
CVR Journal of Science & Technology, Volume. 1, October 2011

Lifetime Evaluation of Wireless Sensor Networks
Wg Cdr Varghese Thattil (Retd)1 and Dr. N Vasantha2

1 CVR College of Engineering, Department of ECE, Ibrahimpatan, R.R.District, A.P., India
Email:mailthattil@gmail.com

 2 Vasavi College of Engineering, Hyderabad, A.P., India
 Email: vasanthavasantha@rediffmail.com

Abstract—Wireless Senor Networks (WSN) are coming of in
age and are being installed in many applications. Some of
the common monitoring applications are seismic, volcano
eruption, tsunami, structural, intruder detection, health,
habitat etc. Most of these applications of WSN are event
driven wherein the system should be able to sense an
occurrence of an event at an unknown future instant of time
when it occurs. If the WSN system fails to detect the event at
the time of occurrence the entire deployment of WSN fails
to achieve its purpose. WSN has a specified life time and
therefore in order to continue the operation of monitoring;
it is essential to know the operational life period of WSN
system. Knowledge of this will help in scheduling and
planning the required redeployment. WSNs are highly
resource constrained systems and most of the research in
the WSN has been carried out to improve the performance
under high resource constraints. The estimation of useful
life of Wireless Sensor Network can be carried out by
preparing a fault model of the WSN system. The system
fault model can be used to predict the system survivability.
The paper discuses the WSN fault model.

Index Terms—Wireless Sensor Networks, Quality of Service,
Fault model

I. INTRODUCTION

As the Internet has revolutionized our life via the
exchange of diverse forms of information readily among
a large number of users, Wireless Sensor Networks
(WSNs) is expected to revolutionize to provide “ambient
intelligence” where many different devices will gather
and process information from many different sources to
both control physical processes and to interact with
human users. WSNs will also be equally significant by
providing information regarding the physical phenomena
of interest and ultimately being able to detect and control
them or enable us to construct more accurate models of
the physical world. With the recent advances in the Micro
electromechanical Systems (MEMS) Technology, sensors
are becoming smaller and affordable. More and more
applications are being introduced using WSNs to monitor
environment, industrial process, battlefield, seismic,
health, habitat etc.

While a lot of research has been done on some
important aspects of WSNs such as architecture and
protocol design, energy conservation, routing,
localization etc.; not much work has been carried out to
generate a system model for WSN and thus estimate the
survivability of the WSN system. This is mainly because
WSNs are very different from traditional networks. In the
Internet, the network and transport layer protocols
ensures end-to-end reliability where as in the case of

WSNs this will not be optimal because of the unique
constraints like energy, memory, computational power
etc. Further sensor networks as a whole has a specific
task to be carried out depending upon the application and
therefore the WSN system models will be application
specific. These models then can be utilized to carry out
various performance evaluations.

Figure 1 shows a classification of remarkable papers

on WSNs, published on several leading IEEE and ACM
journals and conference proceedings [1]. As one could
expect, our study evidences that the 67% of the research
efforts have been carried into routing protocols (29%),
MAC protocols (14%), localization strategies (13%), and
energy efficiency (11%). Only the 5% of the considered
literature is related to WSNs reliability issues, and none
of them explicitly addresses fault forecasting issues. The
reliability of wireless networks has been addressed
primarily in the context of quality of service (QoS). The
main considerations have been routing and the overhead
taking care of energy consumption and broken
communication paths. However, a survey of literature
shows that hardly any attempt has been made to estimate
whether the WSN, as a system will be able to detect an
event if it occurs within a specified period of time, if so
with what confidence level.

In order to study and address Quality of Service (QoS)
issues in service-oriented systems, we need a model of
the system in question. Such a system-model allows us to
study important properties of the system. Systems can be
modelled at various levels of abstraction, ranging from
abstract mathematical frameworks such as stochastic
processes or queuing networks to system testbeds, i.e.
physical systems equipped with measurement and
experimentation infrastructure.

