AN ITERATIVE GRAPH (IG) BASED METHOD AND IDDBM3D WITH KERNEL SIZE OF 25 X 25 AND WITH STANDARD 

DEVIATION 1.6 FOR GAUSSIAN BLUR

Blur/Images
Gaussian (σ2 = 0.2) Gaussian (σ2 =1)

Iterative Graph-based method IDDBM3D method Iterative Graph-based method IDDBM3D method
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Scenery 28.99 0.9793 28.57 0.9726 28.62 0.9683 27.89 0.9576

Human Face 33.84 0.9756 33.18 0.9693 32.94 0.9630 32.34 0.9522

Brain Tumor 
Image

28.80 0.9732 27.88 0.9677 28.34 0.9677 28.29 0.9624

Satellite 
Image

28.36 0.9791 27.56 0.9760 27.22 0.9675 26.24 0.9623

Book-Shelf 27.25 0.9827 28.25 0.9841 26.27 0.9717 27.31 0.9787

TABLE III.
PSNR AND SSIM PERFORMANCE OF AN ITERATIVE GRAPH (IG) BASED METHOD AND IDDBM3D WITH DISK FUNCTION OF RADIUS 7 FOR OUT-OF-FOCUS 

BLUR GENERATED IMAGES

Blur/Images Out-of-focus(σ2 = 0.2) Out-of-focus (σ2 =1)
Iterative Graph-based method IDDBM3D method Iterative Graph-based method IDDBM3D method

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Scenery 28.64 0.9542 28.44 0.9511 27.80 0.9369 26.90 0.9178

Human Face 33.06 0.9489 32.28 0.9609 31.42 0.9201 30.85 0.9058

Brain Tumor 
Image

29.71 0.9524 29.35 0.9514 27.13 0.9050 27.09 0.9003

Satellite Image 28.08 0.9609 26.92 0.9542 25.75 0.9177 24.04 0.8974

Book-Shelf 27.60 0.9711 28.19 0.9709 25.63 0.9405 24.64 0.9337

Experiment η β h Inner 
CG 

iteration
s

Gaussian (σ2 = 0.2) 0.003 0.23 5.3 100

Gaussian (σ2 =1) 0.0078 0.001 7.7 100

Motion Blur (σ2 = 0.2) 0.005 0.41 6.2 100

Motion Blur (σ2 = 1) 0.01 0.01 6.6 80
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TABLE IV.
PSNR AND SSIM PERFORMANCE OF AN ITERATIVE GRAPH BASED METHOD AND HYPER-LAPLACIAN METHOD FOR CAMERA MOTION BLUR

Blur/Images Motion (σ2 = 0.2) Motion (σ2 =1)
Iterative Graph-based method Hyper-Laplacian 

Method
Iterative Graph-based 

method
Hyper-Laplacian Method

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Scenery 29.47 0.9741 29.74 0.9732 28.48 0.9521 28.43 0.9507

Human Face 33.54 0.9636 33.53 0.9624 32.15 0.9354 31.99 0.9351

Brain Tumor 
Image

31.11 0.9791 31.01 0.9766 29.75 0.9507 20.21 0.9354

Satellite Image 29.47 0.9743 29.37 0.9734 28.45 0.9525 28.42 0.9507

Book-Shelf 28.81 0.9857 29.24 0.9839 27.31 0.9711 27.61 0.9680

Figure 3. Deblurring example for different Images: First row is  Oiginal Image, second row is Gaussian blur Image and third row is deblurred output image

Figure 4. Deblurring examples for Motion Blur: First row are Motion blur Images and second row are deblurred output images
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Figure 5. Deblurring examples for Out-of-focus: First row are Out-of-focus blur Images and second row are deblurred output images.

VI. CONCLUSIONS

A wide framework for an Iterative graph based image 
restoration method has been implemented. An Objective 
function couples the data and prior terms through Laplacian 
matrices. The data adaptive approach is improved by graph 
based filtering approach. This method has been verified for 
different blurring conditions with some existing state of art 
algorithms. Based on the appropriate selection of kernel 
similarity matrix K, many different restoration tasks can be 
handled. This method can be further extended with blind 
image deblurring techniques and applied for more 
complicated non-uniform blurring conditions.
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