

CVR COLLEGE OF ENGINEERING

An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 1

Unit - 1

Year and Semester: IV yr & I Sem
A

Subject: Software Testing Methodologies
Branch: CSE

Faculty: Revathi Lavanya Baggam, Assistant Professor (CSE)

Purpose of Testing - CO1

 Testing consumes atleast half of the time and work required to produce a functional program.

 MYTH: Good programmers write code without bugs. (Its wrong!!!)

 History says that even well written programs still have 1-3 bugs per hundred statements.

 Productivity and Quality in software:
o In production of comsumer goods and other products, every manufacturing stage

is subjected to quality control and testing from component to final stage.
o If flaws are discovered at any stage, the product is either discarded or cycled back

for rework and correction.
o Productivity is measured by the sum of the costs of the material, the rework, and

the discarded componenets, and the cost of quality assurance and testing.
o There is a trade off between quality assurance costs and manufacturing costs: If

sufficient time is not spent in quality assurance, the reject rate will be high and so
will be the net cost. If inspection is good and all errors are caught as they occur,
inspection costs will dominate, and again the net cost will suffer.

o Testing and Quality assurance costs for 'manufactured' items can be as low as 2%
in consumer products or as high as 80% in products such as space-ships, nuclear
reactors, and aircrafts, where failures threaten life. Where as the manufacturing
cost of a software is trivial.

o The biggest part of software cost is the cost of bugs: the cost of detecting them,
the cost of correcting them, the cost of designing tests that discover them, and the
cost of running those tests.

o For software, quality and productivity are indistinguishable because the cost of a
software copy is trivial.

 Testing and Test Design are parts of quality assurance should also focus on bug
prevention. A prevented bug is better than a detected and corrected bug.

 Phases in a tester's mental life can be categorised into the following 5 phases:

o Phase 0: (Until 1956: Debugging Oriented) There is no difference between
testing and debugging. Phase 0 thinking was the norm in early days of software
development till testing emerged as a discipline.

o Phase 1: (1957-1978: Demonstration Oriented) The purpose of testing here is to
show that software works. Highlighted during the late 1970s. This failed because
the probability of showing that software works 'decreases' as testing
increases. i.e. The more you test, the more likely you'ill find a bug.

o Phase 2: (1979-1982: Destruction Oriented) The purpose of testing is to show
that software doesnt work. This also failed because the software will never get
released as you will find one bug or the other. Also, a bug corrected may also lead
to another bug.

o Phase 3: (1983-1987: Evaluation Oriented) The purpose of testing is not to
prove anything but to reduce the perceived risk of not working to an acceptable
value (Statistical Quality Control). Notion is that testing does improve the product
to the extent that testing catches bugs and to the extent that those bugs are fixed.
The product is released when the confidence on that product is high enough.
(Note: This is applied to large software products with millions of code and years of
use.)

o Phase 4: (1988-2000: Prevention Oriented) Testability is the factor considered
here. One reason is to reduce the labour of testing. Other reason is to check the
testable and non-testable code. Testable code has fewer bugs than the code that's
hard to test. Identifying the testing techniques to test the code is the main key
here.

2. Test Design: We know that the software code must be designed and tested, but many appear
to be unaware that tests themselves must be designed and tested. Tests should be properly
designed and tested before applying it to the acutal code.

3. Testing is'nt everything: There are approaches other than testing to create better software.
Methods other than testing include:

o Inspection Methods: Methods like walkthroughs, deskchecking, formal
inspections and code reading appear to be as effective as testing but the bugs
caught donot completely overlap.

o Design Style: While designing the software itself, adopting stylistic objectives
such as testability, openness and clarity can do much to prevent bugs.

o Static Analysis Methods: Includes formal analysis of source code during
compilation. In earlier days, it is a routine job of the programmer to do that. Now,
the compilers have taken over that job.

o Languages: The source language can help reduce certain kinds of bugs.
Programmers find new bugs while using new languages.

o Development Methodologies and Development Environment: The
development process and the environment in which that methodology is
embedded can prevent many kinds of bugs.

Dichotomies - CO 1

 Testing Versus Debugging: Many people consider both as same. Purpose of testing is to
show that a program has bugs. The purpose of testing is to find the error or misconception
that led to the program's failure and to design and implement the program changes that
correct the error.

 Debugging usually follows testing, but they differ as to goals, methods and most important
psychology. The below tab le shows few important differences between testing and
debugging.

Testing Debugging

Testing starts with known conditions, uses
predefined procedures and has predictable

outcomes.

Debugging starts from possibly unknown intial
conditions and the end can not be predicted except

statistically.

Testing can and should be planned, designed

and scheduled.

Procedure and duration of debugging cannot be so

constrained.

Testing is a demonstration of error or apparent
correctness.

Debugging is a deductive process.

Testing proves a programmer's failure.
Debugging is the programmer's vindication
(Justification).

Testing, as executes, should strive to be

predictable, dull, constrained, rigid and inhuman.

Debugging demands intutive leaps, experimentation

and freedom.

Much testing can be done without design
knowledge.

Debugging is impossible without detailed design
knowledge.

Testing can often be done by an outsider. Debugging must be done by an insider.

Much of test execution and design can be
automated.

Automated debugging is still a dream.

 Function Versus Structure: Tests can be designed from a functional or a structural point of
view. In functional testing, the program or system is treated as a blackbox. It is subjected to
inputs, and its outputs are verified for conformance to specified behaviour. Functional testing
takes the user point of view- bother about functionality and features and not the program's
implementation. Structural testing does look at the implementation details. Things such as
programming style, control method, source language, database design, and coding details
dominate structural testing.

 Both Structural and functional tests are useful, both have limitations, and both target different
kinds of bugs. Functional tets can detect all bugs but would take infinite time to do so.
Structural tests are inherently finite but cannot detect all errors even if completely executed.

 Designer Versus Tester: Test designer is the person who designs the tests where as the
tester is the one actually tests the code. During functional testing, the designer and tester are
probably different persons. During unit testing, the tester and the programmer merge into one
person.

 Tests designed and executed by the software designers are by nature biased towards
structural consideration and therefore suffer the limitations of structural testing.

 Modularity Versus Efficiency: A module is a discrete, well-defined, small component of a
system. Smaller the modules, difficult to integrate; larger the modules, difficult to understand.
Both tests and systems can be modular. Testing can and should likewise be organised into
modular components. Small, independent test cases can be designed to test independent
modules.

 Small Versus Large: Programming in large means constructing programs that consists of
many components written by many different programmers. Programming in the small is what
we do for ourselves in the privacy of our own offices. Qualitative and Quantitative changes
occur with size and so must testing methods and quality criteria.

 Builder Versus Buyer: Most software is written and used by the same organization.
Unfortunately, this situation is dishonest because it clouds accountability. If there is no
separation between builder and buyer, there can be no accountability.

 The different roles / users in a system include:
1. Builder: Who designs the system and is accountable to the buyer.
2. Buyer: Who pays for the system in the hope of profits from providing services.
3. User: Ultimate beneficiary or victim of the system. The user's interests are also

guarded by.
4. Tester: Who is dedicated to the builder's destruction.
5. Operator: Who has to live with the builders' mistakes, the buyers' murky (unclear)

specifications, testers' oversights and the users' complaints.

Model for Testing - CO 1

Figure : A Model for Testing

Above figure is a model of testing process. It includes three models: A model of the
environment, a model of the program and a model of the expected bugs.

 ENVIRONMENT:
o A Program's environment is the hardware and software required to make

it run. For online systems, the environment may include communication
lines, other systems, terminals and operators.

o The environment also includes all programs that interact with and are
used to create the program under test - such as OS, linkage editor, loader,
compiler, utility routines.

o Because the hardware and firmware are stable, it is not smart to blame
the environment for bugs.

 PROGRAM:
o Most programs are too complicated to understand in detail.
o The concept of the program is to be simplified inorder to test it.
o If simple model of the program doesnot explain the unexpected behaviour,

we may have to modify that model to include more facts and details. And if
that fails, we may have to modify the program.

 BUGS:
o Bugs are more insidious (deceiving but harmful) than ever we expect them

to be.
o An unexpected test result may lead us to change our notion of what a bug

is and our model of bugs.
o Some optimistic notions that many programmers or testers have about

bugs are usually unable to test effectively and unable to justify the dirty
tests most programs need.

o OPTIMISTIC NOTIONS ABOUT BUGS:
1. Benign Bug Hypothesis: The belief that bugs are nice, tame

and logical. (Benign: Not Dangerous)
2. Bug Locality Hypothesis: The belief that a bug discovered

with in a component effects only that component's behaviour.
3. Control Bug Dominance: The belief that errors in the control

structures (if, switch etc) of programs dominate the bugs.
4. Code / Data Separation: The belief that bugs respect the

separation of code and data.
5. Lingua Salvator Est: The belief that the language syntax and

semantics (e.g. Structured Coding, Strong typing, etc)
eliminates most bugs.

6. Corrections Abide: The mistaken belief that a corrected bug
remains corrected.

7. Silver Bullets: The mistaken belief that X (Language, Design
method, representation, environment) grants immunity from
bugs.

8. Sadism Suffices: The common belief (especially by
independent tester) that a sadistic streak, low cunning, and
intuition are sufficient to eliminate most bugs. Tough bugs need
methodology and techniques.

9. Angelic Testers: The belief that testers are better at test
design than programmers are at code design.

 TESTS:
o Tests are formal procedures, Inputs must be prepared, Outcomes should

predicted, tests should be documented, commands need to be executed,
and results are to be observed. All these errors are subjected to error

o We do three distinct kinds of testing on a typical software system.
They are:

1. Unit / Component Testing: A Unit is the smallest testable
piece of software that can be compiled, assembled, linked,
loaded etc. A unit is usually the work of one programmer and
consists of several hundred or fewer lines of code. Unit
Testing is the testing we do to show that the unit does not
satisfy its functional specification or that its implementation

structure does not match the intended design structure.
A Component is an integrated aggregate of one or more
units. Component Testing is the testing we do to show that
the component does not satisfy its functional specification or
that its implementation structure does not match the intended
design structure.

2. Integration Testing: Integration is the process by which
components are aggregated to create larger
components. Integration Testing is testing done to show that
even though the componenets were individually satisfactory
(after passing component testing), checks the combination of
components are incorrect or inconsistent.