Figure 1. Classification of areas of research in WSN

CVR College of Engineering 32 DOI: 10.32377/cvrjst0107

CVR Journal of Science & Technology, Volume. 1, October 2011

Ideally, models at different abstraction levels should
be used, as different models can often complement each
other. A queuing-network model of a system, for
instance, may be used to efficiently study a large space of
parameters, and thereby arrive at general conclusions. A
testbed-model of the same system, in contrast, enables
measurements under realistic conditions, which serve to
validate the more abstract model, and to improve the
quality of the conclusions by providing realistic model
parameters.

Irrespective of their abstraction level, all system-
models allow us to study properties of the system. When
studying QoS issues we are particularly interested in the
behaviour of the system under various common faults or
disturbances. For instance, in a queuing-network model
we may compute job completion times, while in a testbed
we may measure response-times. Fault-models are
considered as parameters to a system model that
influence the modelled system’s QoS.

In order to use a system-model to study the effect of
faults on a system, we must be able to introduce models
for these faults into the system-model. Since with some
model classes the system-model may change significantly
when a model for a fault is introduced into it; we required
to obtain the same measures with the same interpretation
from the system-model, regardless of the employed fault-
model. That is, using the terminology of functional and
non functional behaviour, we require that the system-
model maintains the same functional behaviour and the
same system structure when we change the fault-model.
This clear distinction between the fault-model and the
system-model is common in fault-injection experiments
for dependability benchmarking, where one explicitly
describes a fault-load that the system is subjected to.

Fault Models: Many different types of faults have been
defined, some having orthogonal properties [2]. For
example, failstop behavior implies that the faulty system
ceases operation and alerts other processors of this fault.
Crash faults, on the other hand, assume that the system
fails and looses all of its internal state, e.g. the processor
is simply down. One speaks of omission faults when
values are not delivered or sent, e.g., due to a
communication problem. If outputs are produced in an
untimely fashion, then one speaks of a timing fault.
Transient faults imply temporary faults, e.g. glitches,
with fault free behavior thereafter. If transient faults
occur frequently, one speaks of intermittent faults. This
set of fault types is by no means complete and serves
only as a basic introduction. The definition of faults
seems to change with the application domain. For
instance, fault models suitable for computer
dependability may not necessarily match the behavior of
network and computer security applications.

The behavior of the faults with respect to other
processors can be described in simpler models which
have been used with in replication and agreement
algorithms. Specifically, fault models have been
considered whose main behavior types are benign, i.e.,
globally diagnosable, symmetric (faulty values are seen
equal by all non-fault processes) and asymmetric or

malicious, i.e., there are no assumptions on the fault
behavior [3].

The faults are generally divided into following three
types:

Bernoulli Trials: Fault is described as a Bernoulli-
distributed random variable. That is, the occurrence of the
fault is defined by a probability p. The typical examples
for this type are fault-models that reflect service
availability/unavailability,

General Random Variables: Fault occurrence in this
case is described by a random variable with a distribution
that is more general than Bernoulli. The distribution is
described by a distribution function (cumulative
distribution function, CDF), a complementary CDF
(CCDF) or a probability density function (PDF).

Stochastic Processes: A stochastic fault is a fault
whose occurrence or non-occurrence is predicted by one
or more random variables. It is not possible to show the
occurrence or non-occurrence of a stochastic fault by a
logical argument based on the design of the component.
That is, we cannot apply fault prevention. What we can
do with a stochastic fault is apply the laws of
mathematical probability to predict its likelihood.

II. FAILURES IN WIRELESS SENOR NETWORKS

Wireless sensors Network may have many nodes
deployed with each node having different sensors. Each
service running on node is expected to periodically send
the measurements of its sensors to an access point. If the
camera in one of the sensor node stops scanning and if
the node has not been designed to detect it and overcome
the situation; it has reached an erroneous state. The
sensor node thus not able to send the accurate data to the
access point causing a failure at the node as observed
from the access point. Here the defect in the camera is a
fault, the nonavailability of scanning is the incorrect state
and Access point observing the stationary camera is the
failure.

Sources of Faults in WSNs: Data delivery in sensor
networks is inherently faulty and unpredictable. Failures
in wireless sensor networks can occur for various reasons
[4].
1. Sensor nodes are fragile, and they may fail due to

depletion of batteries or destruction by an external
event. In addition, nodes may capture and
communicate incorrect readings because of
environmental influence on their sensing
components.

