
ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 5, December 2013

 CVR College of Engineering 13

Improving the Software Quality using AOP
B Vasundhara

Associate Professor, Computer Science Department, AMS School of Informatics, Andhra Pradesh, India,
vasu_venki@yahoo.com

Abstract - The goal of software engineering is to solve a
given application problem by implementing a software
application system. Programming languages are
important in software engineering. Ever since the advent
of high-level programming languages, improvements have
been motivated because of the need to build better
software more rapidly. Concerns exist at every level of the
system development process. The goal of modularization
is to build application software that is maintainable and
reusable. To implement such concerns we need to use a
programming language that supports modularization. All
the software engineering methodologies are expected to
recognize the concerns of a system like the aspect-oriented
software development (AOSD). AOSD additionally also
classifies each of the concerns identified. Concerns in a
system are of two types, core concerns and cross-cutting
concerns. Core concerns make up the primary structure
of the system. Cross-cutting concerns are those concerns
that spread throughout the system. A major objective in
software engineering is to increase code reuse in new
systems as reuse saves development time. We can use the
aspect-oriented programming (AOP) technique to
improve software quality characteristics including,
correctness, reliability, reusability, usability, efficiency,
extendibility, timeliness, easy to use, etc.

Index Terms - AOSD, AOP, Software Quality, AspectJ,
Crosscutting Concerns, Join Point, a Pointcut

I. EVOLUTION OF SOFTWARE ENGINEERING
CONCEPTS – MODULARIZATION AND REUSE

The increasing intricacy, configuration and
adaptability of real-time systems have become a strong
motivation for applying new software engineering
principles, like aspect-oriented development. AOSD
improves the existing programming techniques by
allowing the identification and description of concerns
that crosscut many modules of the system. Applying
AOSD in real-time application systems reduces the
complexity of the system design and development.
AOSD provides a way for a structured and efficient
way to handle the crosscutting concerns in the system.
We use AOP, a method for improving separation of
concerns in software [1]. AOP is built on preceding
technologies, like procedural and object-oriented
programming which have already made substantial
improvements in software modularity. The idea behind
developing AOP is that, though the modularity
mechanisms of object-oriented languages are extremely
useful, they are essentially unable to modularize all
concerns of interest in complex systems. To achieve
this, AOP deals with crosscutting aspects of a system’s
behavior

as isolated as possible.
Software modularity is a software design technique

that builds the modules by breaking down the possible
program functions [2]. Each module devised handles
one of the many functions. Each module represents
each of the separation of concerns, and thus improves
the system maintenance by enforcing valid boundaries
between the concerns. Aspects help in achieving
increased modularity of the system and separation of
concerns. Separating the functionalities as modules
helps to control the system complexity. Software
systems are conceptually complex by very nature, and
increasing their complexity in the implementation
means increasing the expense and the probability of
failures. The code needed to integrate a complex
implementation is expensive. The cost would be even
higher if new features are to be added as and when
required. Mostly adding new feature implies deep
changes in several parts of the application
implementation. So, we have to single out the modules
that will implement the core business functions and that
justify the design and implementation of software.

II. DRAWBACKS IN OBJECT-ORIENTED
PROGRAMMING

An application may have some functionalities
crossing it transversally, called as crosscutting
concerns. A crosscutting concern is an independent
entity that crosses other functionalities of software.
Common crosscutting concerns include security of the
system, logging across different functions when
encountered, the transactions management, tracing,
performance, synchronization, exception handling, etc.
Such crosscutting concerns, if implemented only with
object-oriented programming (OOP), results in a bad
matching between the core concerns and the modules
that implement the cross cutting concerns. So, when
using OOP we are forced to deal with the execution of
the crosscutting functionalities in separate modules, and
further there may be a need to add other related
modules or modify the existing ones. Therefore, it
becomes necessary to modify the code in which these
modules are used. This is undesired, but a necessary
matching that the OO implementation unavoidably
brings with it.