3. System Testing: A System is a big component. System
Testing is aimed at revealing bugs that cannot be attributed to
components. It includes testing for performance, security,
accountability, configuration sensitivity, startup and recovery.

 Role of Models: The art of testing consists of creating , selecting, exploring, and
revising models. Our ability to go through this process depends on the number of
different models we have at hand and their ability to express a program's behaviour.

 PLAYING POOL AND CONSULTING ORACLES
o Testing is like playing a pool game. Either you hit the ball to any pocket

(kiddie pool) or you specify the pocket in advance (real pool). So is the
testing. There is kiddie testing and real testing. In kiddie testing, the
observed outcome will be considered as the expected outcome. In Real
testing, the outcome is predicted and documented before the test is run.

o The tester who cannot make that kind of predictions does not understand
the program's functional objectives.

o Oracles: An oracle is any program, process, or body of data that specifies
the expected outcome of a set of tests as applied to a tested object.
Example of oracle : Input/Outcome Oracle - an oracle that specifies the
expected outcome for a specified input.

o Sources of Oracles: If every test designer had to analyze and predict the
expected behaviour for every test case for every component, then test
design would be very expensive. The hardest part of test design is
predicting the expected outcome, but we often have oracles that reduce
the work. They are:

1. Kiddie Testing: run the test and see what comes out. If you
have the outcome in front of you, and especially if you have the
values of the internal variables, then it is much easier to
validate that outcome by analysis and show it to be correct
than it is to predict what the outcome should be and validate
your prediction.

2. Regression Test Suites: Today's software development and
testing are dominated not by the design of new software but by
rework and maintenance of existing software. In such
instances, most of the tests you need will have been run on a
previous versions. Most of those tests should have the same
outcome for the new version. Outcome prediction is therefore
needed only for changed parts of components.

3. Purchased Suits and Oracles: Highly standardized software
that differ only as to implementation often has commercially

available test suites and oracles. The most common examples
are compilers for standard languages.

4. Existing Program: A working, trusted program is an excellent
oracle. The typical use is when the program is being rehosted
to a new language, operating system, environment,
configuration with the intention that the behavior should not
change as a result of the rehosting.

 IS COMPLETE TESTING POSSIBLE?
o If the objective of the testing were to prove that a program is free of bugs,

then testing not only would be practically impossible, but also would be
theoretically impossible.

o Three different approaches can be used to demonstrate that a
program is correct.They are:

1. Functional Testing:
 Every program operates on a finite number of

inputs. A complete functional test would consists of
subjecting the program to all possible input streams.

 For each input the routine either accepts the stream
and produces a correct outcome, accepts the
stream and produces an incorrect outcome, or
rejects the stream and tells us that it did so.

 For example, a 10 character input string has 280
possible input streams and corresponding
outcomes, so complete functional testing in this
sense is IMPRACTICAL.

 But even theoritically, we can't execute a purely
functional test this way because we don't know the
length of the string to which the system is
responding.

2. Structural Testing:
 The design should have enough tests to ensure that

every path through the routine is exercised at least
once. Right off that's is impossible because some
loops might never terminate.

 The number of paths through a small routine can be
awesome because each loop multiplies the path
count by the number of times through the loop.

 A small routine can have millions or billions of paths,
so total Path Testing is usually IMPRACTICAL.

3. Formal Proofs of Correctness:
 Formal proofs of correctness rely on a combination

of functional and structural concepts.
 Requirements are stated in a formal language (e.g.

Mathematics) and each program statement is
examined and used in a step of an inductive proof
that the routine will produce the correct outcome for
all possible input sequences.

 The IMPRACTICAL thing here is that such proofs
are very expensive and have been applied only to
numerical routines or to formal proofs for crucial

software such as system’s security kernel or
portions of compilers.

o Each approach leads to the conclusion that complete testing, in the sense
of a proof is neither theoretically nor practically possible.

 THEORITICAL BARRIERS OF COMPLETE TESTING:
o "We can never be sure that the specifications are correct"
o "No verification system can verify every correct program"
o "We can never be certain that a verification system is correct"

 Not only all known approaches to absoulte demonstrations of correctness
impractical, but they are impossible. Therefore, our objective must shift from a
absolute proof to a 'suitably convincing' demonstration.

Consequences of Bugs - CO1

 IMPORTANCE OF BUGS: The importance of bugs depends on frequency,
correction cost, installation cost, and consequences.

1. Frequency: How often does that kind of bug occur? Pay more attention to
the more frequent bug types.

2. Correction Cost: What does it cost to correct the bug after it is found?
The cost is the sum of 2 factors: (1) the cost of discovery (2) the cost of
correction. These costs go up dramatically later in the development cycle
when the bug is discovered. Correction cost also depends on system size.

3. Installation Cost: Installation cost depends on the number of
installations: small for a single user program but more for distributed
systems. Fixing one bug and distributing the fix could exceed the entire
system's development cost.

4. Consequences: What are the consequences of the bug? Bug
consequences can range from mild to catastrophic.

A reasonable metric for bug importance is

Importance= ($) = Frequence * (Correction cost + Installation cost
+ Consequential cost)

 CONSEQUENCES OF BUGS: The consequences of a bug can be measure in terms
of human rather than machine. Some consequences of a bug on a scale of one to
ten are:

1. Mild: The symptoms of the bug offend us aesthetically (gently); a
misspelled output or a misaligned printout.

2. Moderate: Outputs are misleading or redundant. The bug impacts the
system's performance.

3. Annoying: The system's behaviour because of the bug is
dehumanizing. E.g. Names are truncated orarbitarily modified.

4. Disturbing: It refuses to handle legitimate (authorized / legal)
transactions. The ATM wont give you money. My credit card is declared
invalid.

5. Serious: It loses track of its transactions. Not just the transaction itself but
the fact that the transaction occurred. Accountability is lost.

6. Very Serious: The bug causes the system to do the wrong transactions.
Instead of losing your paycheck, the system credits it to another account
or converts deposits to withdrawals.

7. Extreme: The problems aren't limited to a few users or to few transaction
types. They are frequent and arbitrary instead of sporadic infrequent) or
for unusual cases.

8. Intolerable: Long term unrecoverable corruption of the database occurs
and the corruption is not easily discovered. Serious consideration is given
to shutting the system down.

9. Catastrophic: The decision to shut down is taken out of our hands
because the system fails.

10. Infectious: What can be worse than a failed system? One that corrupt
other systems even though it doesnot fall in itself ; that erodes the social
physical environment; that melts nuclear reactors and starts war.

 FLEXIBLE SEVERITY RATHER THAN ABSOLUTES:

1. Quality can be measured as a combination of factors, of which number of
bugs and their severity is only one component.

2. Many organizations have designed and used satisfactory, quantitative,
quality metrics.

3. Because bugs and their symptoms play a significant role in such metrics,
as testing progresses, you see the quality rise to a reasonable value
which is deemed to be safe to ship the product.

4. The factors involved in bug severity are:
1. Correction Cost: Not so important because catastrophic bugs

may be corrected easier and small bugs may take major time
to debug.

2. Context and Application Dependency: Severity depends on
the context and the application in which it is used.

3. Creating Culture Dependency: Whats important depends on
the creators of software and their cultural aspirations. Test tool
vendors are more sensitive about bugs in their software then
games software vendors.

4. User Culture Dependency: Severity also depends on user
culture. Naive users of PC software go crazy over bugs where
as pros (experts) may just ignore.

5. The software development phase: Severity depends on
development phase. Any bugs gets more severe as it gets
closer to field use and more severe the longer it has been
around.

Taxonomy of Bugs - CO1

 There is no universally correct way categorize bugs. The taxonomy is not rigid.
 A given bug can be put into one or another category depending on its history and the

programmer's state of mind.
 The major categories are: (1) Requirements, Features and Functionality Bugs (2)

Structural Bugs (3) Data Bugs (4) Coding Bugs (5) Interface, Integration and System
Bugs (6) Test and Test Design Bugs.

o REQUIREMENTS, FEATURES AND FUNCTIONALITY BUGS: Various
categories in Requirements, Features and Functionlity bugs include:

1. Requirements and Specifications Bugs:
 Requirements and specifications developed from

them can be incomplete ambiguous, or self-
contradictory. They can be misunderstood or
impossible to understand.

 The specifications that don't have flaws in them may
change while the design is in progress. The features
are added, modified and deleted.

 Requirements, especially, as expressed in
specifications are a major source of expensive bugs.

 The range is from a few percentage to more than
50%, depending on the application and
environment.

 What hurts most about the bugs is that they are the
earliest to invade the system and the last to leave.

2. Feature Bugs:
 Specification problems usually create corresponding

feature problems.
 A feature can be wrong, missing, or superfluous

(serving no useful purpose). A missing feature or
case is easier to detect and correct. A wrong feature
could have deep design implications.

 Removing the features might complicate the
software, consume more resources, and foster more
bugs.

3. Feature Interaction Bugs:
 Providing correct, clear, implementable and testable

feature specifications is not enough.
 Features usually come in groups or related features.

The features of each group and the interaction of
features with in the group are usually well tested.

 The problem is unpredictable interactions between
feature groups or even between individual features.
For example, your telephone is provided with call
holding and call forwarding. The interactions
between these two features may have bugs.

 Every application has its peculiar set of features and
a much bigger set of unspecified feature interaction

potentials and therefore result in feature interaction
bugs.

Specification and Feature Bug Remedies:

1. Most feature bugs are rooted in human to human
communication problems. One solution is to use high-level,
formal specification languages or systems.

2. Such languages and systems provide short term support but in
the long run, does not solve the problem.

3. Short term Support: Specification languages facilitate
formalization of requirements and inconsistency and ambiguity
analysis.

4. Long term Support: Assume that we have a great
specification language and that can be used to create
unambiguous, complete specifications with unambiguous
complete testsand consistent test criteria.

5. The specification problem has been shifted to a higher level but
not eliminated.

Testing Techniques for functional bugs: Most functional test
techniques- that is those techniques which are based on a behavioral
description of software, such as transaction flow testing, syntax testing,
domain testing, logic testing and state testing are useful in testing
functional bugs.

o STRUCTURAL BUGS: Various categories in Structural bugs include:

1. Control and Sequence Bugs:
 Control and sequence bugs include paths left out,

unreachable code, improper nesting of loops, loop-
back or loop termination criteria incorrect, missing
process steps, duplicated processing, unnecessary
processing, rampaging, GOTO's, ill-conceived (not
properly planned) switches, sphagetti code, and
worst of all, pachinko code.