2. As in any ad hoc wireless networks, links are failure-
prone, causing network partitions and dynamic
changes in network topology. Links may fail when
permanently or temporarily blocked by an external
object or environmental condition. Packets may be
corrupted due to the erroneous nature of
communication. In addition, when nodes are
embedded or carried by mobile objects, nodes can be
taken out of the range of communication.

3. Congestion may lead to packet loss. Congestion may
occur due to a large number of nodes’ simultaneous

CVR College of Engineering 33

CVR Journal of Science & Technology, Volume. 1, October 2011

transition from a power-saving state to an active
transmission state in response to an event-of-interest.

4. Faults also occur because of the multihop nature and
mobility of the nodes which can cause link failures

Faults in Wireless Sensor Networks can occur at
several protocol layers of the system. Effect of the fault
in a particular layer can propagate to other layers in the
system. Faults normally propagate from the nodes
through the network to the sink. The figure 2 shows how
the fault propagates through various protocol layers and
components. It can be seen that in a sensor node; the
sensors, processor (CPU), memory, Network interface,
battery, enclosure for the node all of them can initiate a
fault. Another source of faults in sensor node is software
programmes that carry out routing, data acquisition,
Medium Access Control etc. In the network layer the
faults can be due to parameter variations in link, path,
environment, location, etc.

Power management in wireless networks is an
essential factor for their smooth function. Wireless nodes,
especially sensors, use small batteries for energy supplies
that in many cases cannot be replaced. Therefore, energy
conservation is a vital factor in a sustained network
lifetime.

The battery: lifetime determines how long one can use
a device. Battery modeling can help to predict, and
possibly extend this lifetime. Battery models are
combined with a workload model to create a more
powerful battery model. WSN devices rely on battery
energy to work. The energy stored in these batteries is
limited. So, it is important to use this energy as efficiently
as possible, to extend the battery lifetime. The lifetime of
the battery as the time one can use the battery before it is
empty. Note that, for rechargeable batteries, this is not the
same as the time one can use the battery before it stops
working properly.

The battery lifetime mainly depends on the rate of
energy consumption of the device. However, lowering
the average consumption rate is not the only way to

increase battery lifetime. Due to nonlinear physical
effects in the battery, the lifetime also depends on the
usage pattern. During periods of high energy
consumption the effective battery capacity degrades, and
therefore the lifetime will be shortened. However, during
periods without energy consumption the battery can
recover some of its lost capacity, and the lifetime will be
lengthened.

Energy consumption of wireless devices has been
studied using performance models. These models
describe the various states a device can be in, and the
energy consumption rate in these states. However,
typically these models only take the energy consumption
into account and do not deal with the effects of the usage
pattern on the battery lifetime. To be able to do this we
have to extend the model, by combining it with a battery
model.

In stochastic models of the battery it is described in an
abstract manner where the discharging and the recovery
effect are described as stochastic processes.

III. FAULT SCENARIOS IN WIRELESS SENOR NETWORKS

The node faults can be classified into two types:
permanent and potential. The permanent fault completely
disconnects the sensor node from other nodes and brings
eternal impact on the network performance like in the
case of hardware faults within a component of a sensor
node. A permanent fault once activated remains effective
until it is detected and handled. The impact of this failure
is usually measured when assessing the network
performance. On the other hand, a potential fault usually
results from the depletion of node hardware resource, i.e.
battery energy. Such fault might cause the node sudden
death, and eventually threaten the network life time.
When the battery depleted, a node is useless and cannot
share in sensing or data dissemination. Potential failure
can be detected and treated before it causes the sudden
death of a node e.g. sensor node with low residual energy
can be send to sleep mode before it completely shuts
down and disrupt network operation. Faults can be
further classified into: node level fault and network level
fault. Node level fault represents the potential and
permanent failure of a node while “network level”
describes the network faults caused by either potential or
permanent failure of one or a set of sensor nodes. These
are shown in figure 3.

