
ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 4, June 2013

6 CVR College of Engineering

A Model for Safety-Critical Real-Time Systems by

making use of Architectural Design Patterns
U.V.R. Sarma

1
, Sahith Rampelli

2
 and Dr. P. Premchand

3

1
CVR College of Engineering, Department of CSE, Ibrahimpatan(M), R.R. District, A.P., India

Email: sarmauvr@yahoo.co.in
2
 CVR College of Engineering, Department of CSE, Ibrahimpatan(M), R.R. District, A.P., India

Email: sahith.indian@gmail.com
3
Osmania University, Department of CSE, Hyderabad, A.P., India

Email: p.premchand@uceou.edu

Abstract—Design Patterns, which give abstract solutions to

commonly recurring design problems, have been widely used in

the Software and Hardware domain. This paper presents the

principles of Architectural & Design patterns for Real-Time

Software Systems. For the successful application of design

patterns for Safety-Critical Real-Time systems, an integration of

a number of architectural design patterns is desirable. For this

reason, a pattern catalog is constructed that classifies commonly

used Hardware and Software design methods. Moreover, it is

intended to construct the catalog such that an automatic

recommendation of suitable design patterns for a given software

application can be made. The paper focuses on reliability

patterns and studies the impact of the patterns on the QoS. To

support the designers, a tool is developed to suggest the patterns

that are appropriate for the software based on the characteristics

of the problem. This tool will be able to help generate the code

template for the selected design pattern.

Index Terms— Design Pattern, Real-Time Systems, Non-

Functional Requirements, Safety-Critical Systems.

I. INTRODUCTION

Over the last few years, Real-Time systems have been

increasingly used in safety-critical applications where failure

can have serious problems. Designing of Real-Time systems

is a complex process, which requires the assimilation of

common design methods both in hardware and software to

implement functional and non-functional requirements for

these safety-critical applications.
Design patterns provide abstract solutions to commonly

recurring design problems in the software and hardware

domain. In this paper, the concept of design patterns is

adopted in the design of safety-critical real-time system. A

catalog of design patterns is constructed to support the design

of real-time systems. The proposed catalog contains a set of

software and hardware design patterns to cover frequent

design problems such as handling of random and systematic

faults and safety monitoring, Furthermore, the catalog

provides a decision support component that supports the

decision process of choosing a suitable pattern for a particular

problem based on the available resources and the

requirements of the applicable patterns. The Proposed Tool

Provides the Code Template for the selected pattern.

Bruce Douglass proposed several design patterns for the

Safety-Critical Real-Time applications based on the well-

known design methods. The UML (Unified Modeling

Language) provides a notation for design patterns but this

notation is targeted primarily towards mechanistic design

patterns. In this proposed paper, we are not discussing the

Design patterns in a detailed way in order to limit its size.

II. DESIGN PATTERN TEMPLATE

In this section, we proposed a Design Pattern Template to

represent the well-known design patterns for Safety-Critical

Real-Time Software applications. As shown in Figure 1, the

upper part of the template includes the traditional

representation of a design pattern and also listing of the

pattern implications on the non-functional requirements.

Moreover, further support is given by stating implementation

issues, summarizing the consequences, side effects, related

patterns and Code Template as well.

 Figure 1: Design Pattern Template

DOI: 10.32377/cvrjst0402

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 4, June 2013

 CVR College of Engineering 7

The proposed design template includes a part for pattern

implication on the non-functional requirements such as

reliability and safety. In order to add these side effects into

the pattern concept, we propose an extended template for an

effective design pattern representation for Safety-Critical

Real-Time applications.
Section III describes the Architecture of the proposed

Model. Section IV provides the implementation details.

Section V deals with the Code generation part.

Types of Architectural Design Patterns

Hardware Patterns: It includes the patterns that contain

explicit hardware redundancy to improve either reliability or

safety. This group contains the following 8 patterns:

 Triple Modular Redundancy Pattern.

 Homogeneous Redundancy Pattern.

 Heterogeneous Redundancy Pattern.

 M-Out-Of-N Pattern.

 Monitor-Actuator Pattern.

 Sanity Check Pattern.

 Watchdog Pattern.

 Safety Executive Pattern.
Software Patterns

 N-Version Programming Pattern.

 Recovery Block Pattern.

 Acceptance Voting Pattern.

 N-Self Checking Programming Pattern.

 Recovery Block with Backup Voting Pattern

Triple Modular Redundancy Pattern (TMR)

Let us consider the “Triple Modular Redundancy

Pattern” and then generate the code template using our

proposed tool.

Type: Hardware

1)Pattern Name:Triple Modular Redundancy Pattern (TMR)

2) Other Name:2-oo-3 Redundancy Pattern, Homogeneous

 Triplex Pattern.