 One reason for control flow bugs is that this area is
amenable (supportive) to theoritical treatment.

 Most of the control flow bugs are easily tested and
caught in unit testing.

 Another reason for control flow bugs is that use of
old code especially ALP & COBOL code are
dominated by control flow bugs.

 Control and sequence bugs at all levels are caught
by testing, especially structural testing, more
specifically path testing combined with a bottom line
functional test based on a specification.

2. Logic Bugs:

 Bugs in logic, especially those related to
misundertanding how case statements and logic
operators behave singly and combinations

 Also includes evaluation of boolean expressions in
deeply nested IF-THEN-ELSE constructs.

 If the bugs are parts of logical (i.e. boolean)
processing not related to control flow, they are
characterized as processing bugs.

 If the bugs are parts of a logical expression (i.e
control-flow statement) which is used to direct the
control flow, then they are categorized as control-
flow bugs.

3. Processing Bugs:
 Processing bugs include arithmetic bugs, algebraic,

mathematical function evaluation, algorithm
selection and general processing.

 Examples of Processing bugs include: Incorrect
conversion from one data representation to other,
ignoring overflow, improper use of grater-than-or-
eual etc

 Although these bugs are frequent (12%), they tend
to be caught in good unit testing.

4. Initialization Bugs:
 Initialization bugs are common. Initialization bugs

can be improper and superfluous.
 Superfluous bugs are generally less harmful but can

affect performance.
 Typical initialization bugs include: Forgetting to

initialize the variables before first use, assuming that
they are initialized elsewhere, initializing to the
wrong format, representation or type etc

 Explicit declaration of all variables, as in Pascal, can
reduce some initialization problems.

5. Data-Flow Bugs and Anomalies:
 Most initialization bugs are special case of data flow

anamolies.
 A data flow anomaly occurs where there is a path

along which we expect to do something
unreasonable with data, such as using an
uninitialized variable, attempting to use a variable
before it exists, modifying and then not storing or
using the result, or initializing twice without an
intermediate use.

o DATA BUGS:

1. Data bugs include all bugs that arise from the specification of
data objects, their formats, the number of such objects, and
their initial values.

2. Data Bugs are atleast as common as bugs in code, but they
are foten treated as if they didnot exist at all.

3. Code migrates data: Software is evolving towards programs in
which more and more of the control and processing functions
are stored in tables.

4. Because of this, there is an increasing awareness that bugs in
code are only half the battle and the data problems should be
given equal attention.

5. Dynamic Data Vs Static data:
 Dynamic data are transitory. Whatever their purpose

their lifetime is relatively short, typically the
processing time of one transaction. A storage object
may be used to hold dynamic data of different types,
with different formats, attributes and residues.

 Dynamic data bugs are due to leftover garbage in a
shared resource. This can be handled in one of the
three ways: (1) Clean up after the use by the user
(2) Common Cleanup by the resource manager (3)
No Clean up

 Static Data are fixed in form and content. They
appear in the source code or database directly or
indirectly, for example a number, a string of
characters, or a bit pattern.

 Compile time processing will solve the bugs caused
by static data.

6. Information, parameter, and control: Static or dynamic data
can serve in one of three roles, or in combination of roles: as a
parameter, for control, or for information.

7. Content, Structure and Attributes: Content can be an actual
bit pattern, character string, or number put into a data structure.
Content is a pure bit pattern and has no meaning unless it is
interpreted by a hardware or software processor. All data bugs
result in the corruption or misinterpretation of
content. Structure relates to the size, shape and numbers that
describe the data object, that is memory location used to store
the content. (e.g A two dimensional array). Attributes relates
to the specification meaning that is the semantics associated
with the contents of a data object. (e.g. an integer, an
alphanumeric string, a subroutine). The severity and subtlelty
of bugs increases as we go from content to attributes because
the things get less formal in that direction.

o CODING BUGS:
1. Coding errors of all kinds can create any of the other kind of

bugs.
2. Syntax errors are generally not important in the scheme of

things if the source language translator has adequate syntax
checking.

3. If a program has many syntax errors, then we should expect
many logic and coding bugs.

4. The documentation bugs are also considered as coding bugs
which may mislead the maintenance programmers.

o INTERFACE, INTEGRATION, AND SYSTEM BUGS:

1. Various categories of bugs in Interface, Integration, and
System Bugs are:

 External Interfaces:
 The external interfaces are the means

used to communicate with the world.
 These include devices, actuators,

sensors, input terminals, printers, and
communication lines.

 The primary design criterion for an
interface with outside world should be
robustness.

 All external interfaces, human or machine
should employ a protocol. The protocol
may be wrong or incorrectly
implemented.

 Other external interface bugs are: invalid
timing or sequence assumptions related
to external signals

 Misunderstanding external input or output
formats.

 Insufficient tolerance to bad input data.
 Internal Interfaces:

 Internal interfaces are in principle not
different from external interfaces but they
are more controlled.

 A best example for internal interfaces are
communicating routines.

 The external environment is fixed and the
system must adapt to it but the internal
environment, which consists of interfaces
with other components, can be
negotiated.

 Internal interfaces have the same
problem as external interfaces.

 Hardware Architecture:
 Bugs related to hardware architecture

originate mostly from misunderstanding
how the hardware works.

 Examples of hardware architecture bugs:
address generation error, i/o device
operation / instruction error, waiting too
long for a response, incorrect interrupt
handling etc.

 The remedy for hardware architecture
and interface problems is two fold: (1)
Good Programming and Testing (2)
Centralization of hardware interface
software in programs written by hardware
interface specialists.

 Operating System Bugs:

 Program bugs related to the operating
system are a combination of hardware
architecture and interface bugs mostly
caused by a misunderstanding of what it
is the operating system does.

 Use operating system interface
specialists, and use explicit interface
modules or macros for all operating
system calls.

 This approach may not eliminate the
bugs but at least will localize them and
make testing easier.

 Software Architecture:
 Software architecture bugs are the kind

that called - interactive.
 Routines can pass unit and integration

testing without revealing such bugs.
 Many of them depend on load, and their

symptoms emerge only when the system
is stressed.

 Sample for such bugs: Assumption that
there will be no interrupts, Failure to
block or un block interrupts, Assumption
that memory and registers were initialized
or not initialized etc

 Careful integration of modules and
subjecting the final system to a stress
test are effective methods for these bugs.

 Control and Sequence Bugs (Systems Level):
 These bugs include: Ignored timing,

Assuming that events occur in a specified
sequence, Working on data before all the
data have arrived from disc, Waiting for
an impossible combination of
prerequisites, Missing, wrong, redundant
or superfluous process steps.

 The remedy for these bugs is highly
structured sequence control.

 Specialize, internal, sequence control
mechanisms are helpful.

 Resource Management Problems:
 Memory is subdivided into dynamically

allocated resources such as buffer
blocks, queue blocks, task control blocks,
and overlay buffers.

 External mass storage units such as
discs, are subdivided into memory
resource pools.

 Some resource management and usage
bugs: Required resource not obtained,

Wrong resource used, Resource is
already in use, Resource dead lock etc

 Resource Management Remedies: A
design remedy that prevents bugs is
always preferable to a test method that
discovers them.

 The design remedy in resource
management is to keep the resource
structure simple: the fewest different
kinds of resources, the fewest pools, and
no private resource management.

 Integration Bugs:
 Integration bugs are bugs having to do

with the integration of, and with the
interfaces between, working and tested
components.

 These bugs results from inconsistencies
or incompatibilities between components.

 The communication methods include
data structures, call sequences, registers,
semaphores, communication links and
protocols results in integration bugs.

 The integration bugs do not constitute a
big bug category(9%) they are expensive
category because they are usually caught
late in the game and because they force
changes in several components and/or
data structures.

 System Bugs:
 System bugs covering all kinds of bugs

that cannot be ascribed to a component
or to their simple interactions, but result
from the totality of interactions between
many components such as programs,
data, hardware, and the operating
systems.

 There can be no meaningful system
testing until there has been thorough
component and integration testing.

 System bugs are infrequent(1.7%) but
very important because they are often
found only after the system has been
fielded.

2. TEST AND TEST DESIGN BUGS:

 Testing: testers have no immunity to bugs. Tests
require complicated scenarios and databases.

 They require code or the equivalent to execute and
consequently they can have bugs.

 Test criteria: if the specification is correct, it is
correctly interpreted and implemented, and a proper
test has been designed; but the criterion by which
the software's behavior is judged may be incorrect
or impossible. So, a proper test criteria has to be
designed. The more complicated the criteria, the
likelier they are to have bugs.

 Remedies: The remedies of test bugs are:

 Test Debugging: The first remedy for
test bugs is testing and debugging the
tests. Test debugging, when compared to
program debugging, is easier because
tests, when properly designed are
simpler than programs and donot have to
make concessions to efficiency.

 Test Quality Assurance: Programmers
have the right to ask how quality in
independent testing is monitored.

 Test Execution Automation: The
history of software bug removal and
prevention is indistinguishable from the
history of programming automation aids.
Assemblers, loaders, compilers are
developed to reduce the incidence of
programming and operation errors. Test
execution bugs are virtually eliminated by
various test execution automation tools.

 Test Design Automation: Just as much
of software development has been
automated, much test design can be and
has been automated. For a given
productivity rate, automation reduces the
bug count - be it for software or be it for
tests.

Overview of Unit and Integration Testing - CO1

Unit Tests are conducted by developers and test the unit of code(aka

module, component) he or she developed. It is a testing method by

which individual units of source code are tested to determine if they are

ready to use. It helps to reduce the cost of bug fixes since the bugs are

identified during the early phases of development life cycle.

https://www.guru99.com/unit-testing-guide.html

Integration testing is executed by testers and tests integration between

software modules. It is a software testing technique where individual

units of a program are combined and tested as a group. Test stubs and

test drivers are used to assist in Integration Testing. Integration test is

performed in two way, they are bottom-up method and the top-down

method.

Below is a detailed comparison between the two-

Unit test Integration test

 The idea behind Unit Testing

is to test each part of the

program and show that the

individual parts are correct.