Individual node level fault usually results from:
application software misbehaviour, hardware failure and
external impact of harsh environmental conditions (direct
contact with water causing short circuit, node crash by a
falling tree etc). The network level faults are as a result of
either the potential or permanent failure, and are usually
related to the network connectivity, and sensor coverage
rate.

Figure 2. Fault propagation in WSN

CVR College of Engineering 34

CVR Journal of Science & Technology, Volume. 1, October 2011

Figure 3. WSN Fault scenario

Nodes measure some physical quantities close-by them
and transmit the information to the base station. Nodes
can both transmit and receive information. The final
target of the information transmitted by nodes is the base
station.

IV. MODELLING TOOLS

Performance and dependability modeling is an integral
part of the design process of many computer and
communication systems. A variety of techniques have
been developed to address different issues of modeling.
For example, combinatorial models were developed to
assess reliability and availability under strong
independence assumptions; queuing networks were
developed to assess system performance; and Markov
process-based approaches have become popular for
evaluating performance with synchronization or
dependability without independence assumptions.
Finally, simulation has been used extensively when other
methods fail.

In order to harness full strength of any software
modeling tool to solve for measures of interest of
stochastic discrete event one must first understand what
the modeling process is. That is once specification of the
real system is known; one must know how to specify the
model in a particular formalism. That requires knowledge
of both the system to be modeled and also the formalism
in which the system is to be specified. Petri nets are
widely used to model and analyze the system behavior
which provides graphical representation of the system
state changes. The modeling requires knowledge of
probability measure, conditional probability, continuous
random variables, discrete random variables, PDF
(probability density function), CDF (cumulative density
function), Stochastic processes, including Markov
processes, continuous time Markov chains (CTMC),
discrete time Markov chains (DTMC), state transition
rate matrices, generator matrices etc.

As solving models became more and more complex;
different formalisms (or formal languages for expressing
models) were also developed. Each of this formalism has
its own merits. Some formalisms afford very efficient
solution methods; like BCMP [5] queuing networks
admit product-form solutions, Other formalisms, such as
Stochastic Petri Networks (SPN) were developed provide

a simple elegance in their modeling primitives, while
superposed generalized stochastic Petri nets (SGSPNs)
and colored GSPNs (CGSPNs) [6] yield state-space
reductions. A number of extensions, such as stochastic
activity networks (SANs) [7], were developed for
compactly expressing complex behaviors.

Along with formalisms, modeling tools also have been
developed. A tool is generally built around a single
formalism and one or more solution techniques, with
simulation sometimes available as a second solution
method. Some of the tools developed are DyQN-Tool+
which uses dynamic queuing networks as its high-level
formalism; GreatSPN which is based on GSPNs,
UltraSAN, which is based on SANs, TANGRAM-II,
which is an object- and message-based formalism for
evaluating computer and communication systems. While
all of these tools are useful within the domains for which
they were intended, they are limited in that all parts of a
model must be built in the single formalism that is
supported by the tool. Thus, it is difficult to model
systems that cross different domains and would benefit
from multiple modeling techniques [8].

Performance and dependability modeling software
tools have become increasingly powerful in recent years.
Engineers have the ability to model increasingly complex
systems using only a moderate amount of computing
resources. However, despite the technological advances
in system modeling, there remain several obstacles
hindering the prediction of system behavior. Two facts
contribute to these obstacles: the fact that system models
have grown in both scale and intricacy of detail, and the
fact that modeling software tools do not provide the
appropriate feedback to the engineer during the design
process.

As system models become more elaborate, the number
of variables that can be parameterized increases rapidly.
Difficulties arise from having such a large number of
model parameters. The main problem with modeling
large systems is in deciding how to make the best use of
the computing resources available. The first step in
optimizing use of available resources is reducing the
number of model parameters to vary. Varying model
parameters that do not contribute to the reward variables
being measured wastes experimentation time. Selection
of the parameters to vary requires detailed knowledge of
the underlying model, and often relies on the designer’s
intuition and experience with similar systems. Another
way to optimize use of computing resources is to reduce
the number of values assigned to the model parameters.
Increasing the number of values for a particular model
parameter requires more experiments if all values are to
be tested. If there are several parameters being varied,
then the number of experiments needed to test each
combination can grow to an unmanageable number. The
engineer should focus on a range of parameter values
over which the reward variables are expected to change
significantly. Again, the art of modeling requires detailed
knowledge of the model, which is best gained from
previous experience. Unfortunately, software tools cannot
automatically grant an engineer intuition, but they can

CVR College of Engineering 35

CVR Journal of Science & Technology, Volume. 1, October 2011

provide valuable information that, over time, can be used
to develop a knowledge base useful for solving future
problems.