The crosscutting concerns in OOP gives rise to the
problem of scattering code, due to the transversality of
the crosscutting concerns that are implemented in
classes. In such situations, AOP provides support to
OOP for uncoupling modules that implement
crosscutting concerns. AOP’s purpose is the separation

DOI:10.32377/cvrjst0503

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 5, December 2013

14 CVR College of Engineering

of concerns. In OOP, the fundamental unit is the class,
while it is an aspect in AOP [1]. The aspect contains the
implementation of a crosscutting concern. Code
scattering appears when the application functionality is
scattered due to its implementation in separate modules.
Code tangling takes place when a module has to
manage quite a lot of concerns at the same time, like
logging into an application system. With an OO system,
code tangling and code scattering can occur, thus
causing the system to have duplicate code and result in
functionalities not being clear.

AOP is a programming concept that is based on the
identification and separation of both the core and
crosscutting concerns of software. AOP is an extension
of OO paradigm, in the sense that it provides new
constructs for the modularization of crosscutting
concerns. The main objective here is to define an
implementation methodology using AOP to achieve
better software with better quality [2]. With AOP, the
crosscutting functionalities are extracted from the OOP
implementations and applied as advices where they are
actually executed. In OOP, we develop the code for
every module where a functional component is
encountered. While in AOP, an aspect code is
developed and injected into the right locations of the
base program using an aspect weaver. The main aim of
an AOP language, like AspectJ, is to make sure that the
aspect code and non-aspect code run together in a
coordinated way using the process called aspect
weaving.

III. ISSUES IN REAL-TIME APPLICATION
SYSTEMS

The correctness of a real-time application system,
depends both on the correct result produced by the
computation and the time when the result is produced.
Hence, enforcing timeliness is essential to the overall
correctness the system. The increasing complexity in
the design, adaptability and performance of a real-time
system prompts us to use new software engineering
programming methodologies, like AOP. Using AOP,
the modules or concerns identified are incorporated into
the program through interfaces.

Software reliability depends on system requirements,
good design and implementation. A system fails if its
behaviour is not consistent with its specification. The
applications that need systems to maintain a predictable
and correct functionality even in the presence of faults
include online banking, mobile commerce, etc. For a
system to be dependable, it must be available, reliable,
safe, and secure. Software may undergo several
upgrades during the system life cycle. These upgrades
enhance the software reliability by re-designing or re-
implementing the required modules. Further, new
unexpected problems may arise. The two main
concerns that have to be considered when designing the
real-time application systems are the timeliness and
criticality of the system. Additionally, we need to also
consider that the systems are bounded by limited
resources. To achieve the criticality and timeliness

concerns with minimal resources, the real-time
application systems use different techniques which
involve a number of modules of the system. This makes
it mandatory to use approaches like AOP.

IV. USING AOP FOR REAL-TIME APPLICATION
SYSTEMS

The functional perspective of real-time application
systems can be developed using conventional OOP, but
the real-time perspectives like scheduling policies and
synchronization mechanisms are better implemented
using AOP. The purpose of AOP is to provide
systematic means to modularize crosscutting concerns.
AOP is an approach in this direction, which attempts to
achieve the resuse of code and design in a much better
way than OOP. Aspect-orientation is used in realtime
application systems for distribution, timeliness and
dependability domains [1].

We have a number of benefits in using AO
techniques when compared to OO techniques. The
primary benefit of this transition is the increased
modularity. As concerns have been separated, the
system's modules that were implemented to solve a
given concern are not tangled with calls to modules that
deal with unrelated, cross-cutting concerns. Also, these
cross-cutting concerns are not scattered and are
packaged into a single module. This, in turn, has
several benefits throughout the software life-cycle, such
as increased maintenance and reusability. An additional
benefit of aspects is that of a reduction in the size of
code. As aspects collect commonly repeated code into
advice with a pointcut to where that code is relevant,
the code-base will be smaller, when aspects are used,
than when they are not used.

The key problems a system designer would face
during the aspect-oriented design process include the
identification and classification of concerns, testing the
concern designs, reusing them, designing the concern
modules, and refining the AO design. A standard
aspect-oriented design process is an extensible,
customizable and independent process which is easy to
adopt. The existing literature describes less about the
aspect oriented design processes in use; we can
evaluate and validate the aspect oriented design process
by applying it to case studies. Examples of the cross-
cutting concerns include logging, exception handling,
security.