 The idea behind Integration

Testing is to combine

modules in the application

and test as a group to see that

they are working fine

 It is kind of White Box Testing It is kind of Black Box Testing

 It can be performed at any

time

 It usually carried out after

Unit Testing and

before System Testing

 Unit Testing tests only the

functionality of the units

themselves and may not

catch integration errors, or

other system-wide issues

 Integrating testing may

detect errors when modules

are integrated to build the

overall system

 It starts from the module It starts from the interface

https://www.guru99.com/integration-testing.html
https://www.guru99.com/white-box-testing.html
https://www.guru99.com/black-box-testing.html
https://www.guru99.com/system-testing.html

specification specification

 It pays attention to the

behavior of single modules

 It pays attention to

integration among modules

 Unit test does not verify

whether your code works

with external dependencies

correctly.

 Integration tests verifies that

your code works with

external dependencies

correctly.

 It is usually executed by

developer

 It is usually executed by test

team

 Finding errors are easy Finding errors are difficult

 Maintenance of unit test is

cheap

 Maintenance of integration

test is expensive

CVR COLLEGE OF ENGINEERING

An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 1

Unit - 2

Year and Semester: IV yr & I Sem
A

Subject: Software Testing Methodologies
Branch: CSE

Faculty: Revathi Lavanya Baggam, Assistant Professor (CSE)

Basic concepts of path testing - CO2

 PATH TESTING:
o Path Testing is the name given to a family of test techniques based on

judiciously selecting a set of test paths through the program.
o If the set of paths are properly chosen then we have achieved some

measure of test thoroughness. For example, pick enough paths to assure
that every source statement has been executed at least once.

o Path testing techniques are the oldest of all structural test techniques.
o Path testing is most applicable to new software for unit testing. It is a

structural technique.
o It requires complete knowledge of the program's structure.
o It is most often used by programmers to unit test their own code.
o The effectiveness of path testing rapidly deteriorates as the size of the

software aggregate under test increases.
 THE BUG ASSUMPTION:

o The bug assumption for the path testing strategies is that something has
gone wrong with the software that makes it take a different path than
intended.

o As an example "GOTO X" where "GOTO Y" had been intended.
o Structured programming languages prevent many of the bugs targeted by

path testing: as a consequence the effectiveness for path testing for these
languages is reduced and for old code in COBOL, ALP, FORTRAN and
Basic, the path testing is indespensable.

 CONTROL FLOW GRAPHS:
o The control flow graph is a graphical representation of a program's control

structure. It uses the elements named process blocks, decisions, and
junctions.

o The flow graph is similar to the earlier flowchart, with which it is not to be
confused.

o Flow Graph Elements:A flow graph contains four different types of
elements. (1) Process Block (2) Decisions (3) Junctions (4) Case
Statements

1. Process Block:
 A process block is a sequence of program

statements uninterrupted by either decisions or
junctions.

 It is a sequence of statements such that if any one
of statement of the block is executed, then all
statement thereof are executed.

 Formally, a process block is a piece of straight line
code of one statement or hundreds of statements.

 A process has one entry and one exit. It can
consists of a single statement or instruction, a
sequence of statements or instructions, a single
entry/exit subroutine, a macro or function call, or a
sequence of these.

2. Decisions:
 A decision is a program point at which the control

flow can diverge.
 Machine language conditional branch and

conditional skip instructions are examples of
decisions.

 Most of the decisions are two-way but some are
three way branches in control flow.

3. Case Statements:
 A case statement is a multi-way branch or decisions.
 Examples of case statement are a jump table in

assembly language, and the PASCAL case
statement.

 From the point of view of test design, there are no
differences between Decisions and Case
Statements

4. Junctions:
 A junction is a point in the program where the

control flow can merge.
 Examples of junctions are: the target of a jump or

skip instruction in ALP, a label that is a target of
GOTO.

Figure 2.1: Flowgraph Elements

1. CONTROL FLOW GRAPHS Vs FLOWCHARTS:
o A program's flow chart resembles a control flow graph.
o In flow graphs, we don't show the details of what is in a process block.
o In flow charts every part of the process block is drawn.
o The flowchart focuses on process steps, where as the flow graph focuses

on control flow of the program.
o The act of drawing a control flow graph is a useful tool that can help us

clarify the control flow and data flow issues.
2. NOTATIONAL EVOULTION:

o The control flow graph is simplified representation of the program's
structure.

o The notation changes made in creation of control flow graphs:

1. The process boxes weren't really needed. There is an implied
process on every line joining junctions and decisions.

2. We don't need to know the specifics of the decisions, just the
fact that there is a branch.

3. The specific target label names aren't important-just the fact
that they exist. So we can replace them by simple numbers.

4. To understand this, we will go through an example (Figure 2.2)
written in a FORTRAN like programming language
called Programming Design Language (PDL). The program's
corresponding flowchart (Figure 2.3) and flowgraph (Figure 2.4)
were also provided below for better understanding.

5. The first step in translating the program to a flowchart is shown
in Figure 2.3, where we have the typical one-for-one classical
flowchart. Note that complexity has increased, clarity has
decreased, and that we had to add auxiliary labels (LOOP, XX,
and YY), which have no actual program counterpart. In Figure
2.4 we merged the process steps and replaced them with the
single process box. We now have a control flowgraph. But this
representation is still too busy. We simplify the notation further
to achieve Figure 2.5, where for the first time we can really see
what the control flow looks like.

Figure 2.2: Program Example (PDL)

Figure 2.3: One-to-one flowchart for
example program in Figure 2.2

Figure 2.4: Control Flowgraph for
example in Figure 2.2

Figure 2.5: Simplified Flowgraph Notation

Figure 2.6: Even Simplified Flowgraph
Notation

The final transformation is shown in Figure 2.6, where we've
dropped the node numbers to achieve an even simpler
representation. The way to work with control flowgraphs is to
use the simplest possible representation - that is, no more
information than you need to correlate back to the source
program or PDL.

3.

 LINKED LIST REPRESENTATION:
1. Although graphical representations of flowgraphs are revealing, the details

of the control flow inside a program they are often inconvenient.
2. In linked list representation, each node has a name and there is an entry

on the list for each link in the flow graph. only the information pertinent to
the control flow is shown.

3. Linked List representation of Flow Graph:

Figure 2.7: Linked List Control Flowgraph Notation

 FLOWGRAPH - PROGRAM CORRESPONDENCE:
1. A flow graph is a pictorial representation of a program and not the

program itself, just as a topographic map.
2. You cant always associate the parts of a program in a unique way with

flowgraph parts because many program structures, such as if-then-else
constructs, consists of a combination of decisions, junctions, and
processes.

3. The translation from a flowgraph element to a statement and vice versa is
not always unique. (See Figure 2.8)

Figure 2.8: Alternative Flowgraphs for same logic
(Statement "IF (A=0) AND (B=1) THEN . . .").

4. An improper translation from flowgraph to code during coding can lead to
bugs, and improper translation during the test design lead to missing test
cases and causes undiscovered bugs.

 FLOWGRAPH AND FLOWCHART GENERATION:
1. Flowcharts can be

1. Handwritten by the programmer.
2. Automatically produced by a flowcharting program based on a

mechanical analysis of the source code.
3. Semi automatically produced by a flow charting program based

in part on structural analysis of the source code and in part on
directions given by the programmer.

2. There are relatively few control flow graph generators.
2. PATH TESTING - PATHS, NODES AND LINKS:

1. Path:a path through a program is a sequence of instructions or
statements that starts at an entry, junction, or decision and ends at
another, or possibly the same junction, decision, or exit.

2. A path may go through several junctions, processes, or decisions, one or
more times.

3. Paths consists of segments.
4. The segment is a link - a single process that lies between two nodes.
5. A path segment is succession of consecutive links that belongs to some

path.
6. The length of path measured by the number of links in it and not by the

number of the instructions or statements executed along that path.
7. The name of a path is the name of the nodes along the path.

3. FUNDAMENTAL PATH SELECTION CRITERIA:

1. There are many paths between the entry and exit of a typical routine.
2. Every decision doubles the number of potential paths. And every loop

multiplies the number of potential paths by the number of different iteration
values possible for the loop.

3. Defining complete testing:
1. Exercise every path from entry to exit
2. Exercise every statement or instruction at least once
3. Exercise every branch and case statement, in each direction at

least once
4. If prescription 1 is followed then 2 and 3 are automatically followed. But it

is impractical for most routines. It can be done for the routines that have
no loops, in which it is equivalent to 2 and 3 prescriptions.

5. EXAMPLE:Here is the correct version.

For X negative, the output is X + A, while for X greater than or equal to
zero, the output is X + 2A. Following prescription 2 and executing every
statement, but not every branch, would not reveal the bug in the following
incorrect version:

A negative value produces the correct answer. Every statement can be
executed, but if the test cases do not force each branch to be taken, the
bug can remain hidden. The next example uses a test based on executing
each branch but does not force the execution of all statements:

The hidden loop around label 100 is not revealed by tests based on
prescription 3 alone because no test forces the execution of statement
100 and the following GOTO statement. Furthermore, label 100 is not
flagged by the compiler as an unreferenced label and the subsequent
GOTO does not refer to an undefined label.

6. A Static Analysis (that is, an analysis based on examining the source
code or structure) cannot determine whether a piece of code is or is not
reachable. There could be subroutine calls with parameters that are
subroutine labels, or in the above example there could be a GOTO that
targeted label 100 but could never achieve a value that would send the
program to that label.

7. Only a Dynamic Analysis (that is, an analysis based on the code's
behavior while running - which is to say, to all intents and purposes,
testing) can determine whether code is reachable or not and therefore
distinguish between the ideal structure we think we have and the actual,
buggy structure.

4. PATH TESTING CRITERIA:
1. Any testing strategy based on paths must at least both exercise every

instruction and take branches in all directions.
2. A set of tests that does this is not complete in an absolute sense, but it is

complete in the sense that anything less must leave something untested.
3. So we have explored three different testing criteria or strategies out of a

potentially infinite family of strategies.
1. Path Testing (Pinf):

 Execute all possible control flow paths through the
program: typically, this is restricted to all possible
entry/exit paths through the program.

