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Purpose of Testing  -  CO1 

 Testing consumes atleast half of the time and work required to produce a functional program. 

 MYTH: Good programmers write code without bugs. (Its wrong!!!) 

 History says that even well written programs still have 1-3 bugs per hundred statements. 

 Productivity and Quality in software: 
o In production of comsumer goods and other products, every manufacturing stage 

is subjected to quality control and testing from component to final stage. 
o If flaws are discovered at any stage, the product is either discarded or cycled back 

for rework and correction. 
o Productivity is measured by the sum of the costs of the material, the rework, and 

the discarded componenets, and the cost of quality assurance and testing. 
o There is a trade off between quality assurance costs and manufacturing costs: If 

sufficient time is not spent in quality assurance, the reject rate will be high and so 
will be the net cost. If inspection is good and all errors are caught as they occur, 
inspection costs will dominate, and again the net cost will suffer. 

o Testing and Quality assurance costs for 'manufactured' items can be as low as 2% 
in consumer products or as high as 80% in products such as space-ships, nuclear 
reactors, and aircrafts, where failures threaten life. Where as the manufacturing 
cost of a software is trivial. 

o The biggest part of software cost is the cost of bugs: the cost of detecting them, 
the cost of correcting them, the cost of designing tests that discover them, and the 
cost of running those tests. 

o For software, quality and productivity are indistinguishable because the cost of a 
software copy is trivial. 

 Testing and Test Design are parts of quality assurance should also focus on bug 
prevention. A prevented bug is better than a detected and corrected bug. 

 Phases in a tester's mental life can be categorised into the following 5 phases: 

o Phase 0: (Until 1956: Debugging Oriented) There is no difference between 
testing and debugging. Phase 0 thinking was the norm in early days of software 
development till testing emerged as a discipline. 

o Phase 1: (1957-1978: Demonstration Oriented) The purpose of testing here is to 
show that software works. Highlighted during the late 1970s. This failed because 
the probability of showing that software works 'decreases' as testing 
increases. i.e. The more you test, the more likely you'ill find a bug. 

 



o Phase 2: (1979-1982: Destruction Oriented) The purpose of testing is to show 
that software doesnt work. This also failed because the software will never get 
released as you will find one bug or the other. Also, a bug corrected may also lead 
to another bug. 

o Phase 3: (1983-1987: Evaluation Oriented) The purpose of testing is not to 
prove anything but to reduce the perceived risk of not working to an acceptable 
value (Statistical Quality Control). Notion is that testing does improve the product 
to the extent that testing catches bugs and to the extent that those bugs are fixed. 
The product is released when the confidence on that product is high enough. 
(Note: This is applied to large software products with millions of code and years of 
use.) 

o Phase 4: (1988-2000: Prevention Oriented) Testability is the factor considered 
here. One reason is to reduce the labour of testing. Other reason is to check the 
testable and non-testable code. Testable code has fewer bugs than the code that's 
hard to test. Identifying the testing techniques to test the code is the main key 
here. 

2. Test Design: We know that the software code must be designed and tested, but many appear 
to be unaware that tests themselves must be designed and tested. Tests should be properly 
designed and tested before applying it to the acutal code. 

3. Testing is'nt everything: There are approaches other than testing to create better software. 
Methods other than testing include: 

o Inspection Methods: Methods like walkthroughs, deskchecking, formal 
inspections and code reading appear to be as effective as testing but the bugs 
caught donot completely overlap. 

o Design Style: While designing the software itself, adopting stylistic objectives 
such as testability, openness and clarity can do much to prevent bugs. 

o Static Analysis Methods: Includes formal analysis of source code during 
compilation. In earlier days, it is a routine job of the programmer to do that. Now, 
the compilers have taken over that job. 

o Languages: The source language can help reduce certain kinds of bugs. 
Programmers find new bugs while using new languages. 

o Development Methodologies and Development Environment: The 
development process and the environment in which that methodology is 
embedded can prevent many kinds of bugs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Dichotomies  -  CO 1 

 

 Testing Versus Debugging: Many people consider both as same. Purpose of testing is to 
show that a program has bugs. The purpose of testing is to find the error or misconception 
that led to the program's failure and to design and implement the program changes that 
correct the error. 

 Debugging usually follows testing, but they differ as to goals, methods and most important 
psychology. The below tab le shows few important differences between testing and 
debugging.  

Testing Debugging 

Testing starts with known conditions, uses 
predefined procedures and has predictable 

outcomes. 

Debugging starts from possibly unknown intial 
conditions and the end can not be predicted except 

statistically. 

Testing can and should be planned, designed 

and scheduled. 

Procedure and duration of debugging cannot be so 

constrained. 

Testing is a demonstration of error or apparent 
correctness. 

Debugging is a deductive process. 

Testing proves a programmer's failure. 
Debugging is the programmer's vindication 
(Justification). 

Testing, as executes, should strive to be 

predictable, dull, constrained, rigid and inhuman. 

Debugging demands intutive leaps, experimentation 

and freedom. 

Much testing can be done without design 
knowledge. 

Debugging is impossible without detailed design 
knowledge. 

Testing can often be done by an outsider. Debugging must be done by an insider. 

Much of test execution and design can be 
automated. 

Automated debugging is still a dream. 

  

 Function Versus Structure: Tests can be designed from a functional or a structural point of 
view. In functional testing, the program or system is treated as a blackbox. It is subjected to 
inputs, and its outputs are verified for conformance to specified behaviour. Functional testing 
takes the user point of view- bother about functionality and features and not the program's 
implementation. Structural testing does look at the implementation details. Things such as 
programming style, control method, source language, database design, and coding details 
dominate structural testing. 

 Both Structural and functional tests are useful, both have limitations, and both target different 
kinds of bugs. Functional tets can detect all bugs but would take infinite time to do so. 
Structural tests are inherently finite but cannot detect all errors even if completely executed. 

 Designer Versus Tester: Test designer is the person who designs the tests where as the 
tester is the one actually tests the code. During functional testing, the designer and tester are 
probably different persons. During unit testing, the tester and the programmer merge into one 
person. 

 Tests designed and executed by the software designers are by nature biased towards 
structural consideration and therefore suffer the limitations of structural testing. 

 Modularity Versus Efficiency: A module is a discrete, well-defined, small component of a 
system. Smaller the modules, difficult to integrate; larger the modules, difficult to understand. 
Both tests and systems can be modular. Testing can and should likewise be organised into 
modular components. Small, independent test cases can be designed to test independent 
modules. 



 Small Versus Large: Programming in large means constructing programs that consists of 
many components written by many different programmers. Programming in the small is what 
we do for ourselves in the privacy of our own offices. Qualitative and Quantitative changes 
occur with size and so must testing methods and quality criteria. 

 Builder Versus Buyer: Most software is written and used by the same organization. 
Unfortunately, this situation is dishonest because it clouds accountability. If there is no 
separation between builder and buyer, there can be no accountability. 

 The different roles / users in a system include: 
1. Builder: Who designs the system and is accountable to the buyer. 
2. Buyer: Who pays for the system in the hope of profits from providing services. 
3. User: Ultimate beneficiary or victim of the system. The user's interests are also 

guarded by. 
4. Tester: Who is dedicated to the builder's destruction. 
5. Operator: Who has to live with the builders' mistakes, the buyers' murky (unclear) 

specifications, testers' oversights and the users' complaints. 

 

Model for Testing  -   CO 1 

  

 

 

Figure : A Model for Testing 

Above figure is a model of testing process. It includes three models: A model of the 
environment, a model of the program and a model of the expected bugs. 

 ENVIRONMENT: 
o A Program's environment is the hardware and software required to make 

it run. For online systems, the environment may include communication 
lines, other systems, terminals and operators. 

o The environment also includes all programs that interact with and are 
used to create the program under test - such as OS, linkage editor, loader, 
compiler, utility routines. 



o Because the hardware and firmware are stable, it is not smart to blame 
the environment for bugs. 

 PROGRAM: 
o Most programs are too complicated to understand in detail. 
o The concept of the program is to be simplified inorder to test it. 
o If simple model of the program doesnot explain the unexpected behaviour, 

we may have to modify that model to include more facts and details. And if 
that fails, we may have to modify the program. 

 BUGS: 
o Bugs are more insidious (deceiving but harmful) than ever we expect them 

to be. 
o An unexpected test result may lead us to change our notion of what a bug 

is and our model of bugs. 
o Some optimistic notions that many programmers or testers have about 

bugs are usually unable to test effectively and unable to justify the dirty 
tests most programs need. 

o OPTIMISTIC NOTIONS ABOUT BUGS: 
1. Benign Bug Hypothesis: The belief that bugs are nice, tame 

and logical. (Benign: Not Dangerous) 
2. Bug Locality Hypothesis: The belief that a bug discovered 

with in a component effects only that component's behaviour. 
3. Control Bug Dominance: The belief that errors in the control 

structures (if, switch etc) of programs dominate the bugs. 
4. Code / Data Separation: The belief that bugs respect the 

separation of code and data. 
5. Lingua Salvator Est: The belief that the language syntax and 

semantics (e.g. Structured Coding, Strong typing, etc) 
eliminates most bugs. 

6. Corrections Abide: The mistaken belief that a corrected bug 
remains corrected. 

7. Silver Bullets: The mistaken belief that X (Language, Design 
method, representation, environment) grants immunity from 
bugs. 

8. Sadism Suffices: The common belief (especially by 
independent tester) that a sadistic streak, low cunning, and 
intuition are sufficient to eliminate most bugs. Tough bugs need 
methodology and techniques. 

9. Angelic Testers: The belief that testers are better at test 
design than programmers are at code design. 

 TESTS: 
o Tests are formal procedures, Inputs must be prepared, Outcomes should 

predicted, tests should be documented, commands need to be executed, 
and results are to be observed. All these errors are subjected to error 

o We do three distinct kinds of testing on a typical software system. 
They are: 

1. Unit / Component Testing: A Unit is the smallest testable 
piece of software that can be compiled, assembled, linked, 
loaded etc. A unit is usually the work of one programmer and 
consists of several hundred or fewer lines of code. Unit 
Testing is the testing we do to show that the unit does not 
satisfy its functional specification or that its implementation 



structure does not match the intended design structure. 
A Component is an integrated aggregate of one or more 
units. Component Testing is the testing we do to show that 
the component does not satisfy its functional specification or 
that its implementation structure does not match the intended 
design structure. 

2. Integration Testing: Integration is the process by which 
components are aggregated to create larger 
components. Integration Testing is testing done to show that 
even though the componenets were individually satisfactory 
(after passing component testing), checks the combination of 
components are incorrect or inconsistent. 

3. System Testing: A System is a big component. System 
Testing is aimed at revealing bugs that cannot be attributed to 
components. It includes testing for performance, security, 
accountability, configuration sensitivity, startup and recovery. 

 Role of Models: The art of testing consists of creating , selecting, exploring, and 
revising models. Our ability to go through this process depends on the number of 
different models we have at hand and their ability to express a program's behaviour. 

 PLAYING POOL AND CONSULTING ORACLES 
o Testing is like playing a pool game. Either you hit the ball to any pocket 

(kiddie pool) or you specify the pocket in advance (real pool). So is the 
testing. There is kiddie testing and real testing. In kiddie testing, the 
observed outcome will be considered as the expected outcome. In Real 
testing, the outcome is predicted and documented before the test is run. 

o The tester who cannot make that kind of predictions does not understand 
the program's functional objectives. 

o Oracles: An oracle is any program, process, or body of data that specifies 
the expected outcome of a set of tests as applied to a tested object. 
Example of oracle : Input/Outcome Oracle - an oracle that specifies the 
expected outcome for a specified input. 

o Sources of Oracles: If every test designer had to analyze and predict the 
expected behaviour for every test case for every component, then test 
design would be very expensive. The hardest part of test design is 
predicting the expected outcome, but we often have oracles that reduce 
the work. They are: 

1. Kiddie Testing: run the test and see what comes out. If you 
have the outcome in front of you, and especially if you have the 
values of the internal variables, then it is much easier to 
validate that outcome by analysis and show it to be correct 
than it is to predict what the outcome should be and validate 
your prediction. 

2. Regression Test Suites: Today's software development and 
testing are dominated not by the design of new software but by 
rework and maintenance of existing software. In such 
instances, most of the tests you need will have been run on a 
previous versions. Most of those tests should have the same 
outcome for the new version. Outcome prediction is therefore 
needed only for changed parts of components. 

3. Purchased Suits and Oracles: Highly standardized software 
that differ only as to implementation often has commercially 



available test suites and oracles. The most common examples 
are compilers for standard languages. 

4. Existing Program: A working, trusted program is an excellent 
oracle. The typical use is when the program is being rehosted 
to a new language, operating system, environment, 
configuration with the intention that the behavior should not 
change as a result of the rehosting. 

 IS COMPLETE TESTING POSSIBLE? 
o If the objective of the testing were to prove that a program is free of bugs, 

then testing not only would be practically impossible, but also would be 
theoretically impossible. 

o Three different approaches can be used to demonstrate that a 
program is correct.They are: 

1. Functional Testing: 
 Every program operates on a finite number of 

inputs. A complete functional test would consists of 
subjecting the program to all possible input streams. 

 For each input the routine either accepts the stream 
and produces a correct outcome, accepts the 
stream and produces an incorrect outcome, or 
rejects the stream and tells us that it did so. 

 For example, a 10 character input string has 280 
possible input streams and corresponding 
outcomes, so complete functional testing in this 
sense is IMPRACTICAL. 

 But even theoritically, we can't execute a purely 
functional test this way because we don't know the 
length of the string to which the system is 
responding. 

2. Structural Testing: 
 The design should have enough tests to ensure that 

every path through the routine is exercised at least 
once. Right off that's is impossible because some 
loops might never terminate. 

 The number of paths through a small routine can be 
awesome because each loop multiplies the path 
count by the number of times through the loop. 

 A small routine can have millions or billions of paths, 
so total Path Testing is usually IMPRACTICAL. 