The code to employ features like authentication,
authorization, logging, exceptions, etc., is frequently
scattered across the whole application. This will reduce
the consistency, sustainability and quality of software.
These characteristics are called crosscutting concerns. It
is difficult to modularize the crosscutting concerns as
they affect multiple functions and modules in the
system. The AOP allows the localization and
modularization of crosscutting concerns, thereby
providing another level of abstraction called aspects.

While we are aware that crosscutting concerns can
occur in various software systems, not much is known
on how AOP and in particular AspectJ have been used.

DOI:10.32377/cvrjst0503

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 5, December 2013

 CVR College of Engineering 15

Several studies encompass the capabilities of AOP to
improve the modularity, customization, and the
evolution of software, but less is known about how
AOP is used. Modularization of the crosscutting
concerns of a software system will persist to be the
source of initiative for progress in software
engineering.

For a system concern like security, first we need to
check for the users who attempt to access unauthorised
data, and secondly prevent users from declassifying the
data. If we use the OOP approach to implement the
security concern, it will result in code scattering and
code tangling, and its implementation will be weak.
This weak implementation of security concern can be
because of the intrinsic design of the system or a
program error. The AOP approach using AspectJ
language presents a strong implementation of security
concern [1]. This reduces the load on the programmers
to correctly recognize the positions in the base code
where authorization is necessary. This can be achieved
using AspectJ which is difficult to achieve using OOP
language like Java. Even if the OOP concept provides a
normal way to implement security concern, it does not
really prevent any security flaws caused by bad
program coding or poor system design.

AspectJ offers improved separation-of-concerns
(SoC) in the system design phase, better encapsulation
and also makes the implementation much cleaner than
Java [5].

V. OVERVIEW OF AOP AND COMPARISON WITH
OOP

A concern in software engineering means, a goal,
functionality, or a requirement. The modularity
mechanisms of OOP languages are useful, but they are
essentially unable to modularize all the concerns in
complex systems that involve more functionality. AOP
attempts to achieve the reuse of code and design in a
much improved way than OOP [3]. Therefore, AOP is
more appropriate to implement the crosscutting
concerns with better modularity. A software developer
can use AOP language like AspectJ to isolate the code
for implementing concerns like logging, security, etc.,
which otherwise are present at different locations in the
base code. AOP achieves a more direct correspondence
between design-level and implementation-level
constructs, which leads to improved code quality which
results in the reduction of the cost of designing,
developing, and maintaining complex software
systems.

AOP enhances the abstract degree and module
character of software, which can improve the
expansibility, reuse, easy understanding and
maintenance of software and enhance other factors
influencing the quality of software. The required
methods codes are described within the aspect where
the code executes instead of a class. Whenever the
aspect code needs changes, there is only one place
where we need to alter it. But, in OOP the software
developer will have to trace all the classes employing

the function code that needs changes. The aspect code
is weaved or inserted wherever needed in the system at
compile time or at run time. AOP modularizes the
crosscutting concerns by encapsulating the replicated,
scattered and tangled code into aspects.

The assimilation of base code and aspect code is
called aspect weaving. The source code weaver merges
the original source code with the aspect code. The
aspects are interpreted and combined with the main
program code and submitted to the compiler. After this,
the compiler will generate the intermediate or machine
language output.

VI. ASPECTJ AS AN AOP LANGUAGE

AspectJ is the most popular among the existing AOP
languages [2]. AspectJ is an easy and convenient AOP
language and is an extension to Java programming
language with some new programming elements. It
supports modularity and reuse of the aspects identified.
Mostly crosscutting concerns implementation in
AspectJ is dynamic [5]. To design a crosscutting
behaviour, we have to identify the join points where we
want to add or modify the behaviour. To apply such a
design, we initially write an aspect for the module
identified. Next, within the aspect we write the
pointcuts to capture the required join points. Finally, we
build an advice for each pointcut. Within the advice
body we write the action that is to take place when the
corresponding join points are reached. For instance, in
the implementation of the logging concern affects every
significant module in the system, the authorization
concern affects every module with access control
requirements, and the storage-management concern
affects every stateful business object. We start by
creating the aspect that encapsulates the logging
concern. Next, we write the pointcut within the aspect
that captures all join points where the operations are
performed. Lastly, within the aspect we write an advice
for the pointcut concerned, where we print the logging
statement. Since the logging code lies inside the
logging module and logging aspect; clients will no
longer hold the code for logging. We find that the
logging requirements are mapped directly into a single
aspect. With such modularization, changes to the
logging requirements will affect only the logging
aspect. So, using AspectJ the core modules will no
longer hold calls to the logging services.