 If we achieve this prescription, we are said to have
achieved 100% path coverage. This is the strongest
criterion in the path testing strategy family: it is
generally impossible to achieve.

2. Statement Testing (P1):
 Execute all statements in the program at least once

under some test. If we do enough tests to achieve

this, we are said to have achieved 100% statement
coverage.

 An alternate equivalent characterization is to say
that we have achieved 100% node coverage. We
denote this by C1.

 This is the weakest criterion in the family: testing
less than this for new software is unconscionable
(unprincipled or can not be accepted) and should be
criminalized.

3. Branch Testing (P2):
 Execute enough tests to assure that every branch

alternative has been exercised at least once under
some test.

 If we do enough tests to achieve this prescription,
then we have achieved 100% branch coverage.

 An alternative characterization is to say that we
have achieved 100% link coverage.

 For structured software, branch testing and
therefore branch coverage strictly includes
statement coverage.

 We denote branch coverage by C2.
 Commonsense and Strategies:

1. Branch and statement coverage are accepted today as the
minimum mandatory testing requirement.

2. The question "why not use a judicious sampling of paths?, what
is wrong with leaving some code, untested?" is ineffectual in
the view of common sense and experience since: (1.) Not
testing a piece of a code leaves a residue of bugs in the
program in proportion to the size of the untested code and the
probability of bugs. (2.) The high probability paths are always
thoroughly tested if only to demonstrate that the system works
properly.

3. Which paths to be tested? You must pick enough paths to
achieve C1+C2. The question of what is the fewest number of
such paths is interesting to the designer of test tools that help
automate the path testing, but it is not crucial to the pragmatic
(practical) design of tests. It is better to make many simple
paths than a few complicated paths.

4. Path Selection Example:

Figure 2.9: An example flowgraph to
explain path selection

5. Practical Suggestions in Path Testing:

 Draw the control flow graph on a single sheet of
paper.

 Make several copies - as many as you will need for
coverage (C1+C2) and several more.

 Use a yellow highlighting marker to trace paths.
Copy the paths onto a master sheets.

 Continue tracing paths until all lines on the master
sheet are covered, indicating that you appear to
have achieved C1+C2.

 As you trace the paths, create a table that shows
the paths, the coverage status of each process, and
each decision.

 The above paths lead to the following table
considering Figure 2.9:

 After you have traced a a covering path set on the
master sheet and filled in the table for every path,
check the following:

1. Does every decision have a YES and a
NO in its column? (C2)

2. Has every case of all case statements
been marked? (C2)

3. Is every three - way branch (less, equal,
greater) covered? (C2)

4. Is every link (process) covered at least
once? (C1)

 Revised Path Selection Rules:

1. Pick the simplest, functionally sensible
entry/exit path.

2. Pick additional paths as small variation
from previous paths. Pick paths that do
not have loops rather than paths that do.
Favor short paths that make sense over
paths that don't.

3. Pick additional paths that have no
obvious functional meaning only if it's
necessary to provide coverage.

4. Be comfortable with your chosen paths.
Play your hunches (guesses) and give

your intuition free reign as long as you
achieve C1+C2.

5. Don't follow rules slavishly (blindly) -
except for coverage.

2. LOOPS:
 Cases for a single loop:A Single loop can be

covered with two cases: Looping and Not
looping. But, experience shows that many loop-
related bugs are not discovered by C1+C2.
Bugs hide themselves in corners and
congregate at boundaries - in the cases of
loops, at or around the minimum or maximum
number of times the loop can be iterated. The
minimum number of iterations is often zero, but
it need not be.
CASE 1: Single loop, Zero minimum, N
maximum, No excluded values

 Try bypassing the loop (zero iterations). If you can't,
you either have a bug, or zero is not the minimum
and you have the wrong case.

 Could the loop-control variable be negative? Could it
appear to specify a negative number of iterations?
What happens to such a value?

 One pass through the loop.
 Two passes through the loop.
 A typical number of iterations, unless covered by a

previous test.
 One less than the maximum number of iterations.
 The maximum number of iterations.
 Attempt one more than the maximum number of

iterations. What prevents the loop-control variable
from having this value? What will happen with this
value if it is forced?

CASE 2: Single loop, Non-zero minimum, No excluded
values

 Try one less than the expected minimum. What
happens if the loop control variable's value is less
than the minimum? What prevents the value from
being less than the minimum?

 The minimum number of iterations.
 One more than the minimum number of iterations.
 Once, unless covered by a previous test.
 Twice, unless covered by a previous test.
 A typical value.
 One less than the maximum value.
 The maximum number of iterations.
 Attempt one more than the maximum number of

iterations.

CASE 3: Single loops with excluded values

 Treat single loops with excluded values as two sets
of tests consisting of loops without excluded values,
such as case 1 and 2 above.

 Example, the total range of the loop control variable
was 1 to 20, but that values 7,8,9,10 were excluded.
The two sets of tests are 1-6 and 11-20.

 The test cases to attempt would be 0,1,2,4,6,7 for
the first range and 10,11,15,19,20,21 for the second
range.

 Kinds of Loops:There are only three kinds of
loops with respect to path testing:

 Nested Loops:
1. The number of tests to be performed on

nested loops will be the exponent of the
tests performed on single loops.

2. As we cannot always afford to test all
combinations of nested loops' iterations
values. Here's a tactic used to discard
some of these values:

1. Start at the inner most loop.
Set all the outer loops to their
minimum values.

2. Test the minimum,
minimum+1, typical,
maximum-1 , and maximum
for the innermost loop, while
holding the outer loops at their
minimum iteration parameter
values. Expand the tests as
required for out of range and
excluded values.

3. If you've done the outmost
loop, GOTO step 5, else move
out one loop and set it up as in
step 2 with all other loops set
to typical values.

4. Continue outward in this
manner until all loops have
been covered.

5. Do all the cases for all loops in
the nest simultaneously.

 Concatenated Loops:
1. Concatenated loops fall between single

and nested loops with respect to test
cases. Two loops are concatenated if it's
possible to reach one after exiting the
other while still on a path from entrance
to exit.

2. If the loops cannot be on the same path,
then they are not concatenated and can
be treated as individual loops.

 Horrible Loops:
1. A horrible loop is a combination of nested

loops, the use of code that jumps into
and out of loops, intersecting loops,
hidden loops, and cross connected loops.

2. Makes iteration value selection for test
cases an awesome and ugly task, which
is another reason such structures should
be avoided.

Figure 2.10: Example of Loop types

 Loop Testing TIme:
 Any kind of loop can lead to long testing time,

especially if all the extreme value cases are to
attempted (Max-1, Max, Max+1).

 This situation is obviously worse for nested and
dependent concatenated loops.

 Consider nested loops in which testing the
combination of extreme values lead to long test
times. Several options to deal with:

1. Prove that the combined extreme cases
are hypothetically possible, they are not
possible in the real world

2. Put in limits or checks that prevent the
combined extreme cases. Then you have
to test the software that implements such
safety measures.

PREDICATES, PATH PREDICATES AND ACHIEVABLE PATHS -

CO2

 PREDICATE: The logical function evaluated at a decision
is called Predicate. The direction taken at a decision
depends on the value of decision variable. Some examples
are: A>0, x+y>=90.......

 PATH PREDICATE: A predicate associated with a path is
called a Path Predicate. For example, "x is greater than
zero", "x+y>=90", "w is either negative or equal to 10 is
true" is a sequence of predicates whose truth values will
cause the routine to take a specific path.

 MULTIWAY BRANCHES:
 The path taken through a multiway branch such

as a computed GOTO's, case statement, or
jump tables cannot be directly expressed in
TRUE/FALSE terms.

 Although, it is possible to describe such
alternatives by using multi valued logic, an
expedient (practical approach) is to express
multiway branches as an equivalent set of
if..then..else statements.

 For example a three way case statement can be
written as: If case=1 DO A1 ELSE (IF Case=2
DO A2 ELSE DO A3 ENDIF)ENDIF.

 INPUTS:
 In testing, the word input is not restricted to

direct inputs, such as variables in a subroutine
call, but includes all data objects referenced by
the routine whose values are fixed prior to
entering it.

 For example, inputs in a calling sequence,
objects in a data structure, values left in
registers, or any combination of object types.

 The input for a particular test is mapped as a
one dimensional array called as an Input Vector.

 PREDICATE INTERPRETATION:
 The simplest predicate depends only on input

variables.
 For example if x1,x2 are inputs, the predicate

might be x1+x2>=7, given the values of x1 and
x2 the direction taken through the decision is
based on the predicate is determined at input
time and does not depend on processing.

 Another example, assume a predicate x1+y>=0
that along a path prior to reaching this predicate
we had the assignement statement y=x2+7.
although our predicate depends on processing,
we can substitute the symbolic expression for y
to obtain an equivalent predicate x1+x2+7>=0.

 The act of symbolic substitution of operations
along the path in order to express the predicate
solely in terms of the input vector is
called predicate interpretation.

 Some times the interpretation may depend on
the path; for example,

 INPUT X

 ON X GOTO A, B, C, ...

 A: Z := 7 @ GOTO HEM

 B: Z := -7 @ GOTO HEM

 C: Z := 0 @ GOTO HEM

 HEM: DO SOMETHING

 HEN: IF Y + Z > 0 GOTO ELL

ELSE GOTO EMM

The predicate interpretation at HEN depends on the path we
took through the first multiway branch. It yields for the three
cases respectively, if Y+7>0, Y-7>0, Y>0.

 The path predicates are the specific form of the
predicates of the decisions along the selected
path after interpretation.

 INDEPENDENCE OF VARIABLES AND PREDICATES:
 The path predicates take on truth values based

on the values of input variables, either directly or
indirectly.

 If a variable's value does not change as a result
of processing, that variable is independent of the
processing.

 If the variable's value can change as a result of
the processing, the variable is process
dependent.

 A predicate whose truth value can change as a
result of the processing is said to be process
dependent and one whose truth value does not
change as a result of the processing is process
independent.

 Process dependence of a predicate does not
always follow from dependence of the input
variables on which that predicate is based.

 CORRELATION OF VARIABLES AND PREDICATES:
 Two variables are correlated if every

combination of their values cannot be
independently specified.

 Variables whose values can be specified
independently without restriction are called
uncorrelated.