3. Formal Proofs of Correctness: 
 Formal proofs of correctness rely on a combination 

of functional and structural concepts. 
 Requirements are stated in a formal language (e.g. 

Mathematics) and each program statement is 
examined and used in a step of an inductive proof 
that the routine will produce the correct outcome for 
all possible input sequences. 

 The IMPRACTICAL thing here is that such proofs 
are very expensive and have been applied only to 
numerical routines or to formal proofs for crucial 



software such as system’s security kernel or 
portions of compilers. 

o Each approach leads to the conclusion that complete testing, in the sense 
of a proof is neither theoretically nor practically possible. 

 THEORITICAL BARRIERS OF COMPLETE TESTING: 
o "We can never be sure that the specifications are correct" 
o "No verification system can verify every correct program" 
o "We can never be certain that a verification system is correct" 

 Not only all known approaches to absoulte demonstrations of correctness 
impractical, but they are impossible. Therefore, our objective must shift from a 
absolute proof to a 'suitably convincing' demonstration. 

 

 

Consequences of Bugs  -  CO1 

 

 IMPORTANCE OF BUGS: The importance of bugs depends on frequency, 
correction cost, installation cost, and consequences. 

1. Frequency: How often does that kind of bug occur? Pay more attention to 
the more frequent bug types. 

2. Correction Cost: What does it cost to correct the bug after it is found? 
The cost is the sum of 2 factors: (1) the cost of discovery (2) the cost of 
correction. These costs go up dramatically later in the development cycle 
when the bug is discovered. Correction cost also depends on system size. 

3. Installation Cost: Installation cost depends on the number of 
installations: small for a single user program but more for distributed 
systems. Fixing one bug and distributing the fix could exceed the entire 
system's development cost. 

4. Consequences: What are the consequences of the bug? Bug 
consequences can range from mild to catastrophic. 

 
A reasonable metric for bug importance is 

Importance= ($) = Frequence * (Correction cost + Installation cost 
+ Consequential cost) 

 CONSEQUENCES OF BUGS: The consequences of a bug can be measure in terms 
of human rather than machine. Some consequences of a bug on a scale of one to 
ten are: 

1. Mild: The symptoms of the bug offend us aesthetically (gently); a 
misspelled output or a misaligned printout. 

2. Moderate: Outputs are misleading or redundant. The bug impacts the 
system's performance. 

3. Annoying: The system's behaviour because of the bug is 
dehumanizing. E.g. Names are truncated orarbitarily modified. 



4. Disturbing: It refuses to handle legitimate (authorized / legal) 
transactions. The ATM wont give you money. My credit card is declared 
invalid. 

5. Serious: It loses track of its transactions. Not just the transaction itself but 
the fact that the transaction occurred. Accountability is lost. 

6. Very Serious: The bug causes the system to do the wrong transactions. 
Instead of losing your paycheck, the system credits it to another account 
or converts deposits to withdrawals. 

7. Extreme: The problems aren't limited to a few users or to few transaction 
types. They are frequent and arbitrary instead of sporadic infrequent) or 
for unusual cases. 

8. Intolerable: Long term unrecoverable corruption of the database occurs 
and the corruption is not easily discovered. Serious consideration is given 
to shutting the system down. 

9. Catastrophic: The decision to shut down is taken out of our hands 
because the system fails. 

10. Infectious: What can be worse than a failed system? One that corrupt 
other systems even though it doesnot fall in itself ; that erodes the social 
physical environment; that melts nuclear reactors and starts war. 

 FLEXIBLE SEVERITY RATHER THAN ABSOLUTES: 

1. Quality can be measured as a combination of factors, of which number of 
bugs and their severity is only one component. 

2. Many organizations have designed and used satisfactory, quantitative, 
quality metrics. 

3. Because bugs and their symptoms play a significant role in such metrics, 
as testing progresses, you see the quality rise to a reasonable value 
which is deemed to be safe to ship the product. 

4. The factors involved in bug severity are: 
1. Correction Cost: Not so important because catastrophic bugs 

may be corrected easier and small bugs may take major time 
to debug. 

2. Context and Application Dependency: Severity depends on 
the context and the application in which it is used. 

3. Creating Culture Dependency: Whats important depends on 
the creators of software and their cultural aspirations. Test tool 
vendors are more sensitive about bugs in their software then 
games software vendors. 

4. User Culture Dependency: Severity also depends on user 
culture. Naive users of PC software go crazy over bugs where 
as pros (experts) may just ignore. 

5. The software development phase: Severity depends on 
development phase. Any bugs gets more severe as it gets 
closer to field use and more severe the longer it has been 
around. 

 

 

 



Taxonomy of Bugs  -  CO1  

 There is no universally correct way categorize bugs. The taxonomy is not rigid. 
 A given bug can be put into one or another category depending on its history and the 

programmer's state of mind. 
 The major categories are: (1) Requirements, Features and Functionality Bugs (2) 

Structural Bugs (3) Data Bugs (4) Coding Bugs (5) Interface, Integration and System 
Bugs (6) Test and Test Design Bugs. 

o REQUIREMENTS, FEATURES AND FUNCTIONALITY BUGS: Various 
categories in Requirements, Features and Functionlity bugs include: 

1. Requirements and Specifications Bugs: 
 Requirements and specifications developed from 

them can be incomplete ambiguous, or self-
contradictory. They can be misunderstood or 
impossible to understand. 

 The specifications that don't have flaws in them may 
change while the design is in progress. The features 
are added, modified and deleted. 

 Requirements, especially, as expressed in 
specifications are a major source of expensive bugs. 

 The range is from a few percentage to more than 
50%, depending on the application and 
environment. 

 What hurts most about the bugs is that they are the 
earliest to invade the system and the last to leave. 

2. Feature Bugs: 
 Specification problems usually create corresponding 

feature problems. 
 A feature can be wrong, missing, or superfluous 

(serving no useful purpose). A missing feature or 
case is easier to detect and correct. A wrong feature 
could have deep design implications. 

 Removing the features might complicate the 
software, consume more resources, and foster more 
bugs. 

3. Feature Interaction Bugs: 
 Providing correct, clear, implementable and testable 

feature specifications is not enough. 
 Features usually come in groups or related features. 

The features of each group and the interaction of 
features with in the group are usually well tested. 

 The problem is unpredictable interactions between 
feature groups or even between individual features. 
For example, your telephone is provided with call 
holding and call forwarding. The interactions 
between these two features may have bugs. 

 Every application has its peculiar set of features and 
a much bigger set of unspecified feature interaction 



potentials and therefore result in feature interaction 
bugs. 

Specification and Feature Bug Remedies: 

1. Most feature bugs are rooted in human to human 
communication problems. One solution is to use high-level, 
formal specification languages or systems. 

2. Such languages and systems provide short term support but in 
the long run, does not solve the problem. 

3. Short term Support: Specification languages facilitate 
formalization of requirements and inconsistency and ambiguity 
analysis. 

4. Long term Support: Assume that we have a great 
specification language and that can be used to create 
unambiguous, complete specifications with unambiguous 
complete testsand consistent test criteria. 

5. The specification problem has been shifted to a higher level but 
not eliminated. 

Testing Techniques for functional bugs: Most functional test 
techniques- that is those techniques which are based on a behavioral 
description of software, such as transaction flow testing, syntax testing, 
domain testing, logic testing and state testing are useful in testing 
functional bugs. 

o STRUCTURAL BUGS: Various categories in Structural bugs include: 

1. Control and Sequence Bugs: 
 Control and sequence bugs include paths left out, 

unreachable code, improper nesting of loops, loop-
back or loop termination criteria incorrect, missing 
process steps, duplicated processing, unnecessary 
processing, rampaging, GOTO's, ill-conceived (not 
properly planned) switches, sphagetti code, and 
worst of all, pachinko code. 

 One reason for control flow bugs is that this area is 
amenable (supportive) to theoritical treatment. 

 Most of the control flow bugs are easily tested and 
caught in unit testing. 

 Another reason for control flow bugs is that use of 
old code especially ALP & COBOL code are 
dominated by control flow bugs. 

 Control and sequence bugs at all levels are caught 
by testing, especially structural testing, more 
specifically path testing combined with a bottom line 
functional test based on a specification. 

2. Logic Bugs: 



 Bugs in logic, especially those related to 
misundertanding how case statements and logic 
operators behave singly and combinations 

 Also includes evaluation of boolean expressions in 
deeply nested IF-THEN-ELSE constructs. 

 If the bugs are parts of logical (i.e. boolean) 
processing not related to control flow, they are 
characterized as processing bugs. 

 If the bugs are parts of a logical expression (i.e 
control-flow statement) which is used to direct the 
control flow, then they are categorized as control-
flow bugs. 

3. Processing Bugs: 
 Processing bugs include arithmetic bugs, algebraic, 

mathematical function evaluation, algorithm 
selection and general processing. 

 Examples of Processing bugs include: Incorrect 
conversion from one data representation to other, 
ignoring overflow, improper use of grater-than-or-
eual etc 

 Although these bugs are frequent (12%), they tend 
to be caught in good unit testing. 

4. Initialization Bugs: 
 Initialization bugs are common. Initialization bugs 

can be improper and superfluous. 
 Superfluous bugs are generally less harmful but can 

affect performance. 
 Typical initialization bugs include: Forgetting to 

initialize the variables before first use, assuming that 
they are initialized elsewhere, initializing to the 
wrong format, representation or type etc 

 Explicit declaration of all variables, as in Pascal, can 
reduce some initialization problems. 

5. Data-Flow Bugs and Anomalies: 
 Most initialization bugs are special case of data flow 

anamolies. 
 A data flow anomaly occurs where there is a path 

along which we expect to do something 
unreasonable with data, such as using an 
uninitialized variable, attempting to use a variable 
before it exists, modifying and then not storing or 
using the result, or initializing twice without an 
intermediate use. 

o DATA BUGS: 

1. Data bugs include all bugs that arise from the specification of 
data objects, their formats, the number of such objects, and 
their initial values. 

2. Data Bugs are atleast as common as bugs in code, but they 
are foten treated as if they didnot exist at all. 



3. Code migrates data: Software is evolving towards programs in 
which more and more of the control and processing functions 
are stored in tables. 

4. Because of this, there is an increasing awareness that bugs in 
code are only half the battle and the data problems should be 
given equal attention. 

5. Dynamic Data Vs Static data: 
 Dynamic data are transitory. Whatever their purpose 

their lifetime is relatively short, typically the 
processing time of one transaction. A storage object 
may be used to hold dynamic data of different types, 
with different formats, attributes and residues. 

 Dynamic data bugs are due to leftover garbage in a 
shared resource. This can be handled in one of the 
three ways: (1) Clean up after the use by the user 
(2) Common Cleanup by the resource manager (3) 
No Clean up 

 Static Data are fixed in form and content. They 
appear in the source code or database directly or 
indirectly, for example a number, a string of 
characters, or a bit pattern. 

 Compile time processing will solve the bugs caused 
by static data. 

6. Information, parameter, and control: Static or dynamic data 
can serve in one of three roles, or in combination of roles: as a 
parameter, for control, or for information. 

7. Content, Structure and Attributes: Content can be an actual 
bit pattern, character string, or number put into a data structure. 
Content is a pure bit pattern and has no meaning unless it is 
interpreted by a hardware or software processor. All data bugs 
result in the corruption or misinterpretation of 
content. Structure relates to the size, shape and numbers that 
describe the data object, that is memory location used to store 
the content. (e.g A two dimensional array). Attributes relates 
to the specification meaning that is the semantics associated 
with the contents of a data object. (e.g. an integer, an 
alphanumeric string, a subroutine). The severity and subtlelty 
of bugs increases as we go from content to attributes because 
the things get less formal in that direction. 

o CODING BUGS: 
1. Coding errors of all kinds can create any of the other kind of 

bugs. 
2. Syntax errors are generally not important in the scheme of 

things if the source language translator has adequate syntax 
checking. 

3. If a program has many syntax errors, then we should expect 
many logic and coding bugs. 

4. The documentation bugs are also considered as coding bugs 
which may mislead the maintenance programmers. 

o INTERFACE, INTEGRATION, AND SYSTEM BUGS: 



1. Various categories of bugs in Interface, Integration, and 
System Bugs are: 

 External Interfaces: 
 The external interfaces are the means 

used to communicate with the world. 
 These include devices, actuators, 

sensors, input terminals, printers, and 
communication lines. 

 The primary design criterion for an 
interface with outside world should be 
robustness. 

 All external interfaces, human or machine 
should employ a protocol. The protocol 
may be wrong or incorrectly 
implemented. 

 Other external interface bugs are: invalid 
timing or sequence assumptions related 
to external signals 

 Misunderstanding external input or output 
formats. 

 Insufficient tolerance to bad input data. 
 Internal Interfaces: 

 Internal interfaces are in principle not 
different from external interfaces but they 
are more controlled. 

 A best example for internal interfaces are 
communicating routines. 

 The external environment is fixed and the 
system must adapt to it but the internal 
environment, which consists of interfaces 
with other components, can be 
negotiated. 

 Internal interfaces have the same 
problem as external interfaces. 

 Hardware Architecture: 
 Bugs related to hardware architecture 

originate mostly from misunderstanding 
how the hardware works. 

 Examples of hardware architecture bugs: 
address generation error, i/o device 
operation / instruction error, waiting too 
long for a response, incorrect interrupt 
handling etc. 

 The remedy for hardware architecture 
and interface problems is two fold: (1) 
Good Programming and Testing (2) 
Centralization of hardware interface 
software in programs written by hardware 
interface specialists. 

 Operating System Bugs: 



 Program bugs related to the operating 
system are a combination of hardware 
architecture and interface bugs mostly 
caused by a misunderstanding of what it 
is the operating system does. 

 Use operating system interface 
specialists, and use explicit interface 
modules or macros for all operating 
system calls. 

 This approach may not eliminate the 
bugs but at least will localize them and 
make testing easier. 