3) Abstract: The TMR pattern operates three channels in

parallel rather than operating a single channel and switching

over to an alternative when a fault is detected. By operating

the channels in parallel, the TMR pattern detects random

faults.

The TMR pattern runs the channels in parallel and at the

end compares the results of the computational channels

together. As long as two channels agree on the output, then

any deviating computation of the third channel is discarded.

This allows the system to operate in the presence of a fault

and continue to provide functionality.

4) Context:The TMR pattern offers an odd number

channels that are operating in parallel, and this pattern is used

to enhance reliability and safety in real-time applications

where there is no fail-safe state.

5) Problem: TMR pattern provides protection against

random faults.

6) Implication: To enhance reliability and safety.

7) Implementation: The development of the TMR pattern

is common to replicate the hardware and software to avoid

common mode faults so that each channel uses its own

memory, CPU and so on.

8) Consequences: The TMR Pattern can only detect

random faults. High recurring cost because the hardware and

software in the channels must be replicated. The TMR pattern

is a common one in applications where reliability needs are

very high and worth the additional cost to replicate the

channels.

9)Related Patterns: Heterogeneous redundancy,

Homogeneous Redundancy Pattern.
Following Figure 2 details about TMR pattern implementation

in UML and sample code in Java.

Figure 2: TMR Pattern

The class diagram is given as Figure 3 below.

Figure 3: UML - Class Diagram Representation for TMR Pattern

III. ARCHITECTURE

This section describes the architecture that will be used to

develop the catalog program. To implement the required

features for the current catalog, the software is divided into a

set of modules where each module is implemented in a

package.

DOI: 10.32377/cvrjst0402

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 4, June 2013

8 CVR College of Engineering

Figure 4: The architecture of the Catalog software

The Graphical User Interface (GUI) represents an

intermediate connection between the user and the other

modules. It handles the interaction with the user and the

application. For example, the interactive browsing interface

provides a graphical display for the pattern structure and the

ability to navigate the different components, while the PDF

Viewer includes a plug-in to display the PDF files.

The PDF Viewer provides a list of PDF files for the

available patterns, divided into three groups. Furthermore, it

has been implemented using a PDF plug-in, which gives users

the ability to browse, save, and print the patterns similar to the

original Adobe Acrobat Reader software.

The interactive browsing module provides the second

method for pattern presentation. It includes a selective

navigation of the contents of the pattern. This feature gives

users the ability to select, retrieve, and copy complete

information about any part of the selected pattern.

 The search wizard module includes the decision support

feature provided by this tool. It gives users the ability to find a

suitable pattern or a combination of patterns for the desired

application by answering questions in an oriented step by step

wizard.

This module serves two purposes. First, it allows users to

modify the catalog contents, such as the fields of the patterns,

solutions, decision points (requirements), problems and

decision trees. Second, it provides the functionality to add

new elements to the database such as creating a new pattern, a

new solution, or a new decision tree. These two features offer

an easy way to modify and extend the current catalog.

IV. Implementation

A. Presentation Layer

 The presentation layer allows querying the Database for

editing the design patterns and updating the catalog,

connecting with the Database locally through JDBC.

Sophisticated interface is provided for the administrators and

end user. The proposed application provides assistance to

developers and other functionalities dealing with object-

oriented framework such as UML representation and code

generation for the design patterns. The user interface is a

stand-alone application. The following Fig 4 shows an

interface for the management of the Design Patterns Catalog.

Users can browse the list of patterns. Advanced users may add

new patterns.

Figure 5: Interface for Design Pattern Catalog

Here, we believe that modeling of Architectural Design

Patterns should be standardized to meet the needs of

developers. Our proposed application can generate class

diagrams for the specified design pattern and thereby generate

the source code for Architectural Design Pattern.

B. The Design Pattern Search Wizard and other screens

We collect a set of criteria from the description of Design

Patterns and classify by their applicability. In order to extract

Patterns from the Database, we opted for a categorization of

design patterns. This is mainly restricted to the applicability

part of Design Patterns and can easily be extended to cover

other literal description parts. The set of criteria and the

corresponding keywords database must be thinking out for the

related patterns. Our proposed tool provides the end-user with

a comprehensive list of keywords, that we have collected, to

be used automatically and the tool will help end-users to

choose the appropriate Design Patterns.

The Java based search wizard enables the effective search

and the selection of suitable Design Patterns with respect to

the situations in which to use the desired Design Pattern.

Filtering:The first constraint involves the selection of

keywords that match the scope of the user query. The search

operation intends filtering and refining of the user's ideas in

order to reduce the search scope and have closer results to the

desired Patterns.

Second constraint, the program will suggest a list of all the

situations matching the selected keyword. The user is required

to read the criteria and select those that best describe the

situations he queries for. By checking appropriate statements

the user is ready to generate the suitable Design Patterns.