There are crosscutting concerns that are not well
captured by the traditional programming methodologies
[5]. This motivates us to use AspectJ. Let’s consider for
example, the performance of a security policy in an
application. We know that security concern cuts across
an application. The security policy should be
consistently applied to any improvements as the
application advances, and also the security policy being
applied may itself progress. Identifying such
crosscutting concerns in a closely controlled way is
complicated in a long-established programming
language like Java. The advantage of implementing the
crosscutting concerns in AspectJ over Java is that, the

DOI:10.32377/cvrjst0503

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 5, December 2013

16 CVR College of Engineering

organization, evolution and implementation of the
crosscutting concerns is easier and more stable.

VII. APPLICATION OF AOP TO REAL-TIME
APPLICATION SYSTEMS

We are aware that the precision of a real-time
application depends on the consistent result it produces
and the instant when the results are produced.
Therefore, enforcing timeliness is essential for the
overall correctness of a real-time application system
[4]. The aspects created represent the crosscutting
concerns in the system. The aspects improve the system
maintenance by enforcing logical boundaries between
the concerns. Aspects are incorporated in the software
through interfaces [4]. AOP approach is applied to case
studies like Online Banking System and Shopping
Catalogue. In particular, the concentration is on
exception handling, logging, authentication,
authorization, etc., as they contribute to the efficiency
and reliability of these application systems. These Web-
based systems need to use advanced technology to give
the option of evading the time consuming and paper
based features of conventional business. This results in
managing the transactions more quickly and efficiently.
Consumers’ insight of security, accuracy, user-
friendliness, and performance speed has become the
essential factors for the success of such applications.

An online banking system is the technology which
helps in avoiding prolonged and paper based
characteristics of conventional banking, and thereby
manages the business more efficiently. This application
system allows us to connect to a bank through the
Internet to view our accounts, credit, debit and transfer
money, etc. Transaction security, accuracy, user
friendliness and performance efficiency are the critical
factors for the success of online banking. Quality
attributes such as reliability, response time, security and
availability are stringent system requirements for online
banking. The Online Shopping Catalogue application
provides Web access to various items. A user can
browse a range of categories of items, select and add
items to the catalogue and finally check out, do the
payment and get the items. The requirements of this
application can be considered as cross-cutting concerns.

VIII. RESULTS

AOP especially AspectJ can have a considerable
affect on the program code size of an application by
removing the code scattering and tangling [2]. AspectJ
can be expected to reduce the program code volume by
better code reuse and by reducing the code replication.
There is a considerable decrease in the code
redundancy. The 35-40% drop found in the code size is
by separating the major functions of the system as
aspects. There is lesser number of methods and also the
program control flow is simplified [4]. While
evaluating the AspectJ model for exception handling
implementation, it is found that there is a decline in the
number of lines of the concerned program. There is a

considerable reduction of about 3% in the AOP version
when compared to the 9% in the total code size in the
OOP version. When crosscutting concerns are
homogeneous, aspects considerably reduces the
redundant code fragments.

It is found that there is an improvement in system
modularity after the concerns are written as aspects [5].
This results in an increased consistency of functions in
the system and a significant decrease in coupling
between the crosscutting concerns. In the
implementation of case studies we observed that the
AO approach supports code mobility, usability and
usefulness [3]. It is found that the AspectJ solution
supports improved modularity because it reduces the
overall coupling between the concerns. We know that
for a software to be good, it should be flexible to take
in necessary modifications through less effort. If the
crosscutting concerns identified during software
development are well modularized and implemented
using AspectJ, we can accomplish the desirable
software qualities like code stability, volatility,
maintenance, etc.

The design stability is assessed in AspectJ
implementations considered. The design stability is
found mainly when the modifications were made in a
particular crosscutting concern. These modifications are
more simple to apply and less intrusive. The effect of
overall AspectJ maintenance time mostly decreases.
The study shows that AOP especially AspectJ, provides
more support in the software evolution and
maintenance than other solutions. Application
development time using AspectJ is found to be less
than other language implementation.