 Software Architecture: 
 Software architecture bugs are the kind 

that called - interactive. 
 Routines can pass unit and integration 

testing without revealing such bugs. 
 Many of them depend on load, and their 

symptoms emerge only when the system 
is stressed. 

 Sample for such bugs: Assumption that 
there will be no interrupts, Failure to 
block or un block interrupts, Assumption 
that memory and registers were initialized 
or not initialized etc 

 Careful integration of modules and 
subjecting the final system to a stress 
test are effective methods for these bugs. 

 Control and Sequence Bugs (Systems Level): 
 These bugs include: Ignored timing, 

Assuming that events occur in a specified 
sequence, Working on data before all the 
data have arrived from disc, Waiting for 
an impossible combination of 
prerequisites, Missing, wrong, redundant 
or superfluous process steps. 

 The remedy for these bugs is highly 
structured sequence control. 

 Specialize, internal, sequence control 
mechanisms are helpful. 

 Resource Management Problems: 
 Memory is subdivided into dynamically 

allocated resources such as buffer 
blocks, queue blocks, task control blocks, 
and overlay buffers. 

 External mass storage units such as 
discs, are subdivided into memory 
resource pools. 

 Some resource management and usage 
bugs: Required resource not obtained, 



Wrong resource used, Resource is 
already in use, Resource dead lock etc 

 Resource Management Remedies: A 
design remedy that prevents bugs is 
always preferable to a test method that 
discovers them. 

 The design remedy in resource 
management is to keep the resource 
structure simple: the fewest different 
kinds of resources, the fewest pools, and 
no private resource management. 

 Integration Bugs: 
 Integration bugs are bugs having to do 

with the integration of, and with the 
interfaces between, working and tested 
components. 

 These bugs results from inconsistencies 
or incompatibilities between components. 

 The communication methods include 
data structures, call sequences, registers, 
semaphores, communication links and 
protocols results in integration bugs. 

 The integration bugs do not constitute a 
big bug category(9%) they are expensive 
category because they are usually caught 
late in the game and because they force 
changes in several components and/or 
data structures. 

 System Bugs: 
 System bugs covering all kinds of bugs 

that cannot be ascribed to a component 
or to their simple interactions, but result 
from the totality of interactions between 
many components such as programs, 
data, hardware, and the operating 
systems. 

 There can be no meaningful system 
testing until there has been thorough 
component and integration testing. 

 System bugs are infrequent(1.7%) but 
very important because they are often 
found only after the system has been 
fielded. 

 

2. TEST AND TEST DESIGN BUGS: 

 Testing: testers have no immunity to bugs. Tests 
require complicated scenarios and databases. 



 They require code or the equivalent to execute and 
consequently they can have bugs. 

 Test criteria: if the specification is correct, it is 
correctly interpreted and implemented, and a proper 
test has been designed; but the criterion by which 
the software's behavior is judged may be incorrect 
or impossible. So, a proper test criteria has to be 
designed. The more complicated the criteria, the 
likelier they are to have bugs. 

 Remedies: The remedies of test bugs are: 

 Test Debugging: The first remedy for 
test bugs is testing and debugging the 
tests. Test debugging, when compared to 
program debugging, is easier because 
tests, when properly designed are 
simpler than programs and donot have to 
make concessions to efficiency. 

 Test Quality Assurance: Programmers 
have the right to ask how quality in 
independent testing is monitored. 

 Test Execution Automation: The 
history of software bug removal and 
prevention is indistinguishable from the 
history of programming automation aids. 
Assemblers, loaders, compilers are 
developed to reduce the incidence of 
programming and operation errors. Test 
execution bugs are virtually eliminated by 
various test execution automation tools. 

 Test Design Automation: Just as much 
of software development has been 
automated, much test design can be and 
has been automated. For a given 
productivity rate, automation reduces the 
bug count - be it for software or be it for 
tests. 

 

Overview of Unit and Integration Testing   -  CO1 

Unit Tests are conducted by developers and test the unit of code( aka 

module, component) he or she developed. It is a testing method by 

which individual units of source code are tested to determine if they are 

ready to use. It helps to reduce the cost of bug fixes since the bugs are 

identified during the early phases of development life cycle. 

https://www.guru99.com/unit-testing-guide.html


Integration testing is executed by testers and tests integration between 

software modules. It is a software testing technique where individual 

units of a program are combined and tested as a group. Test stubs and 

test drivers are used to assist in Integration Testing. Integration test is 

performed in two way, they are bottom-up method and the top-down 

method. 

Below is a detailed comparison between the two- 

Unit test Integration test 

 The idea behind Unit Testing 

is to test each part of the 

program and show that the 

individual parts are correct. 

 The idea behind Integration 

Testing is to combine 

modules in the application 

and test as a group to see that 

they are working fine 

 It is kind of White Box Testing  It is kind of Black Box Testing 

 It can be performed at any 

time 

 It usually carried out after 

Unit Testing and 

before System Testing 

 Unit Testing tests only the 

functionality of the units 

themselves and may not 

catch integration errors, or 

other system-wide issues 

 Integrating testing may 

detect errors when modules 

are integrated to build the 

overall system 

 It starts from the module  It starts from the interface 

https://www.guru99.com/integration-testing.html
https://www.guru99.com/white-box-testing.html
https://www.guru99.com/black-box-testing.html
https://www.guru99.com/system-testing.html


specification specification 

 It pays attention to the 

behavior of single modules 

 It pays attention to 

integration among modules 

 Unit test does not verify 

whether your code works 

with external dependencies 

correctly. 

 Integration tests verifies that 

your code works with 

external dependencies 

correctly. 

 It is usually executed by 

developer 

 It is usually executed by test 

team 

 Finding errors are easy  Finding errors are difficult 

 Maintenance of unit test is 

cheap 

 Maintenance of integration 

test is expensive 
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Basic concepts of path testing  -   CO2 

 PATH TESTING: 
o Path Testing is the name given to a family of test techniques based on 

judiciously selecting a set of test paths through the program. 
o If the set of paths are properly chosen then we have achieved some 

measure of test thoroughness. For example, pick enough paths to assure 
that every source statement has been executed at least once. 

o Path testing techniques are the oldest of all structural test techniques. 
o Path testing is most applicable to new software for unit testing. It is a 

structural technique. 
o It requires complete knowledge of the program's structure. 
o It is most often used by programmers to unit test their own code. 
o The effectiveness of path testing rapidly deteriorates as the size of the 

software aggregate under test increases. 
 THE BUG ASSUMPTION: 

o The bug assumption for the path testing strategies is that something has 
gone wrong with the software that makes it take a different path than 
intended. 

o As an example "GOTO X" where "GOTO Y" had been intended. 
o Structured programming languages prevent many of the bugs targeted by 

path testing: as a consequence the effectiveness for path testing for these 
languages is reduced and for old code in COBOL, ALP, FORTRAN and 
Basic, the path testing is indespensable. 

 CONTROL FLOW GRAPHS: 
o The control flow graph is a graphical representation of a program's control 

structure. It uses the elements named process blocks, decisions, and 
junctions. 

o The flow graph is similar to the earlier flowchart, with which it is not to be 
confused. 

o Flow Graph Elements:A flow graph contains four different types of 
elements. (1) Process Block (2) Decisions (3) Junctions (4) Case 
Statements 

1. Process Block: 
 A process block is a sequence of program 

statements uninterrupted by either decisions or 
junctions. 

 



 It is a sequence of statements such that if any one 
of statement of the block is executed, then all 
statement thereof are executed. 

 Formally, a process block is a piece of straight line 
code of one statement or hundreds of statements. 

 A process has one entry and one exit. It can 
consists of a single statement or instruction, a 
sequence of statements or instructions, a single 
entry/exit subroutine, a macro or function call, or a 
sequence of these. 

2. Decisions: 
 A decision is a program point at which the control 

flow can diverge. 
 Machine language conditional branch and 

conditional skip instructions are examples of 
decisions. 

 Most of the decisions are two-way but some are 
three way branches in control flow. 

3. Case Statements: 
 A case statement is a multi-way branch or decisions. 
 Examples of case statement are a jump table in 

assembly language, and the PASCAL case 
statement. 

 From the point of view of test design, there are no 
differences between Decisions and Case 
Statements 

4. Junctions: 
 A junction is a point in the program where the 

control flow can merge. 
 Examples of junctions are: the target of a jump or 

skip instruction in ALP, a label that is a target of 
GOTO. 



 

  

 

Figure 2.1: Flowgraph Elements 

1. CONTROL FLOW GRAPHS Vs FLOWCHARTS: 
o A program's flow chart resembles a control flow graph. 
o In flow graphs, we don't show the details of what is in a process block. 
o In flow charts every part of the process block is drawn. 
o The flowchart focuses on process steps, where as the flow graph focuses 

on control flow of the program. 
o The act of drawing a control flow graph is a useful tool that can help us 

clarify the control flow and data flow issues. 
2. NOTATIONAL EVOULTION: 

o The control flow graph is simplified representation of the program's 
structure. 

o The notation changes made in creation of control flow graphs: 

1. The process boxes weren't really needed. There is an implied 
process on every line joining junctions and decisions. 

2. We don't need to know the specifics of the decisions, just the 
fact that there is a branch. 

3. The specific target label names aren't important-just the fact 
that they exist. So we can replace them by simple numbers. 



4. To understand this, we will go through an example (Figure 2.2) 
written in a FORTRAN like programming language 
called Programming Design Language (PDL). The program's 
corresponding flowchart (Figure 2.3) and flowgraph (Figure 2.4) 
were also provided below for better understanding. 

5. The first step in translating the program to a flowchart is shown 
in Figure 2.3, where we have the typical one-for-one classical 
flowchart. Note that complexity has increased, clarity has 
decreased, and that we had to add auxiliary labels (LOOP, XX, 
and YY), which have no actual program counterpart. In Figure 
2.4 we merged the process steps and replaced them with the 
single process box. We now have a control flowgraph. But this 
representation is still too busy. We simplify the notation further 
to achieve Figure 2.5, where for the first time we can really see 
what the control flow looks like. 

 
 

  

 

Figure 2.2: Program Example (PDL) 



 
 

  

 

Figure 2.3: One-to-one flowchart for 
example program in Figure 2.2 



 
 

  

 

Figure 2.4: Control Flowgraph for 
example in Figure 2.2 

 
 

  

 



Figure 2.5: Simplified Flowgraph Notation 

 
 

  

 

Figure 2.6: Even Simplified Flowgraph 
Notation 

The final transformation is shown in Figure 2.6, where we've 
dropped the node numbers to achieve an even simpler 
representation. The way to work with control flowgraphs is to 
use the simplest possible representation - that is, no more 
information than you need to correlate back to the source 
program or PDL. 

3.  

 LINKED LIST REPRESENTATION: 
1. Although graphical representations of flowgraphs are revealing, the details 

of the control flow inside a program they are often inconvenient. 
2. In linked list representation, each node has a name and there is an entry 

on the list for each link in the flow graph. only the information pertinent to 
the control flow is shown. 

3. Linked List representation of Flow Graph: 



 
 

  

 

Figure 2.7: Linked List Control Flowgraph Notation 

 FLOWGRAPH - PROGRAM CORRESPONDENCE: 
1. A flow graph is a pictorial representation of a program and not the 

program itself, just as a topographic map. 
2. You cant always associate the parts of a program in a unique way with 

flowgraph parts because many program structures, such as if-then-else 
constructs, consists of a combination of decisions, junctions, and 
processes. 

3. The translation from a flowgraph element to a statement and vice versa is 
not always unique. (See Figure 2.8) 



 
 

 

 

Figure 2.8: Alternative Flowgraphs for same logic 
(Statement "IF (A=0) AND (B=1) THEN . . ."). 

4. An improper translation from flowgraph to code during coding can lead to 
bugs, and improper translation during the test design lead to missing test 
cases and causes undiscovered bugs. 

 FLOWGRAPH AND FLOWCHART GENERATION: 
1. Flowcharts can be 

1. Handwritten by the programmer. 
2. Automatically produced by a flowcharting program based on a 

mechanical analysis of the source code. 
3. Semi automatically produced by a flow charting program based 

in part on structural analysis of the source code and in part on 
directions given by the programmer. 

2. There are relatively few control flow graph generators. 
2. PATH TESTING - PATHS, NODES AND LINKS: 

1. Path:a path through a program is a sequence of instructions or 
statements that starts at an entry, junction, or decision and ends at 
another, or possibly the same junction, decision, or exit. 

2. A path may go through several junctions, processes, or decisions, one or 
more times. 

3. Paths consists of segments. 
4. The segment is a link - a single process that lies between two nodes. 
5. A path segment is succession of consecutive links that belongs to some 

path. 
6. The length of path measured by the number of links in it and not by the 

number of the instructions or statements executed along that path. 
7. The name of a path is the name of the nodes along the path. 

3. FUNDAMENTAL PATH SELECTION CRITERIA: 



1. There are many paths between the entry and exit of a typical routine. 
2. Every decision doubles the number of potential paths. And every loop 

multiplies the number of potential paths by the number of different iteration 
values possible for the loop. 

3. Defining complete testing: 
1. Exercise every path from entry to exit 
2. Exercise every statement or instruction at least once 
3. Exercise every branch and case statement, in each direction at 

least once 
4. If prescription 1 is followed then 2 and 3 are automatically followed. But it 

is impractical for most routines. It can be done for the routines that have 
no loops, in which it is equivalent to 2 and 3 prescriptions. 

5. EXAMPLE:Here is the correct version. 

 
 

 

 
For X negative, the output is X + A, while for X greater than or equal to 
zero, the output is X + 2A. Following prescription 2 and executing every 
statement, but not every branch, would not reveal the bug in the following 
incorrect version: 

 
 

 

 
A negative value produces the correct answer. Every statement can be 
executed, but if the test cases do not force each branch to be taken, the 
bug can remain hidden. The next example uses a test based on executing 
each branch but does not force the execution of all statements: 



 
 

 

 
The hidden loop around label 100 is not revealed by tests based on 
prescription 3 alone because no test forces the execution of statement 
100 and the following GOTO statement. Furthermore, label 100 is not 
flagged by the compiler as an unreferenced label and the subsequent 
GOTO does not refer to an undefined label. 