DOI: 10.32377/cvrjst0402

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 4, June 2013

 CVR College of Engineering 9

The following figure 6 is the Design Pattern search wizard

interface.

Figure 6: Design Pattern Search Wizard interface

This is how the login page will look like, as shown in figure 7.

Figure 7: Login Page.

The users can also register; the “PDF conversion” page as

given in figure 8.

Figure 8: PDF Conversion

The home screen of the Admin is given in figure 9.

Figure 9: Home Admin

Code generation output screens are given in the following

figures 10. The code is generated using the tool.

Figure 10: Code Generation

As specified in figure 10, we can give the class details;

attribute details and operation details in the tool.

Figure 11: Automatic UML and JAVA Code generation tool.

DOI: 10.32377/cvrjst0402

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 4, June 2013

10 CVR College of Engineering

C. Relationship

Figure 12: Relationships within Classes

The above Figure 12 allows the user to maintain the

relationships with the given classes.

Source Class and Destination class are selected along with

the Relationship (i.e., Association, Aggregation and

Generalization etc).

V. CODE GENERATION FOR TRIPLE MODULAR

REDUNDANCY(TMR) PATTERN

Fig. 13 is the UML diagram for the TMR pattern. In Fig

14 View Code, the Java file is selected to view the Java Code,

which consists of Classes, Attributes and Methods. Skeleton

Code will be provided to the user and can be

customized/enhanced in future as per the requirements.

 Figure 13: UML diagram for TMR Pattern using Proposed Tool.

Figure 14: View Pattern Code

The following figures Figure 15, 16, 17 and 18 provide the

Skeleton Code (Code Template) for the TMR Pattern.

Figure 15: Code Template for TMR Pattern

DOI: 10.32377/cvrjst0402

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 4, June 2013

 CVR College of Engineering 11

Figure 16: Code Template for TMR Pattern

Figure 17: Code Template for TMR Pattern

Figure 18: Code Template for TMR Pattern

View UML link will provide the UML Diagram.

VI. CONCLUSION

Integration of design patterns is desirable for the successful

development of the real-time applications. In order to achieve

a successful application, we presently constructed a Design

Pattern catalog, where we maintain a collection of design

patterns that are commonly used in hardware and software

domain. Moreover, the constructed catalog provides an

automatic recommendation of suitable design method for a

given application.

In order to support the designers, we proposed a tool that

suggests a suitable design pattern based on the software

characteristics. This tool will be helpful in generating the

source code for the suitable design pattern.

VII. FUTURE ENHANCEMENTS

 The work presented in this paper introduces some possible

directions for future work. This catalog can be extended to

include other design techniques that address the design

problems for Safety-Critical Real-Time systems.

The Simulation module can be developed. Therefore, the

construction of a comprehensive simulator that provides

reliability and safety simulation for all design patterns would

be desirable and useful for comparison and assessment.

ACKNOWLEDGMENT

The authors would like to thank the student Mr. Datta

Virivinti of B. Tech. (IT), CVR College of Engineering, for

his contribution in developing the interface. The authors

would also like to thank the college for providing its amenities.

DOI: 10.32377/cvrjst0402

ISSN 2277 – 3916 CVR Journal of Science and Technology, Volume 4, June 2013

12 CVR College of Engineering

REFERENCES

[1] Design Pattern Representation for Safety-Critical Embedded

Systems, Ashraf Armoush, Falk Salewski, Stefan

Kowalewski,2009.

[2] Design Patterns for Safety-Critical Embedded System, Ashraf

Armoush, 2010.

[3] Design patterns to implement safety and Fault Tolerance,

Hemangi Gawand, R.S,Mundada, P.Swaminathn, International

Journal of Computer Applications(0975 – 8887), Volume 18-

No. 2, March 2011.

[4] Application-Level Fault Tolerance in Real-time Embedded

Systems, Francisco Afonso, 2008.

[5] Design Patterns: Element of Reusable Object-Oriented

Software by Erich Gamma, Richard Helm, Ralph Johnson and

John Vlissides, 2012.

[6] http://www.patternrepository.com

[7] Real-Time Software Design Patterns, Janusz ZALEWSKI.

[8] Pattern-Based Architectures Analysis and Design of

Embedded Software Product Lines, Public

version,EMPRESS,2003.

[9] Modeling Real-Time applications with Reusable Design

Patterns, Saoussen Rekhis, Nadia Bouassida,Rafik Bouaziz

MIRACL-ISIMS, Vol. 22, September, 2010.

[10] A. Armoush, E. Beckschulze, and S. Kowalewski. Safety

assessment of design patterns for safety-critical embedded

systems. In 35th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA 2009). IEEE

CS, Aug. 2009

DOI: 10.32377/cvrjst0402