With new language constructs, AspectJ proposes
modern ways to implement traditional programming
mechanisms. For example, the case study
implementation applies aspects to modularize the
exception handling concern. It is found that AspectJ
offers improved support for implementing exception
handling. It is observed that when exception handling
concern is non-uniform and complex, then use of AOP
does not give the desired returns. The AOP
implementation of exception handling concern reduces
the code to define the exception interface and improves
the separation between the base and aspect code.
Effective join point representations have to be
developed for more robust handling of the exception
handling concern [4].

The advantages and restrictions of AOP, in particular
AspectJ depend on the criterion like the software
performance, application code size, system modularity,
software evolution and language mechanism. After
evaluation of the application of AspectJ in our case
studies the behaviour of the above criteria is [5]:
• Performance: The results show that AspectJ generates

positive outcomes with respect to the execution
performance of the application systems because of
better response time and minimum use of memory.

• Code size: AspectJ shows considerable decrease in
the volume of application code, because of the

DOI:10.32377/cvrjst0503

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 5, December 2013

 CVR College of Engineering 17

separation of crosscutting concerns. According to the
results, there is a noteworthy decrease in the overall
application code volume by 40%.

• Modularity: Modularity is very prominent, especially
in Separation of Concerns (SoC).

• Evolution: AspectJ has the capability to adapt to the
incessant modifications in the user needs and
functioning conditions. The outcome is positive in
evolution context.

 CONCLUSIONS

AOP has an optimistic impact on the software
development process and improves the application
software quality. The more the crosscutting concerns
are isolated, the more effortless it is to carry out
changes locally. Its effect on cognition and language
mechanism is less likely to be positive. AspectJ can
improve a system’s performance where ever the
crosscutting concern context is alike.

We observe improvements in the facets of AspectJ
language evolution which includes volatility,
extensibility, code stability, maintenance. AspectJ has
the potential to develop evolving real-time application
systems software whose maintenance is easy. AOP is a
capable approach and a solution to the problems we
face in conventional programming approaches.
However, the solution presented by AOP necessarily
may not come out well in terms of lower compilation
time and less memory usage [4].

The basic concept and programming idea of AspectJ
elaborates the software development approach based on
AOP [3]. AOP has many works that need to be
completed in future applications. The support
languages need to be further enriched and their
accuracies ensured, and more tools should be studied to
support AOP and fulfil the demands in various stages
from software design to maintenance. In view of the
increasing software scale and complexity of software
structure, the software development based on AOP
technology would certainly play a more important
function. AOP has remarkable prospective for
constructing software for future applications. AspectJ
compiler (ajc) needs to do more work than a pure Java
compiler, so it is likely to take a little more time to
compile an application. The small performance
overhead caused is because of the need to analyze the
classes, to see if any advice code needs to be woven
into them.

REFERENCES

[1] D. Zhengyan, Aspect Oriented Programming Technology
and the Strategy of Its Implementation, The Proceedings
of the International Conference on Intelligence Science
and Information Engineering (ISIE), 2011, pp.457, 460,
20-21.

[2] T. Zukai, P. Zhiyong, Survey of Aspect Oriented
Programming Language, Journal of Frontiers of
Computer Science and Technology, 2010, vol.4, no.1, pp
1-19.

[3] M. Ali, M. Babar, L. Chen, K. Stol, A systematic review
of comparative evidence of aspect-oriented
programming, Information and Software Technology,
2010, vol.52, no.9, pp. 871-887.

[4] Clark S and Baniassad E: Aspect Oriented Analysis and
Design – The Theme Approach. Addison-Wesley, March,
2005.

[5] Elrad T, Filman R, and Bader A: Aspect Oriented
Programming. Communication of the ACM, pp.29-32,
October 2001/vol.44, No 10.

[6] Introduction to AspectJ. http://eclipse.org/aspectj/doc/
released/progguide/starting-aspectj.html

ABOUT AUTHOR

Ms Vasundhara is working as Associate Professor at
AMS School of Informatics. Her areas of interest are
Software Engineering, AOP, and Operating Systems.
She has done her M Tech (CSE).

DOI:10.32377/cvrjst0503