6. A Static Analysis (that is, an analysis based on examining the source 
code or structure) cannot determine whether a piece of code is or is not 
reachable. There could be subroutine calls with parameters that are 
subroutine labels, or in the above example there could be a GOTO that 
targeted label 100 but could never achieve a value that would send the 
program to that label. 

7. Only a Dynamic Analysis (that is, an analysis based on the code's 
behavior while running - which is to say, to all intents and purposes, 
testing) can determine whether code is reachable or not and therefore 
distinguish between the ideal structure we think we have and the actual, 
buggy structure. 

4. PATH TESTING CRITERIA: 
1. Any testing strategy based on paths must at least both exercise every 

instruction and take branches in all directions. 
2. A set of tests that does this is not complete in an absolute sense, but it is 

complete in the sense that anything less must leave something untested. 
3. So we have explored three different testing criteria or strategies out of a 

potentially infinite family of strategies. 
1. Path Testing (Pinf): 

 Execute all possible control flow paths through the 
program: typically, this is restricted to all possible 
entry/exit paths through the program. 

 If we achieve this prescription, we are said to have 
achieved 100% path coverage. This is the strongest 
criterion in the path testing strategy family: it is 
generally impossible to achieve. 

2. Statement Testing (P1): 
 Execute all statements in the program at least once 

under some test. If we do enough tests to achieve 



this, we are said to have achieved 100% statement 
coverage. 

 An alternate equivalent characterization is to say 
that we have achieved 100% node coverage. We 
denote this by C1. 

 This is the weakest criterion in the family: testing 
less than this for new software is unconscionable 
(unprincipled or can not be accepted) and should be 
criminalized. 

3. Branch Testing (P2): 
 Execute enough tests to assure that every branch 

alternative has been exercised at least once under 
some test. 

 If we do enough tests to achieve this prescription, 
then we have achieved 100% branch coverage. 

 An alternative characterization is to say that we 
have achieved 100% link coverage. 

 For structured software, branch testing and 
therefore branch coverage strictly includes 
statement coverage. 

 We denote branch coverage by C2. 
 Commonsense and Strategies: 

1. Branch and statement coverage are accepted today as the 
minimum mandatory testing requirement. 

2. The question "why not use a judicious sampling of paths?, what 
is wrong with leaving some code, untested?" is ineffectual in 
the view of common sense and experience since: (1.) Not 
testing a piece of a code leaves a residue of bugs in the 
program in proportion to the size of the untested code and the 
probability of bugs. (2.) The high probability paths are always 
thoroughly tested if only to demonstrate that the system works 
properly. 

3. Which paths to be tested? You must pick enough paths to 
achieve C1+C2. The question of what is the fewest number of 
such paths is interesting to the designer of test tools that help 
automate the path testing, but it is not crucial to the pragmatic 
(practical) design of tests. It is better to make many simple 
paths than a few complicated paths. 

4. Path Selection Example: 



 
 

 

 

Figure 2.9: An example flowgraph to 
explain path selection 

5. Practical Suggestions in Path Testing: 

 Draw the control flow graph on a single sheet of 
paper. 

 Make several copies - as many as you will need for 
coverage (C1+C2) and several more. 

 Use a yellow highlighting marker to trace paths. 
Copy the paths onto a master sheets. 

 Continue tracing paths until all lines on the master 
sheet are covered, indicating that you appear to 
have achieved C1+C2. 

 As you trace the paths, create a table that shows 
the paths, the coverage status of each process, and 
each decision. 

 The above paths lead to the following table 
considering Figure 2.9: 



 
 

 

 

 After you have traced a a covering path set on the 
master sheet and filled in the table for every path, 
check the following: 

1. Does every decision have a YES and a 
NO in its column? (C2) 

2. Has every case of all case statements 
been marked? (C2) 

3. Is every three - way branch (less, equal, 
greater) covered? (C2) 

4. Is every link (process) covered at least 
once? (C1) 

 Revised Path Selection Rules: 

1. Pick the simplest, functionally sensible 
entry/exit path. 

2. Pick additional paths as small variation 
from previous paths. Pick paths that do 
not have loops rather than paths that do. 
Favor short paths that make sense over 
paths that don't. 

3. Pick additional paths that have no 
obvious functional meaning only if it's 
necessary to provide coverage. 

4. Be comfortable with your chosen paths. 
Play your hunches (guesses) and give 



your intuition free reign as long as you 
achieve C1+C2. 

5. Don't follow rules slavishly (blindly) - 
except for coverage. 

2. LOOPS: 
 Cases for a single loop:A Single loop can be 

covered with two cases: Looping and Not 
looping. But, experience shows that many loop-
related bugs are not discovered by C1+C2. 
Bugs hide themselves in corners and 
congregate at boundaries - in the cases of 
loops, at or around the minimum or maximum 
number of times the loop can be iterated. The 
minimum number of iterations is often zero, but 
it need not be.  
CASE 1: Single loop, Zero minimum, N 
maximum, No excluded values 

 Try bypassing the loop (zero iterations). If you can't, 
you either have a bug, or zero is not the minimum 
and you have the wrong case. 

 Could the loop-control variable be negative? Could it 
appear to specify a negative number of iterations? 
What happens to such a value? 

 One pass through the loop. 
 Two passes through the loop. 
 A typical number of iterations, unless covered by a 

previous test. 
 One less than the maximum number of iterations. 
 The maximum number of iterations. 
 Attempt one more than the maximum number of 

iterations. What prevents the loop-control variable 
from having this value? What will happen with this 
value if it is forced? 

 
CASE 2: Single loop, Non-zero minimum, No excluded 
values 

 Try one less than the expected minimum. What 
happens if the loop control variable's value is less 
than the minimum? What prevents the value from 
being less than the minimum? 

 The minimum number of iterations. 
 One more than the minimum number of iterations. 
 Once, unless covered by a previous test. 
 Twice, unless covered by a previous test. 
 A typical value. 
 One less than the maximum value. 
 The maximum number of iterations. 
 Attempt one more than the maximum number of 

iterations. 



 
CASE 3: Single loops with excluded values 

 Treat single loops with excluded values as two sets 
of tests consisting of loops without excluded values, 
such as case 1 and 2 above. 

 Example, the total range of the loop control variable 
was 1 to 20, but that values 7,8,9,10 were excluded. 
The two sets of tests are 1-6 and 11-20. 

 The test cases to attempt would be 0,1,2,4,6,7 for 
the first range and 10,11,15,19,20,21 for the second 
range. 

 Kinds of Loops:There are only three kinds of 
loops with respect to path testing: 

 Nested Loops: 
1. The number of tests to be performed on 

nested loops will be the exponent of the 
tests performed on single loops. 

2. As we cannot always afford to test all 
combinations of nested loops' iterations 
values. Here's a tactic used to discard 
some of these values: 

1. Start at the inner most loop. 
Set all the outer loops to their 
minimum values. 

2. Test the minimum, 
minimum+1, typical, 
maximum-1 , and maximum 
for the innermost loop, while 
holding the outer loops at their 
minimum iteration parameter 
values. Expand the tests as 
required for out of range and 
excluded values. 

3. If you've done the outmost 
loop, GOTO step 5, else move 
out one loop and set it up as in 
step 2 with all other loops set 
to typical values. 

4. Continue outward in this 
manner until all loops have 
been covered. 

5. Do all the cases for all loops in 
the nest simultaneously. 

 Concatenated Loops: 
1. Concatenated loops fall between single 

and nested loops with respect to test 
cases. Two loops are concatenated if it's 
possible to reach one after exiting the 
other while still on a path from entrance 
to exit. 



2. If the loops cannot be on the same path, 
then they are not concatenated and can 
be treated as individual loops. 

 Horrible Loops: 
1. A horrible loop is a combination of nested 

loops, the use of code that jumps into 
and out of loops, intersecting loops, 
hidden loops, and cross connected loops. 

2. Makes iteration value selection for test 
cases an awesome and ugly task, which 
is another reason such structures should 
be avoided. 



 
 

 

 

Figure 2.10: Example of Loop types 

 Loop Testing TIme: 
 Any kind of loop can lead to long testing time, 

especially if all the extreme value cases are to 
attempted (Max-1, Max, Max+1). 



 This situation is obviously worse for nested and 
dependent concatenated loops. 

 Consider nested loops in which testing the 
combination of extreme values lead to long test 
times. Several options to deal with: 

1. Prove that the combined extreme cases 
are hypothetically possible, they are not 
possible in the real world 

2. Put in limits or checks that prevent the 
combined extreme cases. Then you have 
to test the software that implements such 
safety measures. 

 

PREDICATES, PATH PREDICATES AND ACHIEVABLE PATHS -   

CO2 

 PREDICATE: The logical function evaluated at a decision 
is called Predicate. The direction taken at a decision 
depends on the value of decision variable. Some examples 
are: A>0, x+y>=90....... 

 PATH PREDICATE: A predicate associated with a path is 
called a Path Predicate. For example, "x is greater than 
zero", "x+y>=90", "w is either negative or equal to 10 is 
true" is a sequence of predicates whose truth values will 
cause the routine to take a specific path. 

 MULTIWAY BRANCHES: 
 The path taken through a multiway branch such 

as a computed GOTO's, case statement, or 
jump tables cannot be directly expressed in 
TRUE/FALSE terms. 

 Although, it is possible to describe such 
alternatives by using multi valued logic, an 
expedient (practical approach) is to express 
multiway branches as an equivalent set of 
if..then..else statements. 

 For example a three way case statement can be 
written as: If case=1 DO A1 ELSE (IF Case=2 
DO A2 ELSE DO A3 ENDIF)ENDIF. 

 INPUTS: 
 In testing, the word input is not restricted to 

direct inputs, such as variables in a subroutine 
call, but includes all data objects referenced by 
the routine whose values are fixed prior to 
entering it. 

 For example, inputs in a calling sequence, 
objects in a data structure, values left in 
registers, or any combination of object types. 



 The input for a particular test is mapped as a 
one dimensional array called as an Input Vector. 

 PREDICATE INTERPRETATION: 
 The simplest predicate depends only on input 

variables. 
 For example if x1,x2 are inputs, the predicate 

might be x1+x2>=7, given the values of x1 and 
x2 the direction taken through the decision is 
based on the predicate is determined at input 
time and does not depend on processing. 

 Another example, assume a predicate x1+y>=0 
that along a path prior to reaching this predicate 
we had the assignement statement y=x2+7. 
although our predicate depends on processing, 
we can substitute the symbolic expression for y 
to obtain an equivalent predicate x1+x2+7>=0. 

 The act of symbolic substitution of operations 
along the path in order to express the predicate 
solely in terms of the input vector is 
called predicate interpretation. 

 Some times the interpretation may depend on 
the path; for example, 

 INPUT X 

 ON X GOTO A, B, C, ... 

 A: Z := 7 @ GOTO HEM 

 B: Z := -7 @ GOTO HEM 

 C: Z := 0 @ GOTO HEM 

 ......... 

 HEM: DO SOMETHING 

 ......... 

 HEN: IF Y + Z > 0 GOTO ELL 

ELSE GOTO EMM 

The predicate interpretation at HEN depends on the path we 
took through the first multiway branch. It yields for the three 
cases respectively, if Y+7>0, Y-7>0, Y>0. 

 The path predicates are the specific form of the 
predicates of the decisions along the selected 
path after interpretation. 

 INDEPENDENCE OF VARIABLES AND PREDICATES: 
 The path predicates take on truth values based 

on the values of input variables, either directly or 
indirectly. 

 If a variable's value does not change as a result 
of processing, that variable is independent of the 
processing. 



 If the variable's value can change as a result of 
the processing, the variable is process 
dependent. 

 A predicate whose truth value can change as a 
result of the processing is said to be process 
dependent and one whose truth value does not 
change as a result of the processing is process 
independent. 

 Process dependence of a predicate does not 
always follow from dependence of the input 
variables on which that predicate is based. 

 CORRELATION OF VARIABLES AND PREDICATES: 
 Two variables are correlated if every 

combination of their values cannot be 
independently specified. 

 Variables whose values can be specified 
independently without restriction are called 
uncorrelated. 

 A pair of predicates whose outcomes depend on 
one or more variables in common are said to be 
correlated predicates. 
For example, the predicate X==Y is followed by 
another predicate X+Y == 8. If we select X and 
Y values to satisfy the first predicate, we might 
have forced the 2nd predicate's truth value to 
change. 

 Every path through a routine is achievable only 
if all the predicates in that routine are 
uncorrelated. 

 PATH PREDICATE EXPRESSIONS: 
 A path predicate expression is a set of boolean 

expressions, all of which must be satisfied to 
achieve the selected path. 

 Example: 

      X1+3X2+17>=0 

      X3=17 

      X4-X1>=14X2 

   

 Any set of input values that satisfy all of the 
conditions of the path predicate expression will 
force the routine to the path. 

 Some times a predicate can have an OR in it. 
 Example: 

A: X5 > 0 

B: X1 + 3X2 + 17 >= 0 

C: X3 = 17 

D: X4 - X1 >= 14X2 

E: X6 < 0 

B: X1 + 3X2 + 17 >= 0 

C: X3 = 17 

D: X4 - X1 >= 14X2 



  
 Boolean algebra notation to denote the boolean 

expression:  

ABCD+EBCD=(A+E)BCD 

 PREDICATE COVERAGE: 
 Compound Predicate: Predicates of the form A 

OR B, A AND B and more complicated boolean 
expressions are called as compound predicates. 

 Some times even a simple predicate becomes 
compound after interpretation. Example: the 
predicate if (x=17) whose opposite branch is if 
x.NE.17 which is equivalent to x>17 . Or. X<17. 

 Predicate coverage is being the achieving of all 
possible combinations of truth values 
corresponding to the selected path have been 
explored under some test. 