The second problem contributing to the engineer’s
difficulty with efficiently predicting system behavior is
the fact that today’s modeling tools do not provide the
engineer with the necessary feedback during the design
process. The design space consists of all possible system
configurations. Each configuration consists of unique
values assigned to each system parameter. The
experimentation process is often iterative, consisting of
several sets of experimental runs, each producing results
requiring analysis. This process ends when the desired
system configuration is obtained.

In general, it is desirable to minimize the amount of
experimentation time needed to determine the desired
configuration. After running a set of experiments, the
engineer may find that the results do not meet the desired
specification. Further experimentation is necessary to
find which model parameter values are acceptable. It
would be useful if the modeling software could analyze
the results and provide information suggesting which
parameter values to choose for future runs. This iterative
feedback would help the engineer to efficiently arrive at a
desired model configuration. Without such feedback, the
engineer may incorrectly guess which values cause the
model to converge to the desired specification, resulting
in a waste of experimentation time. The feedback
obtained during this efficient navigation of the design
space can also be used to reveal less expensive model
configurations that meet the specifications, rather than
exceed them.

CONCLUSIONS

 The paper has brought out various issues concerned
with the system modeling with special reference to
wireless sensor networks. The system modeling is
essentially required for the estimation of the survivability
of mission critical applications. It can be seen that a
modeling engineer not only need to have in depth
knowledge of the system under consideration but also
very good understanding of statistical and probability
measures. The modeling normally uses stochastic
processes, including Markov processes, continuous time
Markov chains (CTMC), discrete time Markov chains
(DTMC), state transition rate matrices, generator matrices
etc. Once a satisfactory model of the system is arrived at
it is to be verified with test bed or other statistical data
and accordingly the system model is modified till a final
system model is arrived at.

REFERENCES

[1] Marcello Cinque, Domenico Cotroneo Gianpaolo De Caro,
Massimiliano Pelella, “Reliability Requirements of
Wireless Sensor Networks for Dynamic Structural
Monitoring” www.mobilab.unina.it/projects/StragoResults
/WASR-06_Cinque.pdf

[2] A. Avizienis, J.C. Laprie and B. Randell, Fundamental
Concepts of Dependability, Information Survivability
Workshop (ISW-2000), Boston, Oct. 24-26, 2000.

[3] Axel W. Krings University of Idaho Moscow, Idaho
83844-1010, USA, krings@ uidaho.edu, “Fault-Models in
Wireless Communication: Towards Survivable Wireless
Networks”, citeseerx.ist.psu.edu

[4] Lilia Paradis and Qi Han; “Dealing with Faults in Wireless
Sensor Networks” http :// inside.mines.edu /~qhan/students
/ Lilia/docs/ WSN Faults Survey.pdf

[5] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios.
“Open, closed, and mixed networks of queues with
different classes of customers”’ Journal of the Association
for Computing Machinery, 22(2):248–260, April 1975.

[6] S M. Ajmone Marsan, Dipartimento di Scienze dell',
Stochastic Petri Nets: An Elementary Introduction In
Proceedings: European Workshop on Applications and
Theory in Petri Nets, Year: 1988, Pages: 29

[7] William H. Sanders1 and John F. Meyer, Stochastic
Activity Networks: Formal Definitions and Concepts,
William H. Sanders1 and John F. Meyer,
citeseerx.ist.psu.edu/viewdoc

[8] [W. H. Sanders. Integrated frameworks for multi-level and
multi-formalism modeling. In Proceedings of the 8th
International Workshop on Petri Nets and Performance
Models, pages 2–9, Zaragoza, Spain, September 1999.

CVR College of Engineering 36