 A pair of predicates whose outcomes depend on
one or more variables in common are said to be
correlated predicates.
For example, the predicate X==Y is followed by
another predicate X+Y == 8. If we select X and
Y values to satisfy the first predicate, we might
have forced the 2nd predicate's truth value to
change.

 Every path through a routine is achievable only
if all the predicates in that routine are
uncorrelated.

 PATH PREDICATE EXPRESSIONS:
 A path predicate expression is a set of boolean

expressions, all of which must be satisfied to
achieve the selected path.

 Example:

 X1+3X2+17>=0

 X3=17

 X4-X1>=14X2

 Any set of input values that satisfy all of the
conditions of the path predicate expression will
force the routine to the path.

 Some times a predicate can have an OR in it.
 Example:

A: X5 > 0

B: X1 + 3X2 + 17 >= 0

C: X3 = 17

D: X4 - X1 >= 14X2

E: X6 < 0

B: X1 + 3X2 + 17 >= 0

C: X3 = 17

D: X4 - X1 >= 14X2

 Boolean algebra notation to denote the boolean

expression:

ABCD+EBCD=(A+E)BCD

 PREDICATE COVERAGE:
 Compound Predicate: Predicates of the form A

OR B, A AND B and more complicated boolean
expressions are called as compound predicates.

 Some times even a simple predicate becomes
compound after interpretation. Example: the
predicate if (x=17) whose opposite branch is if
x.NE.17 which is equivalent to x>17 . Or. X<17.

 Predicate coverage is being the achieving of all
possible combinations of truth values
corresponding to the selected path have been
explored under some test.

 As achieving the desired direction at a given
decision could still hide bugs in the associated
predicates.

 TESTING BLINDNESS:
 Testing Blindness is a pathological (harmful)

situation in which the desired path is achieved
for the wrong reason.

 There are three types of Testing Blindness:

 Assignment Blindness:
1. Assignment blindness occurs when the

buggy predicate appears to work
correctly because the specific value
chosen for an assignment statement
works with both the correct and incorrect
predicate.

2. For Example:

Correct Buggy

X = 7

........

if Y > 0 then ...

X = 7

........

if X+Y > 0 then ...

3. If the test case sets Y=1 the desired path
is taken in either case, but there is still a
bug.

 Equality Blindness:
1. Equality blindness occurs when the path

selected by a prior predicate results in a
value that works both for the correct and
buggy predicate.

2. For Example:

Correct Buggy

if Y = 2 then

........

if X+Y > 3 then ...

if Y = 2 then

........

if X > 1 then ...

3. The first predicate if y=2 forces the rest of
the path, so that for any positive value of
x. the path taken at the second predicate
will be the same for the correct and
buggy version.

 Self Blindness:
1. Self blindness occurs when the buggy

predicate is a multiple of the correct
predicate and as a result is
indistinguishable along that path.

2. For Example:

Correct Buggy

X = A

........

if X-1 > 0 then ...

X = A

........

if X+A-2 > 0 then ...

3. The assignment (x=a) makes the
predicates multiples of each other, so the
direction taken is the same for the correct
and buggy version.

PATH SENSITIZING - CO2

2. REVIEW: ACHIEVABLE AND UNACHIEVABLE PATHS:
 We want to select and test enough paths to

achieve a satisfactory notion of test
completeness such as C1+C2.

 Extract the programs control flowgraph and
select a set of tentative covering paths.

 For any path in that set, interpret the predicates
along the path as needed to express them in
terms of the input vector. In general individual
predicates are compound or may become
compound as a result of interpretation.

 Trace the path through, multiplying the individual
compound predicates to achieve a boolean
expression such as

(A+BC) (D+E) (FGH) (IJ) (K) (l) (L).

 Multiply out the expression to achieve a sum of
products form:

ADFGHIJKL+AEFGHIJKL+BCDFGHIJKL+BCEFGHIJK
L

 Each product term denotes a set of inequalities
that if solved will yield an input vector that will
drive the routine along the designated path.

 Solve any one of the inequality sets for the
chosen path and you have found a set of input
values for the path.

 If you can find a solution, then the path is
achievable.

 If you cant find a solution to any of the sets of
inequalities, the path is un achievable.

 The act of finding a set of solutions to the path
predicate expression is called PATH
SENSITIZATION.

3. HEURISTIC PROCEDURES FOR SENSITIZING PATHS:
 This is a workable approach, instead of

selecting the paths without considering how to
sensitize, attempt to choose a covering path set
that is easy to sensitize and pick hard to
sensitize paths only as you must to achieve
coverage.

 Identify all variables that affect the decision.
 Classify the predicates as dependent or

independent.
 Start the path selection with un correlated,

independent predicates.
 If coverage has not been achieved using

independent uncorrelated predicates, extend the
path set using correlated predicates.

 If coverage has not been achieved extend the
cases to those that involve dependent
predicates.

 Last, use correlated, dependent predicates.

PATH INSTRUMENTATION - CO2

 Path instrumentation is what we have to do to confirm that the outcome was
achieved by the intended path.

 Co-incidental Correctness: The coincidental correctness stands for achieving the
desired outcome for wrong reason.

Figure 2.11: Coincidental Correctness

The above figure is an example of a routine that, for the (unfortunately) chosen input
value (X = 16), yields the same outcome (Y = 2) no matter which case we select.
Therefore, the tests chosen this way will not tell us whether we have achieved coverage.
For example, the five cases could be totally jumbled and still the outcome would be the
same. Path Instrumentation is what we have to do to confirm that the outcome was
achieved by the intended path.

 The types of instrumentation methods include:
1. Interpretive Trace Program:

 An interpretive trace program is one that executes every
statement in order and records the intermediate values of all
calculations, the statement labels traversed etc.

 If we run the tested routine under a trace, then we have all the
information we need to confirm the outcome and, furthermore,
to confirm that it was achieved by the intended path.

 The trouble with traces is that they give us far more information
than we need. In fact, the typical trace program provides so
much information that confirming the path from its massive
output dump is more work than simulating the computer by
hand to confirm the path.

2. Traversal Marker or Link Marker:
 A simple and effective form of instrumentation is called a

traversal marker or link marker.
 Name every link by a lower case letter.
 Instrument the links so that the link's name is recorded when

the link is executed.
 The succession of letters produced in going from the routine's

entry to its exit should, if there are no bugs, exactly correspond
to the path name.

3. Figure 2.12: Single Link Marker
Instrumentation

 Why Single Link Markers aren't enough: Unfortunately, a
single link marker may not do the trick because links can be
chewed by open bugs.

4. Figure 2.13: Why Single Link Markers aren't
enough.

5. We intended to traverse the ikm path, but because of a rampaging
GOTO in the middle of the m link, we go to process B. If
coincidental correctness is against us, the outcomes will be the
same and we won't know about the bug.

6. Two Link Marker Method:
 The solution to the problem of single link marker method is to

implement two markers per link: one at the beginning of each
link and on at the end.

 The two link markers now specify the path name and confirm
both the beginning and end of the link.

7. Figure 2.14: Double Link Marker
Instrumentation.

8. Link Counter: A less disruptive (and less informative) instrumentation
method is based on counters. Instead of a unique link name to be pushed
into a string when the link is traversed, we simply increment a link counter.
We now confirm that the path length is as expected. The same problem
that led us to double link markers also leads us to double link counters.

APPLICATION OF PATH TESTING - CO2

Integration, Coverage and Paths in called Components

Path testing methods are mainly used in unit testing, especially for new software

The new component is first tested as an independent unit with all called components and co-requisite

components replaced by stubs. A simulator of low-level components that is more reliable than the actual

component

Path testing clarifies the integration issues

C1 coverage at the system level ranges from 50% to 85%

We gave no statistics for C2 coverage in system testing because it is impossible to monitor C2 coverage

without disrupting the system's operation

Note:

Co-requisite: A formal course of study required to be taken simultaneously with another

New Code:

New code should always be subjected to enough path testing to achieve C2

Stubs are used where it is clear that the bug potential for the stub is significantly lower than that of the

called components

Old, trusted components will not be replaced by stubs

Some consideration is given to paths within called components

Typically, we will try to use the shortest entry/exit path that will do the task

Maintenance:

There is a great difference between maintenance testing and new code testing

Maintenance testing is a completely different situation

It involves modifications which are accommodated in the system, as required

Path testing is used firstly on the modified component

Rehosting:

Path testing with C1+C2 coverage is a powerful tool for rehosting old software

We get a very powerful, effective, rehosting process when C1+C2 coverage is used in conjunction with

automatic or semiautomatic structural test generators

Software is rehosted because it is no longer cost effective to support the environment in which it runs

The objective of rehosting is to change the operating environment and not the rehosted software

Rehosting from one COBOL environment to another is easy by comparison

Rehosted software can be modified to improve efficiency and/or to implement new functionality, which

had been difficult in the old environments

The test suites(collection) and all outcomes of the old environment become the specification for the

rehosted software

PATH, PATH PRODUCTS AND REGULAR EXPRESSIONS - CO2

 MOTIVATION:

o Flow graphs are being an abstract representation of programs.

o Any question about a program can be cast into an equivalent question
about an appropriate flowgraph.

o Most software development, testing and debugging tools use flow graphs
analysis techniques.

 PATH PRODUCTS:

o Normally flow graphs used to denote only control flow connectivity.

o The simplest weight we can give to a link is a name.

o Using link names as weights, we then convert the graphical flow graph
into an equivalent algebraic like expressions which denotes the set of all
possible paths from entry to exit for the flow graph.

o Every link of a graph can be given a name.

o The link name will be denoted by lower case italic letters.

o In tracing a path or path segment through a flow graph, you traverse a
succession of link names.

o The name of the path or path segment that corresponds to those links is
expressed naturally by concatenating those link names.

o For example, if you traverse links a,b,c and d along some path, the name
for that path segment is abcd. This path name is also called a path
product. Figure 5.1 shows some examples:

Figure 5.1: Examples of paths.

 PATH EXPRESSION:

o Consider a pair of nodes in a graph and the set of paths between those
node.

o Denote that set of paths by Upper case letter such as X,Y. From Figure
5.1c, the members of the path set can be listed as follows:

ac, abc, abbc, abbbc, abbbbc.............

o Alternatively, the same set of paths can be denoted by :

ac+abc+abbc+abbbc+abbbbc+...........

o The + sign is understood to mean "or" between the two nodes of interest,
paths ac, or abc, or abbc, and so on can be taken.

o Any expression that consists of path names and "OR"s and which denotes
a set of paths between two nodes is called a "Path Expression.".