 As achieving the desired direction at a given 
decision could still hide bugs in the associated 
predicates. 

 TESTING BLINDNESS: 
 Testing Blindness is a pathological (harmful) 

situation in which the desired path is achieved 
for the wrong reason. 

 There are three types of Testing Blindness: 

 Assignment Blindness: 
1. Assignment blindness occurs when the 

buggy predicate appears to work 
correctly because the specific value 
chosen for an assignment statement 
works with both the correct and incorrect 
predicate. 

2. For Example: 

Correct Buggy 

X = 7 

........ 

if Y > 0 then ... 

X = 7 

........ 

if X+Y > 0 then ... 

3. If the test case sets Y=1 the desired path 
is taken in either case, but there is still a 
bug. 

 Equality Blindness: 
1. Equality blindness occurs when the path 

selected by a prior predicate results in a 
value that works both for the correct and 
buggy predicate. 

2. For Example: 



Correct Buggy 

if Y = 2 then  

........ 

if X+Y > 3 then ... 

if Y = 2 then 

........ 

if X > 1 then ... 

3. The first predicate if y=2 forces the rest of 
the path, so that for any positive value of 
x. the path taken at the second predicate 
will be the same for the correct and 
buggy version. 

 Self Blindness: 
1. Self blindness occurs when the buggy 

predicate is a multiple of the correct 
predicate and as a result is 
indistinguishable along that path. 

2. For Example: 

Correct Buggy 

X = A 

........ 

if X-1 > 0 then ... 

X = A 

........ 

if X+A-2 > 0 then ... 

3. The assignment (x=a) makes the 
predicates multiples of each other, so the 
direction taken is the same for the correct 
and buggy version. 

 

PATH  SENSITIZING   -  CO2 

2. REVIEW: ACHIEVABLE AND UNACHIEVABLE PATHS: 
 We want to select and test enough paths to 

achieve a satisfactory notion of test 
completeness such as C1+C2. 

 Extract the programs control flowgraph and 
select a set of tentative covering paths. 

 For any path in that set, interpret the predicates 
along the path as needed to express them in 
terms of the input vector. In general individual 
predicates are compound or may become 
compound as a result of interpretation. 

 Trace the path through, multiplying the individual 
compound predicates to achieve a boolean 
expression such as 

(A+BC) (D+E) (FGH) (IJ) (K) (l) (L). 

 Multiply out the expression to achieve a sum of 
products form: 



ADFGHIJKL+AEFGHIJKL+BCDFGHIJKL+BCEFGHIJK
L 

 Each product term denotes a set of inequalities 
that if solved will yield an input vector that will 
drive the routine along the designated path. 

 Solve any one of the inequality sets for the 
chosen path and you have found a set of input 
values for the path. 

 If you can find a solution, then the path is 
achievable. 

 If you cant find a solution to any of the sets of 
inequalities, the path is un achievable. 

 The act of finding a set of solutions to the path 
predicate expression is called PATH 
SENSITIZATION. 

3. HEURISTIC PROCEDURES FOR SENSITIZING PATHS: 
 This is a workable approach, instead of 

selecting the paths without considering how to 
sensitize, attempt to choose a covering path set 
that is easy to sensitize and pick hard to 
sensitize paths only as you must to achieve 
coverage. 

 Identify all variables that affect the decision. 
 Classify the predicates as dependent or 

independent. 
 Start the path selection with un correlated, 

independent predicates. 
 If coverage has not been achieved using 

independent uncorrelated predicates, extend the 
path set using correlated predicates. 

 If coverage has not been achieved extend the 
cases to those that involve dependent 
predicates. 

 Last, use correlated, dependent predicates. 

 

PATH  INSTRUMENTATION   -  CO2 

 Path instrumentation is what we have to do to confirm that the outcome was 
achieved by the intended path. 

 Co-incidental Correctness: The coincidental correctness stands for achieving the 
desired outcome for wrong reason.  



 

 

 

Figure 2.11: Coincidental Correctness 

The above figure is an example of a routine that, for the (unfortunately) chosen input 
value (X = 16), yields the same outcome (Y = 2) no matter which case we select. 
Therefore, the tests chosen this way will not tell us whether we have achieved coverage. 
For example, the five cases could be totally jumbled and still the outcome would be the 
same. Path Instrumentation is what we have to do to confirm that the outcome was 
achieved by the intended path. 

 The types of instrumentation methods include: 
1. Interpretive Trace Program: 

 An interpretive trace program is one that executes every 
statement in order and records the intermediate values of all 
calculations, the statement labels traversed etc. 

 If we run the tested routine under a trace, then we have all the 
information we need to confirm the outcome and, furthermore, 
to confirm that it was achieved by the intended path. 

 The trouble with traces is that they give us far more information 
than we need. In fact, the typical trace program provides so 
much information that confirming the path from its massive 
output dump is more work than simulating the computer by 
hand to confirm the path. 

2. Traversal Marker or Link Marker: 
 A simple and effective form of instrumentation is called a 

traversal marker or link marker. 
 Name every link by a lower case letter. 
 Instrument the links so that the link's name is recorded when 

the link is executed. 
 The succession of letters produced in going from the routine's 

entry to its exit should, if there are no bugs, exactly correspond 
to the path name.  



 

 

3. Figure 2.12: Single Link Marker 
Instrumentation 

 Why Single Link Markers aren't enough: Unfortunately, a 
single link marker may not do the trick because links can be 
chewed by open bugs.  

 

 

 

4. Figure 2.13: Why Single Link Markers aren't 
enough. 

5. We intended to traverse the ikm path, but because of a rampaging 
GOTO in the middle of the m link, we go to process B. If 
coincidental correctness is against us, the outcomes will be the 
same and we won't know about the bug. 

6. Two Link Marker Method: 
 The solution to the problem of single link marker method is to 

implement two markers per link: one at the beginning of each 
link and on at the end. 

 The two link markers now specify the path name and confirm 
both the beginning and end of the link.  



 

 

7. Figure 2.14: Double Link Marker 
Instrumentation. 

8. Link Counter: A less disruptive (and less informative) instrumentation 
method is based on counters. Instead of a unique link name to be pushed 
into a string when the link is traversed, we simply increment a link counter. 
We now confirm that the path length is as expected. The same problem 
that led us to double link markers also leads us to double link counters. 

 

APPLICATION OF PATH TESTING -  CO2 

Integration, Coverage and Paths in called Components 

Path testing methods are mainly used in unit testing, especially for new software 

The new component is first tested as an independent unit with all called components and co-requisite 

components replaced by stubs. A simulator of low-level components that is more reliable than the actual 

component 

Path testing clarifies the integration issues 

C1 coverage at the system level ranges from 50% to 85% 

We gave no statistics for C2 coverage in system testing because it is impossible to monitor C2 coverage 

without disrupting the system's operation 

Note: 

Co-requisite: A formal course of study required to be taken simultaneously with another 

 

New Code: 

New code should always be subjected to enough path testing to achieve C2 

Stubs are used where it is clear that the bug potential for the stub is significantly lower than that of the 

called components 

Old, trusted components will not be replaced by stubs 

Some consideration is given to paths within called components 

Typically, we will try to use the shortest entry/exit path that will do the task 

 

Maintenance: 

There is a great difference between maintenance testing and new code testing 

Maintenance testing is a completely different situation 



It involves modifications which are accommodated in the system, as required 

Path testing is used firstly on the modified component 

 

Rehosting: 

Path testing with C1+C2 coverage is a powerful tool for rehosting old software 

We get a very powerful, effective, rehosting process when C1+C2 coverage is used in conjunction with 

automatic or semiautomatic structural test generators 

Software is rehosted because it is no longer cost effective to support the environment in which it runs 

The objective of rehosting is to change the operating environment and not the rehosted software 

Rehosting from one COBOL environment to another is easy by comparison 

Rehosted software can be modified to improve efficiency and/or to implement new functionality, which 

had been difficult in the old environments 

The test suites(collection) and all outcomes of the old environment become the specification for the 

rehosted software 

 

PATH, PATH PRODUCTS AND REGULAR EXPRESSIONS  -  CO2 

 MOTIVATION: 

o Flow graphs are being an abstract representation of programs. 

o Any question about a program can be cast into an equivalent question 
about an appropriate flowgraph. 

o Most software development, testing and debugging tools use flow graphs 
analysis techniques. 

 PATH PRODUCTS: 

o Normally flow graphs used to denote only control flow connectivity. 

o The simplest weight we can give to a link is a name. 

o Using link names as weights, we then convert the graphical flow graph 
into an equivalent algebraic like expressions which denotes the set of all 
possible paths from entry to exit for the flow graph. 

o Every link of a graph can be given a name. 

o The link name will be denoted by lower case italic letters. 

o In tracing a path or path segment through a flow graph, you traverse a 
succession of link names. 

o The name of the path or path segment that corresponds to those links is 
expressed naturally by concatenating those link names. 

o For example, if you traverse links a,b,c and d along some path, the name 
for that path segment is abcd. This path name is also called a path 
product. Figure 5.1 shows some examples: 



 
 

  

 

Figure 5.1: Examples of paths. 

 PATH EXPRESSION: 

o Consider a pair of nodes in a graph and the set of paths between those 
node. 

o Denote that set of paths by Upper case letter such as X,Y. From Figure 
5.1c, the members of the path set can be listed as follows: 

ac, abc, abbc, abbbc, abbbbc............. 

o Alternatively, the same set of paths can be denoted by : 

ac+abc+abbc+abbbc+abbbbc+........... 

o The + sign is understood to mean "or" between the two nodes of interest, 
paths ac, or abc, or abbc, and so on can be taken. 

o Any expression that consists of path names and "OR"s and which denotes 
a set of paths between two nodes is called a "Path Expression.". 

 PATH PRODUCTS: 



o The name of a path that consists of two successive path segments is 
conveniently expressed by the concatenation or Path Product of the 
segment names. 

o For example, if X and Y are defined as X=abcde,Y=fghij,then the path 
corresponding to X followed by Y is denoted by 

XY=abcdefghij 

o Similarly, 

o YX=fghijabcde 
o aX=aabcde 
o Xa=abcdea 

XaX=abcdeaabcde 

o If X and Y represent sets of paths or path expressions, their product 
represents the set of paths that can be obtained by following every 
element of X by any element of Y in all possible ways. For example, 

o X = abc + def + ghi 
o Y = uvw + z            

            

Then, 

XY = abcuvw + defuvw + ghiuvw + abcz + defz 

+ ghiz 

o If a link or segment name is repeated, that fact is denoted by an exponent. 
The exponent's value denotes the number of repetitions: 

o a1 = a; a2 = aa; a3 = aaa; an = aaaa . . . n 
times. 

Similarly, if 

X = abcde 

then 

X1 = abcde 

X2 = abcdeabcde = (abcde)2 

X3 = abcdeabcdeabcde = (abcde)2abcde 

= abcde(abcde)2 = (abcde)3 

o The path product is not commutative (that is XY!=YX). 

o The path product is Associative.  



RULE 1: A(BC)=(AB)C=ABC 

where A,B,C are path names, set of path names or path expressions. 

o The zeroth power of a link name, path product, or path expression is also 
needed for completeness. It is denoted by the numeral "1" and denotes 
the "path" whose length is zero - that is, the path that doesn't have any 
links. 

o a0 = 1 
o X0 = 1 

 PATH SUMS: 

o The "+" sign was used to denote the fact that path names were part of the 
same set of paths. 

o The "PATH SUM" denotes paths in parallel between nodes. 

o Links a and b in Figure 5.1a are parallel paths and are denoted by a + b. 
Similarly, links c and d are parallel paths between the next two nodes and 
are denoted by c + d. 

o The set of all paths between nodes 1 and 2 can be thought of as a set of 
parallel paths and denoted by eacf+eadf+ebcf+ebdf. 

o If X and Y are sets of paths that lie between the same pair of nodes, then 
X+Y denotes the UNION of those set of paths. For example, in Figure 5.2: 

 
 

  

 

Figure 5.2: Examples of path sums. 

The first set of parallel paths is denoted by X + Y + d and the second set 
by U + V + W + h + i + j. The set of all paths in this flowgraph is f(X + Y + 
d)g(U + V + W + h + i + j)k 

o The path is a set union operation, it is clearly Commutative and 
Associative. 

o RULE 2: X+Y=Y+X 
o RULE 3: (X+Y)+Z=X+(Y+Z)=X+Y+Z 

            

 DISTRIBUTIVE LAWS: 



o The product and sum operations are distributive, and the ordinary rules of 
multiplication apply; that is 

RULE 4: A(B+C)=AB+AC and (B+C)D=BD+CD 

o Applying these rules to the below Figure 5.1a yields 

o e(a+b)(c+d)f=e(ac+ad+bc+bd)f = 

eacf+eadf+ebcf+ebdf 
 ABSORPTION RULE: 

o If X and Y denote the same set of paths, then the union of these sets is 
unchanged; consequently, 

RULE 5: X+X=X (Absorption Rule) 

o If a set consists of paths names and a member of that set is added to it, 
the "new" name, which is already in that set of names, contributes nothing 
and can be ignored. 

o For example, 

o if X=a+aa+abc+abcd+def then 
    X+a = X+aa = X+abc = X+abcd = X+def = X 

It follows that any arbitrary sum of identical path expressions reduces to 
the same path expression. 

 LOOPS: 

o Loops can be understood as an infinite set of parallel paths. Say that the 
loop consists of a single link b. then the set of all paths through that loop 
point is b0+b1+b2+b3+b4+b5+.............. 

 
 

  

 

Figure 5.3: Examples of path loops. 

o This potentially infinite sum is denoted by b* for an individual link and by 
X* when X is a path expression. 



 
 

  

 

Figure 5.4: Another example of path loops. 

o The path expression for the above figure is denoted by the notation: 

ab*c=ac+abc+abbc+abbbc+................  

o Evidently, 

aa*=a*a=a+ and XX*=X*X=X+ 

o It is more convenient to denote the fact that a loop cannot be taken more 
than a certain, say n, number of times. 

o A bar is used under the exponent to denote the fact as follows: 

Xn = X0+X1+X2+X3+X4+X5+..................+Xn 

 RULES 6 - 16: 

o The following rules can be derived from the previous rules: 

o RULE 6: Xn + Xm = Xn if n>m 
RULE 6: Xn + Xm = Xm if m>n 

RULE 7: XnXm = Xn+m 

RULE 8: XnX* = X*Xn = X* 

RULE 9: XnX+ = X+Xn = X+ 

RULE 10: X*X+ = X+X* = X+ 

RULE 11: 1 + 1 = 1 

RULE 12: 1X = X1 = X  

Following or preceding a set of paths by a path of zero length does not change 
the set. 
RULE 13: 1n = 1n = 1* = 1+ = 1 

No matter how often you traverse a path of zero length,It is a path of zero length. 
RULE 14: 1++1 = 1*=1 
The null set of paths is denoted by the numeral 0. it obeys the following 
rules: 
RULE 15: X+0=0+X=X 

RULE 16: 0X=X0=0 

If you block the paths of a graph for or aft by a graph that has no paths , there 
wont be any paths. 



 

REDUCTION PROCEDURE   -  CO2 

 REDUCTION PROCEDURE ALGORITHM: 

o This section presents a reduction procedure for converting a flowgraph 
whose links are labeled with names into a path expression that denotes 
the set of all entry/exit paths in that flowgraph. The procedure is a node-
by-node removal algorithm. 

o The steps in Reduction Algorithm are as follows: 
1. Combine all serial links by multiplying their path expressions. 
2. Combine all parallel links by adding their path expressions. 
3. Remove all self-loops (from any node to itself) by replacing 

them with a link of the form X*, where X is the path expression 
of the link in that loop.  
 
STEPS 4 - 8 ARE IN THE ALGORIHTM'S LOOP: 

4. Select any node for removal other than the initial or final node. 
Replace it with a set of equivalent links whose path 
expressions correspond to all the ways you can form a product 
of the set of inlinks with the set of outlinks of that node. 

5. Combine any remaining serial links by multiplying their path 
expressions. 

6. Combine all parallel links by adding their path expressions. 
7. Remove all self-loops as in step 3. 
8. Does the graph consist of a single link between the entry node 

and the exit node? If yes, then the path expression for that link 
is a path expression for the original flowgraph; otherwise, 
return to step 4. 

o A flowgraph can have many equivalent path expressions between a given 
pair of nodes; that is, there are many different ways to generate the set of 
all paths between two nodes without affecting the content of that set. 

o The appearance of the path expression depends, in general, on the order 
in which nodes are removed. 

 CROSS-TERM STEP (STEP 4): 

o The cross - term step is the fundamental step of the reduction algorithm. 

o It removes a node, thereby reducing the number of nodes by one. 

o Successive applications of this step eventually get you down to one entry 
and one exit node. The following diagram shows the situation at an 
arbitrary node that has been selected for removal: 

 
 

  



 

o From the above diagram, one can infer: 

o           (a + b)(c + d + e) = ac + ad + + 
ae + bc + bd + be 

           

 LOOP REMOVAL OPERATIONS: 

o There are two ways of looking at the loop-removal operation: 

 

  

 

o In the first way, we remove the self-loop and then multiply all outgoing 
links by Z*. 

o In the second way, we split the node into two equivalent nodes, call them 
A and A' and put in a link between them whose path expression is Z*. 
Then we remove node A' using steps 4 and 5 to yield outgoing links 
whose path expressions are Z*X and Z*Y. 

 A REDUCTION PROCEDURE - EXAMPLE: 

o Let us see by applying this algorithm to the following graph where we 
remove several nodes in order; that is 

 
 

  

 

Figure 5.5: Example Flowgraph for demonstrating 
reduction procedure. 



o Remove node 10 by applying step 4 and combine by step 5 to yield 

 
 

  

 

o Remove node 9 by applying step4 and 5 to yield 

 
 

  

 

o Remove node 7 by steps 4 and 5, as follows: 

 
 

  

 

o Remove node 8 by steps 4 and 5, to obtain: 



 
 

  

 

o PARALLEL TERM (STEP 6): 
Removal of node 8 above led to a pair of parallel links between nodes 4 
and 5. combine them to create a path expression for an equivalent link 
whose path expression is c+gkh; that is 

 
 

  

 

o LOOP TERM (STEP 7): 
Removing node 4 leads to a loop term. The graph has now been replaced 
with the following equivalent simpler graph: 

 
 

  

 

o Continue the process by applying the loop-removal step as follows: 



 
 

  

 

o Removing node 5 produces: 

 
 

  

 

o Remove the loop at node 6 to yield: 

 
 

  

 

o Remove node 3 to yield: 

 
 

  

 

o Removing the loop and then node 6 result in the following expression: 

o          
a(bgjf)*b(c+gkh)d((ilhd)*imf(bjgf)*b(c+gkh)d

)*(ilhd)*e 



          

o You can practice by applying the algorithm on the following flowgraphs 
and generate their respective path expressions: 

 

  

 

Figure 5.6: Some graphs and their path 
expressions. 

APPLICATIONS   -  CO2 

 APPLICATIONS: 
o The purpose of the node removal algorithm is to present one very 

generalized concept- the path expression and way of getting it. 
o Every application follows this common pattern: 

1. Convert the program or graph into a path expression. 
2. Identify a property of interest and derive an appropriate set of 

"arithmetic" rules that characterizes the property. 
3. Replace the link names by the link weights for the property of 

interest. The path expression has now been converted to an 
expression in some algebra, such as ordinary algebra, regular 
expressions, or boolean algebra. This algebraic expression 
summarizes the property of interest over the set of all paths. 



4. Simplify or evaluate the resulting "algebraic" expression to 
answer the question you asked. 

 HOW MANY PATHS IN A FLOWGRAPH ? 
o The question is not simple. Here are some ways you could ask it: 

1. What is the maximum number of different paths possible? 
2. What is the fewest number of paths possible? 
3. How many different paths are there really? 
4. What is the average number of paths? 

o Determining the actual number of different paths is an inherently difficult 
problem because there could be unachievable paths resulting from 
correlated and dependent predicates. 

o If we know both of these numbers (maximum and minimum number of 
possible paths) we have a good idea of how complete our testing is. 

o Asking for "the average number of paths" is meaningless. 
 MAXIMUM PATH COUNT ARITHMETIC: 

o Label each link with a link weight that corresponds to the number of paths 
that link represents. 

o Also mark each loop with the maximum number of times that loop can be 
taken. If the answer is infinite, you might as well stop the analysis because 
it is clear that the maximum number of paths will be infinite. 

o There are three cases of interest: parallel links, serial links, and loops. 

 

  

 

o This arithmetic is an ordinary algebra. The weight is the number of paths 
in each set. 

o EXAMPLE: 

1. The following is a reasonably well-structured program. 

 

  



 
Each link represents a single link and consequently is given a 
weight of "1" to start. Lets say the outer loop will be taken 
exactly four times and inner Loop Can be taken zero or three 
times Its path expression, with a little work, is: 

Path expression: 

a(b+c)d{e(fi)*fgj(m+l)k}*e(fi)*fgh 

2. A: The flow graph should be annotated by replacing the link 
name with the maximum of paths through that link (1) and also 
note the number of times for looping. 

3. B: Combine the first pair of parallel loops outside the loop and 
also the pair in the outer loop. 

4. C: Multiply the things out and remove nodes to clear the clutter. 

 

  

 

5. For the Inner Loop:  
D:Calculate the total weight of inner loop, which can execute a 
min. of 0 times and max. of 3 times. So, it inner loop can be 
evaluated as follows:  
 
13 = 10 + 11 + 12 + 13 = 1 + 1 + 1 + 1 = 4 

6. E: Multiply the link weights inside the loop: 1 X 4 = 4 
7. F: Evaluate the loop by multiplying the link wieghts: 2 X 4 = 8. 
8. G: Simpifying the loop further results in the total maximum 

number of paths in the flowgraph: 
 
2 X 84 X 2 = 32,768. 



 

  

 

o Alternatively, you could have substituted a "1" for each link in the path 
expression and then simplified, as follows:  
 

a(b+c)d{e(fi)*fgj(m+l)k}*e(fi)*fgh 

= 1(1 + 1)1(1(1 x 1)31 x 1 x 1(1 + 1)1)41(1 x 1)31 x 1 x 1 
= 2(131 x (2))413 
= 2(4 x 2)4 x 4  
= 2 x 84 x 4 = 32,768 

o This is the same result we got graphically. 
o Actually, the outer loop should be taken exactly four times. That doesn't 

mean it will be taken zero or four times. Consequently, there is a 
superfluous "4" on the outlink in the last step. Therefore the maximum 
number of different paths is 8192 rather than 32,768. 

 STRUCTURED FLOWGRAPH: 
o Structured code can be defined in several different ways that do not 

involve ad-hoc rules such as not using GOTOs. 
o A structured flowgraph is one that can be reduced to a single link by 

successive application of the transformations of Figure 5.7. 

 
 



  

 

Figure 5.7: Structured Flowgraph Transformations. 

o The node-by-node reduction procedure can also be used as a test for 
structured code. 

o Flow graphs that DO NOT contain one or more of the graphs shown below 
(Figure 5.8) as subgraphs are structured. 

1. Jumping into loops 
2. Jumping out of loops 
3. Branching into decisions 
4. Branching out of decisions 



 
 

  

 

Figure 5.8: Un-structured sub-graphs. 

2. LOWER PATH COUNT ARITHMETIC: 
o A lower bound on the number of paths in a routine can be approximated 

for structured flow graphs. 
o The arithmetic is as follows: 



 
 

  

 

o The values of the weights are the number of members in a set of paths. 
o EXAMPLE: 

1. Applying the arithmetic to the earlier example gives us the 
identical steps unitl step 3 (C) as below: 

 

  

 

 

  

 



2. From Step 4, the it would be different from the previous 
example: 

 

  

 

3. If you observe the original graph, it takes at least two paths to 
cover and that it can be done in two paths. 

4. If you have fewer paths in your test plan than this minimum you 
probably haven't covered. It's another check. 

 CALCULATING THE PROBABILITY: 
o Path selection should be biased toward the low - rather than the high-

probability paths. 
o This raises an interesting question:  

 
What is the probability of being at a certain point in a routine? 
 
This question can be answered under suitable assumptions, primarily that 
all probabilities involved are independent, which is to say that all decisions 
are independent and uncorrelated. 

o We use the same algorithm as before : node-by-node removal of 
uninteresting nodes. 

o Weights, Notations and Arithmetic: 
1. Probabilities can come into the act only at decisions (including 

decisions associated with loops). 



2. Annotate each outlink with a weight equal to the probability of 
going in that direction. 

3. Evidently, the sum of the outlink probabilities must equal 1 
4. For a simple loop, if the loop will be taken a mean of N times, 

the looping probability is N/(N + 1) and the probability of not 
looping is 1/(N + 1). 

5. A link that is not part of a decision node has a probability of 1. 
6. The arithmetic rules are those of ordinary arithmetic. 

 

  

 

7. In this table, in case of a loop, PA is the probability of the link 
leaving the loop and PL is the probability of looping. 

8. The rules are those of ordinary probability theory. 
1. If you can do something either from column A with a 

probability of PA or from column B with a probability 
PB, then the probability that you do either is PA + PB. 

2. For the series case, if you must do both things, and 
their probabilities are independent (as assumed), 
then the probability that you do both is the product 
of their probabilities. 

9. For example, a loop node has a looping probability of PL and a 
probability of not looping of PA, which is obviously equal to I - 
PL. 

 

  



 

10. Following the above rule, all we've done is replace the outgoing 
probability with 1 - so why the complicated rule? After a few 
steps in which you've removed nodes, combined parallel terms, 
removed loops and the like, you might find something like this: 

 

  

 
because PL + PA + PB + PC = 1, 1 - PL = PA + PB + PC, and 

 

  

 
which is what we've postulated for any decision. In other words, 
division by 1 - PL renormalizes the outlink probabilities so that 
their sum equals unity after the loop is removed. 

o EXAMPLE: 
1. Here is a complicated bit of logic. We want to know the 

probability associated with cases A, B, and C. 

 

  

 



2. Let us do this in three parts, starting with case A. Note that the 
sum of the probabilities at each decision node is equal to 1. 
Start by throwing away anything that isn't on the way to case A, 
and then apply the reduction procedure. To avoid clutter, we 
usually leave out probabilities equal to 1.  
 
CASE A: 

 

  

 

3. Case B is simpler: 



 

  

 

4. Case C is similar and should yield a probability of 1 - 0.125 - 
0.158 = 0.717: 

 

  

 



5. This checks. It's a good idea when doing this sort of thing to 
calculate all the probabilities and to verify that the sum of the 
routine's exit probabilities does equal 1. 

6. If it doesn't, then you've made calculation error or, more likely, 
you've left out some branching probability. 

7. How about path probabilities? That's easy. Just trace the path 
of interest and multiply the probabilities as you go. 

8. Alternatively, write down the path name and do the indicated 
arithmetic operation. 

9. Say that a path consisted of links a, b, c, d, e, and the 
associated probabilities were .2, .5, 1., .01, and I respectively. 
Path abcbcbcdeabddea would have a probability of 5 x 10-10. 

10. Long paths are usually improbable. 
 MEAN PROCESSING TIME OF A ROUTINE: 

o Given the execution time of all statements or instructions for every link in a 
flowgraph and the probability for each direction for all decisions are to find 
the mean processing time for the routine as a whole. 

o The model has two weights associated with every link: the processing 
time for that link, denoted by T, and the probability of that link P. 

o The arithmetic rules for calculating the mean time: 

 

  

 

o EXAMPLE: 

1. Start with the original flow graph annotated with probabilities 
and processing time. 

 

  



 

2. Combine the parallel links of the outer loop. The result is just 
the mean of the processing times for the links because there 
aren't any other links leaving the first node. Also combine the 
pair of links at the beginning of the flowgraph.. 