 PATH PRODUCTS:

o The name of a path that consists of two successive path segments is
conveniently expressed by the concatenation or Path Product of the
segment names.

o For example, if X and Y are defined as X=abcde,Y=fghij,then the path
corresponding to X followed by Y is denoted by

XY=abcdefghij

o Similarly,

o YX=fghijabcde
o aX=aabcde
o Xa=abcdea

XaX=abcdeaabcde

o If X and Y represent sets of paths or path expressions, their product
represents the set of paths that can be obtained by following every
element of X by any element of Y in all possible ways. For example,

o X = abc + def + ghi
o Y = uvw + z

Then,

XY = abcuvw + defuvw + ghiuvw + abcz + defz

+ ghiz

o If a link or segment name is repeated, that fact is denoted by an exponent.
The exponent's value denotes the number of repetitions:

o a1 = a; a2 = aa; a3 = aaa; an = aaaa . . . n
times.

Similarly, if

X = abcde

then

X1 = abcde

X2 = abcdeabcde = (abcde)2

X3 = abcdeabcdeabcde = (abcde)2abcde

= abcde(abcde)2 = (abcde)3

o The path product is not commutative (that is XY!=YX).

o The path product is Associative.

RULE 1: A(BC)=(AB)C=ABC

where A,B,C are path names, set of path names or path expressions.

o The zeroth power of a link name, path product, or path expression is also
needed for completeness. It is denoted by the numeral "1" and denotes
the "path" whose length is zero - that is, the path that doesn't have any
links.

o a0 = 1
o X0 = 1

 PATH SUMS:

o The "+" sign was used to denote the fact that path names were part of the
same set of paths.

o The "PATH SUM" denotes paths in parallel between nodes.

o Links a and b in Figure 5.1a are parallel paths and are denoted by a + b.
Similarly, links c and d are parallel paths between the next two nodes and
are denoted by c + d.

o The set of all paths between nodes 1 and 2 can be thought of as a set of
parallel paths and denoted by eacf+eadf+ebcf+ebdf.

o If X and Y are sets of paths that lie between the same pair of nodes, then
X+Y denotes the UNION of those set of paths. For example, in Figure 5.2:

Figure 5.2: Examples of path sums.

The first set of parallel paths is denoted by X + Y + d and the second set
by U + V + W + h + i + j. The set of all paths in this flowgraph is f(X + Y +
d)g(U + V + W + h + i + j)k

o The path is a set union operation, it is clearly Commutative and
Associative.

o RULE 2: X+Y=Y+X
o RULE 3: (X+Y)+Z=X+(Y+Z)=X+Y+Z

 DISTRIBUTIVE LAWS:

o The product and sum operations are distributive, and the ordinary rules of
multiplication apply; that is

RULE 4: A(B+C)=AB+AC and (B+C)D=BD+CD

o Applying these rules to the below Figure 5.1a yields

o e(a+b)(c+d)f=e(ac+ad+bc+bd)f =

eacf+eadf+ebcf+ebdf
 ABSORPTION RULE:

o If X and Y denote the same set of paths, then the union of these sets is
unchanged; consequently,

RULE 5: X+X=X (Absorption Rule)

o If a set consists of paths names and a member of that set is added to it,
the "new" name, which is already in that set of names, contributes nothing
and can be ignored.

o For example,

o if X=a+aa+abc+abcd+def then
 X+a = X+aa = X+abc = X+abcd = X+def = X

It follows that any arbitrary sum of identical path expressions reduces to
the same path expression.

 LOOPS:

o Loops can be understood as an infinite set of parallel paths. Say that the
loop consists of a single link b. then the set of all paths through that loop
point is b0+b1+b2+b3+b4+b5+..............

Figure 5.3: Examples of path loops.

o This potentially infinite sum is denoted by b* for an individual link and by
X* when X is a path expression.

Figure 5.4: Another example of path loops.

o The path expression for the above figure is denoted by the notation:

ab*c=ac+abc+abbc+abbbc+................

o Evidently,

aa*=a*a=a+ and XX*=X*X=X+

o It is more convenient to denote the fact that a loop cannot be taken more
than a certain, say n, number of times.

o A bar is used under the exponent to denote the fact as follows:

Xn = X0+X1+X2+X3+X4+X5+..................+Xn

 RULES 6 - 16:

o The following rules can be derived from the previous rules:

o RULE 6: Xn + Xm = Xn if n>m
RULE 6: Xn + Xm = Xm if m>n

RULE 7: XnXm = Xn+m

RULE 8: XnX* = X*Xn = X*

RULE 9: XnX+ = X+Xn = X+

RULE 10: X*X+ = X+X* = X+

RULE 11: 1 + 1 = 1

RULE 12: 1X = X1 = X

Following or preceding a set of paths by a path of zero length does not change
the set.
RULE 13: 1n = 1n = 1* = 1+ = 1

No matter how often you traverse a path of zero length,It is a path of zero length.
RULE 14: 1++1 = 1*=1
The null set of paths is denoted by the numeral 0. it obeys the following
rules:
RULE 15: X+0=0+X=X

RULE 16: 0X=X0=0

If you block the paths of a graph for or aft by a graph that has no paths , there
wont be any paths.

REDUCTION PROCEDURE - CO2

 REDUCTION PROCEDURE ALGORITHM:

o This section presents a reduction procedure for converting a flowgraph
whose links are labeled with names into a path expression that denotes
the set of all entry/exit paths in that flowgraph. The procedure is a node-
by-node removal algorithm.

o The steps in Reduction Algorithm are as follows:
1. Combine all serial links by multiplying their path expressions.
2. Combine all parallel links by adding their path expressions.
3. Remove all self-loops (from any node to itself) by replacing

them with a link of the form X*, where X is the path expression
of the link in that loop.

STEPS 4 - 8 ARE IN THE ALGORIHTM'S LOOP:

4. Select any node for removal other than the initial or final node.
Replace it with a set of equivalent links whose path
expressions correspond to all the ways you can form a product
of the set of inlinks with the set of outlinks of that node.

5. Combine any remaining serial links by multiplying their path
expressions.

6. Combine all parallel links by adding their path expressions.
7. Remove all self-loops as in step 3.
8. Does the graph consist of a single link between the entry node

and the exit node? If yes, then the path expression for that link
is a path expression for the original flowgraph; otherwise,
return to step 4.

o A flowgraph can have many equivalent path expressions between a given
pair of nodes; that is, there are many different ways to generate the set of
all paths between two nodes without affecting the content of that set.

o The appearance of the path expression depends, in general, on the order
in which nodes are removed.

 CROSS-TERM STEP (STEP 4):

o The cross - term step is the fundamental step of the reduction algorithm.

o It removes a node, thereby reducing the number of nodes by one.

o Successive applications of this step eventually get you down to one entry
and one exit node. The following diagram shows the situation at an
arbitrary node that has been selected for removal:

o From the above diagram, one can infer:

o (a + b)(c + d + e) = ac + ad + +
ae + bc + bd + be

 LOOP REMOVAL OPERATIONS:

o There are two ways of looking at the loop-removal operation:

o In the first way, we remove the self-loop and then multiply all outgoing
links by Z*.

o In the second way, we split the node into two equivalent nodes, call them
A and A' and put in a link between them whose path expression is Z*.
Then we remove node A' using steps 4 and 5 to yield outgoing links
whose path expressions are Z*X and Z*Y.

 A REDUCTION PROCEDURE - EXAMPLE:

o Let us see by applying this algorithm to the following graph where we
remove several nodes in order; that is

Figure 5.5: Example Flowgraph for demonstrating
reduction procedure.

o Remove node 10 by applying step 4 and combine by step 5 to yield

o Remove node 9 by applying step4 and 5 to yield

o Remove node 7 by steps 4 and 5, as follows:

o Remove node 8 by steps 4 and 5, to obtain:

o PARALLEL TERM (STEP 6):
Removal of node 8 above led to a pair of parallel links between nodes 4
and 5. combine them to create a path expression for an equivalent link
whose path expression is c+gkh; that is

o LOOP TERM (STEP 7):
Removing node 4 leads to a loop term. The graph has now been replaced
with the following equivalent simpler graph:

o Continue the process by applying the loop-removal step as follows:

o Removing node 5 produces:

o Remove the loop at node 6 to yield:

o Remove node 3 to yield:

o Removing the loop and then node 6 result in the following expression:

o
a(bgjf)*b(c+gkh)d((ilhd)*imf(bjgf)*b(c+gkh)d

)*(ilhd)*e

o You can practice by applying the algorithm on the following flowgraphs
and generate their respective path expressions:

Figure 5.6: Some graphs and their path
expressions.

APPLICATIONS - CO2

 APPLICATIONS:
o The purpose of the node removal algorithm is to present one very

generalized concept- the path expression and way of getting it.
o Every application follows this common pattern:

1. Convert the program or graph into a path expression.
2. Identify a property of interest and derive an appropriate set of

"arithmetic" rules that characterizes the property.
3. Replace the link names by the link weights for the property of

interest. The path expression has now been converted to an
expression in some algebra, such as ordinary algebra, regular
expressions, or boolean algebra. This algebraic expression
summarizes the property of interest over the set of all paths.

4. Simplify or evaluate the resulting "algebraic" expression to
answer the question you asked.

 HOW MANY PATHS IN A FLOWGRAPH ?
o The question is not simple. Here are some ways you could ask it:

1. What is the maximum number of different paths possible?
2. What is the fewest number of paths possible?
3. How many different paths are there really?
4. What is the average number of paths?

o Determining the actual number of different paths is an inherently difficult
problem because there could be unachievable paths resulting from
correlated and dependent predicates.

o If we know both of these numbers (maximum and minimum number of
possible paths) we have a good idea of how complete our testing is.

o Asking for "the average number of paths" is meaningless.
 MAXIMUM PATH COUNT ARITHMETIC:

o Label each link with a link weight that corresponds to the number of paths
that link represents.

o Also mark each loop with the maximum number of times that loop can be
taken. If the answer is infinite, you might as well stop the analysis because
it is clear that the maximum number of paths will be infinite.

o There are three cases of interest: parallel links, serial links, and loops.

o This arithmetic is an ordinary algebra. The weight is the number of paths
in each set.

o EXAMPLE:

1. The following is a reasonably well-structured program.

Each link represents a single link and consequently is given a
weight of "1" to start. Lets say the outer loop will be taken
exactly four times and inner Loop Can be taken zero or three
times Its path expression, with a little work, is:

Path expression:

a(b+c)d{e(fi)*fgj(m+l)k}*e(fi)*fgh

2. A: The flow graph should be annotated by replacing the link
name with the maximum of paths through that link (1) and also
note the number of times for looping.