 

  

 

3. Combine as many serial links as you can. 

 

  

 

4. Use the cross-term step to eliminate a node and to create the 
inner self - loop. 

 

  

 

5. Finally, you can get the mean processing time, by using the 
arithmetic rules as follows: 



 

  

 

2. PUSH/POP, GET/RETURN: 

o This model can be used to answer several different questions that can 
turn up in debugging. 

o It can also help decide which test cases to design. 

o The question is:  
 
Given a pair of complementary operations such as PUSH (the stack) 
and POP (the stack), considering the set of all possible paths 
through the routine, what is the net effect of the routine? PUSH or 
POP? How many times? Under what conditions? 

o Here are some other examples of complementary operations to which this 
model applies: 

o GET/RETURN a resource block. 
o OPEN/CLOSE a file. 

START/STOP a device or process. 

o EXAMPLE 1 (PUSH / POP): 

1. Here is the Push/Pop Arithmetic: 



 

  

 

2. The numeral 1 is used to indicate that nothing of interest 
(neither PUSH nor POP) occurs on a given link. 

3. "H" denotes PUSH and "P" denotes POP. The operations are 
commutative, associative, and distributive. 

 

  

 

4. Consider the following flowgraph: 

 

  

 

P(P + 1)1{P(HH)n1HP1(P + 

H)1}n2P(HH)n1HPH 



5. Simplifying by using the arithmetic tables, 

6. =(P2 + P){P(HH)n1(P + H)}n1(HH)n1 
7. =(P2 + P){H2n1(P2 + 1)}n2H2n1 
8. Below Table 5.9 shows several combinations of values for the 

two looping terms - M1 is the number of times the inner loop 
will be taken and M2 the number of times the outer loop will be 
taken. 

 
 

  

 

Figure 5.9: Result of the PUSH / POP 
Graph Analysis. 



9. These expressions state that the stack will be popped only if 
the inner loop is not taken. 

10. The stack will be left alone only if the inner loop is iterated 
once, but it may also be pushed. 

11. For all other values of the inner loop, the stack will only be 
pushed. 

o EXAMPLE 2 (GET / RETURN): 

1. Exactly the same arithmetic tables used for previous example 
are used for GET / RETURN a buffer block or resource, or, in 
fact, for any pair of complementary operations in which the total 
number of operations in either direction is cumulative. 

2. The arithmetic tables for GET/RETURN are: 

 

  

 
"G" denotes GET and "R" denotes RETURN. 

3. Consider the following flowgraph: 

 

  

 

4. G(G + R)G(GR)*GGR*R 
= G(G + R)G3R*R 
= (G + R)G3R* 
= (G4 + G2)R* 

5. This expression specifies the conditions under which the 
resources will be balanced on leaving the routine. 

6. If the upper branch is taken at the first decision, the second 
loop must be taken four times. 



7. If the lower branch is taken at the first decision, the second 
loop must be taken twice. 

8. For any other values, the routine will not balance. Therefore, 
the first loop does not have to be instrumented to verify this 
behavior because its impact should be nil. 

             LIMITATIONS AND SOLUTIONS: 
o The main limitation to these applications is the problem of unachievable 

paths. 
o The node-by-node reduction procedure, and most graph-theory-based 

algorithms work well when all paths are possible, but may provide 
misleading results when some paths are unachievable. 

o The approach to handling unachievable paths (for any application) is to 
partition the graph into subgraphs so that all paths in each of the 
subgraphs are achievable. 

o The resulting subgraphs may overlap, because one path may be common 
to several different subgraphs. 

o Each predicate's truth-functional value potentially splits the graph into two 
subgraphs. For n predicates, there could be as many as 2n subgraphs. 

o  

REGULAR EXPRESSIONS AND FLOW ANOMALY DETECTION  - CO2 

THE PROBLEM: 

o The generic flow-anomaly detection problem (note: not just data-flow 
anomalies, but any flow anomaly) is that of looking for a specific sequence 
of options considering all possible paths through a routine. 

o Let the operations be SET and RESET, denoted by s and r respectively, 
and we want to know if there is a SET followed immediately a SET or a 
RESET followed immediately by a RESET (an ss or an rr sequence). 

o Some more application examples: 
1. A file can be opened (o), closed (c), read (r), or written (w). If 

the file is read or written to after it's been closed, the sequence 
is nonsensical. Therefore, cr and cw are anomalous. Similarly, 
if the file is read before it's been written, just after opening, we 
may have a bug. Therefore, or is also anomalous. 
Furthermore, oo and cc, though not actual bugs, are a waste of 
time and therefore should also be examined. 

2. A tape transport can do a rewind (d), fast-forward (f), read (r), 
write (w), stop (p), and skip (k). There are rules concerning the 
use of the transport; for example, you cannot go from rewind to 
fast-forward without an intervening stop or from rewind or fast-
forward to read or write without an intervening stop. The 
following sequences are anomalous: df, dr, dw, fd, and fr. Does 
the flowgraph lead to anomalous sequences on any path? If so, 
what sequences and under what circumstances? 

3. The data-flow anomalies discussed in Unit 4 requires us to 
detect the dd, dk, kk, and ku sequences. Are there paths with 
anomalous data flows? 

4.  



 THE METHOD: 
o Annotate each link in the graph with the appropriate operator or the null 

operator 1. 
o Simplify things to the extent possible, using the fact that a + a = a and 12 

= 1. 
o You now have a regular expression that denotes all the possible 

sequences of operators in that graph. You can now examine that regular 
expression for the sequences of interest. 

o EXAMPLE: Let A, B, C, be nonempty sets of character sequences whose 
smallest string is at least one character long. Let T be a two-character 
string of characters. Then if T is a substring of (i.e., if T appears within) 
ABnC, then T will appear in AB2C. (HUANG's Theorem) 

o As an example, let  
 
A= pp 
B= srr 
C= rp 
T= ss 
 
The theorem states that ss will appear in pp(srr)nrp if it appears 
in pp(srr)2rp. 

o However, let 
 
A= p + pp + ps 
B= psr + ps(r + ps) 
C= rp 
T= P4 
 
Is it obvious that there is a p4 sequence in ABnC? The theorem states that 
we have only to look at  
 
(p + pp + ps)[psr + ps(r + ps)]2rp 
 
Multiplying out the expression and simplifying shows that there is 
no p4 sequence. 

o Incidentally, the above observation is an informal proof of the wisdom of 
looping twice discussed in Unit 2. Because data-flow anomalies are 
represented by two-character sequences, it follows the above theorem 
that looping twice is what you need to do to find such anomalies. 

 LIMITATIONS: 
o Huang's theorem can be easily generalized to cover sequences of greater 

length than two characters. Beyond three characters, though, things get 
complex and this method has probably reached its utilitarian limit for 
manual application. 

o There are some nice theorems for finding sequences that occur at the 
beginnings and ends of strings but no nice algorithms for finding strings 
buried in an expression. 

o Static flow analysis methods can't determine whether a path is or is not 
achievable. Unless the flow analysis includes symbolic execution or 
similar techniques, the impact of unachievable paths will not be included 
in the analysis. 



o The flow-anomaly application, for example, doesn't tell us that there will 
be a flow anomaly - it tells us that if the path is achievable, then there will 
be a flow anomaly. Such analytical problems go away, of course, if you 
take the trouble to design routines for which all paths are achievable. 
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MATRIX OF A GRAPH  -  CO4 

 

 A graph matrix is a square array with one row and one column for every node in the graph. 

 Each row-column combination corresponds to a relation between the node corresponding to the 

row and the node corresponding to the column. 

 The relation for example, could be as simple as the link name, if there is a link between the nodes. 

 Some of the things to be observed: 

 The size of the matrix equals the number of nodes. 

 There is a place to put every possible direct connection or link between any and any other node. 

 The entry at a row and column intersection is the link weight of the link that connects the two 

nodes in that direction. 

 A connection from node i to j does not imply a connection from node j to node i. 

 If there are several links between two nodes, then the entry is a sum; the “+” sign denotes parallel 

links as usual. 

 

 

 

 

 



RELATIONS  -  CO4 

A relation is a property that exists between two objects of interest. 

For example, 

“Node a is connected to node b” or aRb where “R” means “is connected to”. 

“a>=b” or aRb where “R” means greater than or equal”. 

A graph consists of set of abstract objects called nodes and a relation R between the nodes. 

If aRb, which is to say that a has the relation R to b, it is denoted by a link from a to b. 

For some relations we can associate properties called as link weights. 

 

Transitive: 

A relation is transitive if aRb and bRc implies aRc. 

Most relations used in testing are transitive. 

Examples of transitive relations include: is connected to, is greater than or equal to, is less than or equal 
to, is a relative of, is faster than, is slower than, takes more time than, is a subset of, includes, shadows, is 
the boss of. 

Examples of intransitive relations include: is acquainted with, is a friend of, is a neighbor of, is lied to, 
has a du chain between. 

 

REFLEXIVE 

A relation R is reflexive  if, for every a, aRa. 

A reflexive relation is equivalent to a self  loop at every node. 

Examples of reflexive relations include:  equals, is acquainted with, is a relative of. 

Examples of irreflexive  relations include:  not equals, is a friend of, is on top of, is  under. 

 

SYMMETRIC 

A relation R is symmetric if for every a and b, aRb implies bRa.  

A symmetric relation mean that if there is a link from a to b then there is also a link from b to a. 

A graph whose relations are  not symmetric are called directed graph. 

A graph over a symmetric relation is called an undirected graph. 

The matrix of an undirected graph is symmetric (aij=aji) for all i,j) 

 



ANTI SYMMETRIC 

A relation R is antisymmetric  if for every a  and b, if aRb and bRa, then a=b, or they  are the same 

elements. 

Examples of antisymmetric  relations: is  greater than or equal to, is a subset of,  time. 

Examples of nonantisymmetric  relations: is  connected to, can be reached from, is  greater than, is a 
relative of, is a friend of 

 

EQUIVALLENCE 

An equivalence relation is a relation that satisfies the reflexive, transitive, and symmetric properties. 

Equality is the most familiar example of an equivalence relation. 

If a set of objects satisfy an equivalence relation, we say that they form an equivalence class over that 
relation. 

The importance of equivalence classes and relations is that any member of the equivalence class is, with 
respect to the relation, equivalent to any other member of that class. 

The idea behind partition testing strategies such as domain testing and path testing, is that we can partition 
the input space into equivalence classes. 

Testing any member of the equivalence class is as effective as testing them all. 

PARTIAL ORDERING 

A partial ordering relation satisfies the reflexive, transitive, and antisymmetric properties. 

Partial ordered graphs have several  important properties: they are loop free,  there is at least one 

maximum element,  there is atleast one minimum element. 

 

 

POWER OF A MATRIX  -  CO4 

Each entry in the graph’s matrix expresses a relation between the pair of nodes that corresponds to that 

entry. 

Squaring the matrix yields a new matrix that expresses the relation between each pair of nodes via one 
intermediate node under the assumption that the relation is transitive. 

The square of the matrix represents all path segments two links long. 

The third power represents all path segments three links long. 

Given a matrix whose entries are aij, the square of that matrix is obtained by replacing every entry 

with  
         n 

   aij=Σ aik akj 

          k=1  

 



more generally, given two matrices A and B with entries aik and bkj, respectively, their product is a new 
matrix C, whose entries are cij, where:  

                       n 

   Cij=Σ aik bkj 

          k=1  

 

NODE REDUCTION ALGORITHM  -  CO4 

The matrix powers usually tell us more than we want to know about most graphs.  

In the context of testing, we usually interested in establishing a relation between two nodes-typically the 
entry and exit nodes. 

In a debugging context it is unlikely that we would want to know the path expression between every node 
and every other node. 

The advantage of matrix reduction method is that it is more methodical than the graphical method called 
as node by node removal algorithm. 

Select a node for removal; replace the node by equivalent links that bypass that node and add those links 
to the links they parallel. 

Combine the parallel terms and simplify as you can. 

Observe loop terms and adjust the outlinks of every node that had a self loop to account for the effect of 
the loop. 

The result is a matrix whose size has been reduced by 1. continue until only the two nodes of interest 
exist. 

 

SYSTEM AND ACCEPTANCE TESTING 

Functional System Testing - CO3 

Functional Testing is defined as a type of testing which verifies that each function of 

the software application operates in conformance with the requirement specification. 

This testing mainly involves black box testing and it is not concerned about the source 

code of the application. 

Each and every functionality of the system is tested by providing appropriate input, 

verifying the output and comparing the actual results with the expected results. 

This testing involves checking of User Interface, APIs, Database, security, client/ 

server applications and functionality of the Application Under Test. The testing can be 

done either manually or using automation 



 
The prime objective of Functional testing is checking the functionalities of the 

software system. It mainly concentrates on - 

Mainline functions:  Testing the main functions of an application 

Basic Usability: It involves basic usability testing of the system. It checks 

whether a user can freely navigate through the screens without any difficulties. 

Accessibility:  Checks the accessibility of the system for the user 

Error Conditions: Usage of testing techniques to check for error 

conditions.  It checks whether suitable error messages are displayed. 

How to perform Functional Testing: Complete Process 

In order to functionally test an application, the following steps must be observed. 

 

Understand the Software Engineering Requirements 

Identify test input (test data) 

Compute the expected outcomes with the selected test input values 

Execute test cases 

Comparison of actual and computed expected result 

 

Non Functional System Testing - CO3 

Non-functional testing is the testing of a software application or system for its non-functional 

requirements: the way a system operates, rather than specific behaviours of that system. This is in contrast 

to functional testing, which tests against functional requirements that describe the functions of a system 

and its components. The names of many non-functional tests are often used interchangeably because of 

the overlap in scope between various non-functional requirements. For example, software performance is 

a broad term that includes many specific requirements like reliability and scalability. 

Non-functional testing includes: 

Baseline testing 

Compliance testing 

Documentation testing 

Endurance testing 

Load testing 

Localization testing and Internationalization testing 

Performance testing 

Recovery testing 

Resilience testing 

Security testing 

Scalability testing 

https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Functional_testing
https://en.wikipedia.org/wiki/Functional_requirement
https://en.wikipedia.org/wiki/Performance_engineering
https://en.wikipedia.org/wiki/Reliability_engineering
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Compliance_testing
https://en.wikipedia.org/wiki/Documentation_testing
https://en.wikipedia.org/wiki/Endurance_testing
https://en.wikipedia.org/wiki/Load_testing
https://en.wikipedia.org/wiki/Software_performance_testing
https://en.wikipedia.org/wiki/Recovery_testing
https://en.wikipedia.org/wiki/Security_testing
https://en.wikipedia.org/wiki/Scalability_testing


Stress testing 

Usability testing 

Volume testing 

 

Objectives of Non-functional testing 

Non-functional testing should increase usability, efficiency, maintainability, and portability of 

the product. 

Helps to reduce production risk and cost associated with non-functional aspects of the product. 

Optimize the way product is installed, setup, executes, managed and monitored. 

Collect and produce measurements, and metrics for internal research and development. 

Improve and enhance knowledge of the product behavior and technologies in use. 

Characteristics of Non-functional testing 

Non-functional testing should be measurable, so there is no place for subjective characterization 

like good, better, best, etc. 

Exact numbers are unlikely to be known at the start of the requirement process 

Important to prioritize the requirements 

Ensure that quality attributes are identified correctly in Software Engineering. 

 

ACCEPTANCE TESTING - CO5 

ACCEPTANCE TESTING is a level of software testing where a system is tested for acceptability. The 

purpose of this test is to evaluate the system’s compliance with the business requirements and assess 

whether it is acceptable for delivery. 

 

Definition by ISTQB 

Acceptance testing: Formal testing with respect to user needs, requirements, and 

business processes conducted to determine whether or not a system satisfies the acceptance 

criteria and to enable the user, customers or other authorized entity to determine whether or not 

to accept the system. 

Analogy 

During the process of manufacturing a ballpoint pen, the cap, the body, the tail and clip, the ink cartridge 

and the ballpoint are produced separately and unit tested separately. When two or more units are ready, 

they are assembled and Integration Testing is performed. When the complete pen is integrated, System 

Testing is performed. Once System Testing is complete, Acceptance Testing is performed so as to 

confirm that the ballpoint pen is ready to be made available to the end-users. 

https://en.wikipedia.org/wiki/Stress_testing
https://en.wikipedia.org/wiki/Usability_testing
https://en.wikipedia.org/wiki/Volume_testing


Method 

Usually, Black Box Testing method is used in Acceptance Testing. Testing does not normally follow a 

strict procedure and is not scripted but is rather ad-hoc. 

Tasks 

Acceptance Test Plan 

Prepare 

Review 

Rework 

Baseline 

Acceptance Test Cases/Checklist 

Prepare 

Review 

Rework 

Baseline 

Acceptance Test 

Perform 

When is it performed? 

Acceptance Testing is the fourth and last level of software testing performed after System Testing and 

before making the system available for actual use. 

Who performs it? 

Internal Acceptance Testing (Also known as Alpha Testing) is performed by members of the 

organization that developed the software but who are not directly involved in the project 

(Development or Testing). Usually, it is the members of Product Management, Sales and/or 

Customer Support. 

External Acceptance Testing is performed by people who are not employees of the organization 

that developed the software. 

Customer Acceptance Testing is performed by the customers of the organization that 

developed the software. They are the ones who asked the organization to develop the 

software. [This is in the case of the software not being owned by the organization that 

developed it.] 

User Acceptance Testing (Also known as Beta Testing) is performed by the end users of 

the software. They can be the customers themselves or the customers’ customers. 

 

TESTING OBJECT ORIENTED SYSTEMS  - CO5 

http://softwaretestingfundamentals.com/black-box-testing/
http://softwaretestingfundamentals.com/ad-hoc-testing/
http://softwaretestingfundamentals.com/software-testing-levels/
http://softwaretestingfundamentals.com/system-testing/


The shift from traditional to object-oriented environment involves looking at and reconsidering old 

strategies and methods for testing the software. The traditional programming consists of procedures 

operating on data, while the object-oriented paradigm focuses on objects that are instances of classes. In 

object-oriented (OO) paradigm, software engineers identify and specify the objects and services provided 

by each object. In addition, interaction of any two objects and constraints on each identified object are 

also determined. The main advantages of OO paradigm include increased reusability, reliability, 

interoperability, and extendibility. 

With the adoption of OO paradigm, almost all the phases of software development have changed 

in their approach, environments, and tools. Though OO paradigm helps make the designing and 

development of software easier, it may pose new kind of problems. Thus, testing of software 

developed using OO paradigm has to deal with the new problems also. Note that object-oriented 

testing can be used to test the object-oriented software as well as conventional software. 

OO program should be tested at different levels to uncover all the errors. At the algorithmic 

level, each module (or method) of every class in the program should be tested in isolation. For 

this, white-box testing can be applied easily. As classes form the main unit of object-oriented 

program, testing of classes is the main concern while testing an OO program. At the class level, 

every class should be tested as an individual entity. At this level, programmers who are involved 

in the development of class conduct the testing. Test cases can be drawn from requirements 

specifications, models, and the language used. In addition, structural testing methods such as 

boundary value analysis are extremely used. After performing the testing at class level, cluster 

level testing should be performed. As classes are collaborated (or integrated) to form a small 

subsystem (also known as cluster), testing each cluster individually is necessary. At this level, 

focus is on testing the components that execute concurrently as well as on the interclass 

interaction. Hence, testing at this level may be viewed as integration testing where units to be 

integrated are classes. Once all the clusters in the system are tested, system level testing begins. 

At this level, interaction among clusters is tested. 

Usually, there is a misconception that if individual classes are well designed and have proved to 

work in isolation, then there is no need to test the interactions between two or more classes when 

they are integrated. However, this is not true because sometimes there can be errors, which can 

be detected only through integration of classes. Also, it is possible that if a class does not contain 

a bug, it may still be used in a wrong way by another class, leading to system failure. 

Developing Test Cases in Object-oriented Testing 

The methods used to design test cases in OO testing are based on the conventional methods. 

However, these test cases should encompass special features so that they can be used in the 

object-oriented environment. The points that should be noted while developing test cases in an 

object-oriented environment are listed below. 

1.It should be explicitly specified with each test case which class it should test. 

2.Purpose of each test case should be mentioned. 



3.External conditions that should exist while conducting a test should be clearly stated with each 

test case. 

4.All the states of object that is to be tested should be specified. 

5.Instructions to understand and conduct the test cases should be provided with each test case. 

Object-oriented Testing Methods 

As many organizations are currently using or targeting to switch to the OO paradigm, the 

importance of OO software testing is increasing. The methods used for performing object-

oriented testing are discussed in this section. 

  

State-based testing is used to verify whether the methods (a procedure that is executed by an object) of a 

class are interacting properly with each other. This testing seeks to exercise the transitions among the 

states of objects based upon the identified inputs. 

For this testing, finite-state machine (FSM) or state-transition diagram representing the possible states of 

the object and how state transition occurs is built. In addition, state-based testing generates test cases, 

which check whether the method is able to change the state of object as expected. If any method of the 

class does not change the object state as expected, the method is said to contain errors. 

To perform state-based testing, a number of steps are followed, which are listed below. 

1.Derive a new class from an existing class with some additional features, which are used to examine and 

set the state of the object. 

2.Next, the test driver is written. This test driver contains a main program to create an object, send 

messages to set the state of the object, send messages to invoke methods of the class that is being tested 

and send messages to check the final state of the object. 

3.Finally, stubs are written. These stubs call the untested methods. 

Fault-based Testing 

Fault-based testing is used to determine or uncover a set of plausible faults. In other words, the focus of 

tester in this testing is to detect the presence of possible faults. Fault-based testing starts by examining the 

analysis and design models of OO software as these models may provide an idea of problems in the 



implementation of software. With the knowledge of system under test and experience in the application 

domain, tester designs test cases where each test case targets to uncover some particular faults. 

The effectiveness of this testing depends highly on tester experience in application domain and the system 

under test. This is because if he fails to perceive real faults in the system to be plausible, testing may leave 

many faults undetected. However, examining analysis and design models may enable tester to detect large 

number of errors with less effort. As testing only proves the existence and not the absence of errors, this 

testing approach is considered to be an effective method and hence is often used when security or safety 

of a system is to be tested. 

Integration testing applied for OO software targets to uncover the possible faults in both operation calls 

and various types of messages (like a message sent to invoke an object). These faults may be unexpected 

outputs, incorrect messages or operations, and incorrect invocation. The faults can be recognized by 

determining the behavior of all operations performed to invoke the methods of a class. 

Scenario-based Testing 

Scenario-based testing is used to detect errors that are caused due to incorrect specifications and improper 

interactions among various segments of the software. Incorrect interactions often lead to incorrect outputs 

that can cause malfunctioning of some segments of the software. The use of scenarios in testing is a 

common way of describing how a user might accomplish a task or achieve a goal within a specific context 

or environment. Note that these scenarios are more context- and user specific instead of being product-

specific. Generally, the structure of a scenario includes the following points. 

1.A condition under which the scenario runs. 

2.A goal to achieve, which can also be a name of the scenario. 

3.A set of steps of actions. 

4.An end condition at which the goal is achieved. 

5.A possible set of extensions written as scenario fragments. 

Scenario- based testing combines all the classes that support a use-case (scenarios are subset of use-cases) 

and executes a test case to test them. Execution of all the test cases ensures that all methods in all the 

classes are executed at least once during testing. However, testing all the objects (present in the classes 

combined together) collectively is difficult. Thus, rather than testing all objects collectively, they are 

tested using either top-down or bottom-up integration approach. 

This testing is considered to be the most effective method as scenarios can be organized in such a manner 

that the most likely scenarios are tested first with unusual or exceptional scenarios considered later in the 

testing process. This satisfies a fundamental principle of testing that most testing effort should be devoted 

to those paths of the system that are mostly used. 

Challenges in Testing Object-oriented Programs 

Traditional testing methods are not directly applicable to OO programs as they involve OO concepts 

including encapsulation, inheritance, and polymorphism. These concepts lead to issues, which are yet to 

be resolved. Some of these issues are listed below. 

1.Encapsulation of attributes and methods in class may create obstacles while testing. As methods are 

invoked through the object of corresponding class, testing cannot be accomplished without object. In 



addition, the state of object at the time of invocation of method affects its behavior. Hence, testing 

depends not only on the object but on the state of object also, which is very difficult to acquire. 

2.Inheritance and polymorphism also introduce problems that are not found in traditional software. Test 

cases designed for base class are not applicable to derived class always (especially, when derived class is 

used in different context). Thus, most testing methods require some kind of adaptation in order to 

function properly in an OO environment. 

 

 

DIFFERENCES  IN OO TESTING   - CO5 

What Is Different about Testing Object-Oriented Software? 

Object-oriented programming features in programming languages obviously impact some aspects of 

testing. Features such as class inheritance and interfaces support polymorphism in which code 

manipulates objects without their exact class being known. Testers must ensure the code works no matter 

what the exact class of such objects might be. Language features that support and enforce data hiding can 

complicate testing because operations must sometimes be added to a class interface just to support testing. 

On the other hand, the availability of these features can contribute to better and reusable testing software. 

Not only do changes in programming languages affect testing, but so do changes in the development 

process and changes in the focus of analysis and design. Many object-oriented software-testing activities 

have counterparts in traditional processes. We still have a use for unit testing although the meaning 

of unit has changed. We still do integration testing to make sure various subsystems can work correctly in 

concert. We still need system testing to verify that software meets requirements. We still do regression 

testing to make sure the latest round of changes to the software hasn't adversely affected what it could do 

before. 

The differences between "old" and "new" ways of developing and testing software are much deeper than a 

focus on objects instead of on functions that transform inputs to outputs. The most significant difference 

is in the way object-oriented software is designed as a set of objects that essentially model a problem and 

then collaborate to effect a solution. Underlying this approach is the concept that while a solution to a 

problem might need to change over time, the structure and components of the problem itself do not 

change as much or as frequently. Consequently, a program whose design is structured from the problem 

(and not on an immediately required solution) will be more adaptable to changes later. A programmer 

familiar with the problem and its components can recognize them in the software, thereby making the 

program more maintainable. Furthermore, because components are derived from the problem, they can 

often be reused in the development of other programs to solve similar or related problems, thereby 

improving the reusability of software components. 

A big benefit of this approach to design is that analysis models map straightforwardly to design models 

that, in turn, map to code. Thus, we can start testing during analysis and refine the tests done in analysis 

to tests for design. Tests for design, in turn, can be refined to tests of implementation. This means that a 

testing process can be interwoven with the development process. We see three significant advantages to 

testing analysis and design models: 



1.Test cases can be identified earlier in the process, even as requirements are being determined. 

Early testing helps analysts and designers to better understand and express requirements and to 

ensure that specified requirements are "testable." 

2.Bugs can be detected early in the development process, saving time, money, and effort. It is 

widely acknowledged that the sooner problems are detected, the easier and cheaper they are to 

fix. 

3.Test cases can be reviewed for correctness early in a project. The correctness of test cases—in 

particular, system test cases—is always an issue. If test cases are identified early and applied to 

models early in a project, then any misunderstandings of requirements on the part of the testers 

can be corrected early. In other words, model testing helps to ensure that testers and developers 

have a consistent understanding of system requirements. 

Although testing models is very beneficial, it is important to not let testing them become the sole focus of 

testing efforts. Code testing is still an important part of the process. 

Another difference between traditional projects and projects using object-oriented technologies concerns 

objectives for software. Consider, for example, that an important new goal in many companies is to 

produce reusable software, extensible designs, or even object-oriented frameworks that represent reusable 

designs. Testing can (and should) be done to uncover failures in meeting these objectives. Traditional 

testing approaches and techniques do not address such objectives. 
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