3. B: Combine the first pair of parallel loops outside the loop and
also the pair in the outer loop.

4. C: Multiply the things out and remove nodes to clear the clutter.

5. For the Inner Loop:
D:Calculate the total weight of inner loop, which can execute a
min. of 0 times and max. of 3 times. So, it inner loop can be
evaluated as follows:

13 = 10 + 11 + 12 + 13 = 1 + 1 + 1 + 1 = 4

6. E: Multiply the link weights inside the loop: 1 X 4 = 4
7. F: Evaluate the loop by multiplying the link wieghts: 2 X 4 = 8.
8. G: Simpifying the loop further results in the total maximum

number of paths in the flowgraph:

2 X 84 X 2 = 32,768.

o Alternatively, you could have substituted a "1" for each link in the path
expression and then simplified, as follows:

a(b+c)d{e(fi)*fgj(m+l)k}*e(fi)*fgh

= 1(1 + 1)1(1(1 x 1)31 x 1 x 1(1 + 1)1)41(1 x 1)31 x 1 x 1
= 2(131 x (2))413
= 2(4 x 2)4 x 4
= 2 x 84 x 4 = 32,768

o This is the same result we got graphically.
o Actually, the outer loop should be taken exactly four times. That doesn't

mean it will be taken zero or four times. Consequently, there is a
superfluous "4" on the outlink in the last step. Therefore the maximum
number of different paths is 8192 rather than 32,768.

 STRUCTURED FLOWGRAPH:
o Structured code can be defined in several different ways that do not

involve ad-hoc rules such as not using GOTOs.
o A structured flowgraph is one that can be reduced to a single link by

successive application of the transformations of Figure 5.7.

Figure 5.7: Structured Flowgraph Transformations.

o The node-by-node reduction procedure can also be used as a test for
structured code.

o Flow graphs that DO NOT contain one or more of the graphs shown below
(Figure 5.8) as subgraphs are structured.

1. Jumping into loops
2. Jumping out of loops
3. Branching into decisions
4. Branching out of decisions

Figure 5.8: Un-structured sub-graphs.

2. LOWER PATH COUNT ARITHMETIC:
o A lower bound on the number of paths in a routine can be approximated

for structured flow graphs.
o The arithmetic is as follows:

o The values of the weights are the number of members in a set of paths.
o EXAMPLE:

1. Applying the arithmetic to the earlier example gives us the
identical steps unitl step 3 (C) as below:

2. From Step 4, the it would be different from the previous
example:

3. If you observe the original graph, it takes at least two paths to
cover and that it can be done in two paths.

4. If you have fewer paths in your test plan than this minimum you
probably haven't covered. It's another check.

 CALCULATING THE PROBABILITY:
o Path selection should be biased toward the low - rather than the high-

probability paths.
o This raises an interesting question:

What is the probability of being at a certain point in a routine?

This question can be answered under suitable assumptions, primarily that
all probabilities involved are independent, which is to say that all decisions
are independent and uncorrelated.

o We use the same algorithm as before : node-by-node removal of
uninteresting nodes.

o Weights, Notations and Arithmetic:
1. Probabilities can come into the act only at decisions (including

decisions associated with loops).

2. Annotate each outlink with a weight equal to the probability of
going in that direction.

3. Evidently, the sum of the outlink probabilities must equal 1
4. For a simple loop, if the loop will be taken a mean of N times,

the looping probability is N/(N + 1) and the probability of not
looping is 1/(N + 1).

5. A link that is not part of a decision node has a probability of 1.
6. The arithmetic rules are those of ordinary arithmetic.

7. In this table, in case of a loop, PA is the probability of the link
leaving the loop and PL is the probability of looping.

8. The rules are those of ordinary probability theory.
1. If you can do something either from column A with a

probability of PA or from column B with a probability
PB, then the probability that you do either is PA + PB.

2. For the series case, if you must do both things, and
their probabilities are independent (as assumed),
then the probability that you do both is the product
of their probabilities.

9. For example, a loop node has a looping probability of PL and a
probability of not looping of PA, which is obviously equal to I -
PL.

10. Following the above rule, all we've done is replace the outgoing
probability with 1 - so why the complicated rule? After a few
steps in which you've removed nodes, combined parallel terms,
removed loops and the like, you might find something like this:

because PL + PA + PB + PC = 1, 1 - PL = PA + PB + PC, and

which is what we've postulated for any decision. In other words,
division by 1 - PL renormalizes the outlink probabilities so that
their sum equals unity after the loop is removed.

o EXAMPLE:
1. Here is a complicated bit of logic. We want to know the

probability associated with cases A, B, and C.

2. Let us do this in three parts, starting with case A. Note that the
sum of the probabilities at each decision node is equal to 1.
Start by throwing away anything that isn't on the way to case A,
and then apply the reduction procedure. To avoid clutter, we
usually leave out probabilities equal to 1.

CASE A:

3. Case B is simpler:

4. Case C is similar and should yield a probability of 1 - 0.125 -
0.158 = 0.717:

5. This checks. It's a good idea when doing this sort of thing to
calculate all the probabilities and to verify that the sum of the
routine's exit probabilities does equal 1.

6. If it doesn't, then you've made calculation error or, more likely,
you've left out some branching probability.

7. How about path probabilities? That's easy. Just trace the path
of interest and multiply the probabilities as you go.

8. Alternatively, write down the path name and do the indicated
arithmetic operation.

9. Say that a path consisted of links a, b, c, d, e, and the
associated probabilities were .2, .5, 1., .01, and I respectively.
Path abcbcbcdeabddea would have a probability of 5 x 10-10.

10. Long paths are usually improbable.
 MEAN PROCESSING TIME OF A ROUTINE:

o Given the execution time of all statements or instructions for every link in a
flowgraph and the probability for each direction for all decisions are to find
the mean processing time for the routine as a whole.

o The model has two weights associated with every link: the processing
time for that link, denoted by T, and the probability of that link P.

o The arithmetic rules for calculating the mean time:

o EXAMPLE:

1. Start with the original flow graph annotated with probabilities
and processing time.

2. Combine the parallel links of the outer loop. The result is just
the mean of the processing times for the links because there
aren't any other links leaving the first node. Also combine the
pair of links at the beginning of the flowgraph..

3. Combine as many serial links as you can.

4. Use the cross-term step to eliminate a node and to create the
inner self - loop.

5. Finally, you can get the mean processing time, by using the
arithmetic rules as follows:

2. PUSH/POP, GET/RETURN:

o This model can be used to answer several different questions that can
turn up in debugging.

o It can also help decide which test cases to design.

o The question is:

Given a pair of complementary operations such as PUSH (the stack)
and POP (the stack), considering the set of all possible paths
through the routine, what is the net effect of the routine? PUSH or
POP? How many times? Under what conditions?

o Here are some other examples of complementary operations to which this
model applies:

o GET/RETURN a resource block.
o OPEN/CLOSE a file.

START/STOP a device or process.

o EXAMPLE 1 (PUSH / POP):

1. Here is the Push/Pop Arithmetic:

2. The numeral 1 is used to indicate that nothing of interest
(neither PUSH nor POP) occurs on a given link.

3. "H" denotes PUSH and "P" denotes POP. The operations are
commutative, associative, and distributive.

4. Consider the following flowgraph:

P(P + 1)1{P(HH)n1HP1(P +

H)1}n2P(HH)n1HPH

5. Simplifying by using the arithmetic tables,

6. =(P2 + P){P(HH)n1(P + H)}n1(HH)n1
7. =(P2 + P){H2n1(P2 + 1)}n2H2n1
8. Below Table 5.9 shows several combinations of values for the

two looping terms - M1 is the number of times the inner loop
will be taken and M2 the number of times the outer loop will be
taken.

Figure 5.9: Result of the PUSH / POP
Graph Analysis.

9. These expressions state that the stack will be popped only if
the inner loop is not taken.

10. The stack will be left alone only if the inner loop is iterated
once, but it may also be pushed.

11. For all other values of the inner loop, the stack will only be
pushed.

o EXAMPLE 2 (GET / RETURN):

1. Exactly the same arithmetic tables used for previous example
are used for GET / RETURN a buffer block or resource, or, in
fact, for any pair of complementary operations in which the total
number of operations in either direction is cumulative.

2. The arithmetic tables for GET/RETURN are:

"G" denotes GET and "R" denotes RETURN.

3. Consider the following flowgraph:

4. G(G + R)G(GR)*GGR*R
= G(G + R)G3R*R
= (G + R)G3R*
= (G4 + G2)R*

5. This expression specifies the conditions under which the
resources will be balanced on leaving the routine.

6. If the upper branch is taken at the first decision, the second
loop must be taken four times.

7. If the lower branch is taken at the first decision, the second
loop must be taken twice.

8. For any other values, the routine will not balance. Therefore,
the first loop does not have to be instrumented to verify this
behavior because its impact should be nil.

 LIMITATIONS AND SOLUTIONS:
o The main limitation to these applications is the problem of unachievable

paths.
o The node-by-node reduction procedure, and most graph-theory-based

algorithms work well when all paths are possible, but may provide
misleading results when some paths are unachievable.

o The approach to handling unachievable paths (for any application) is to
partition the graph into subgraphs so that all paths in each of the
subgraphs are achievable.

o The resulting subgraphs may overlap, because one path may be common
to several different subgraphs.

o Each predicate's truth-functional value potentially splits the graph into two
subgraphs. For n predicates, there could be as many as 2n subgraphs.

o

REGULAR EXPRESSIONS AND FLOW ANOMALY DETECTION - CO2

THE PROBLEM:

o The generic flow-anomaly detection problem (note: not just data-flow
anomalies, but any flow anomaly) is that of looking for a specific sequence
of options considering all possible paths through a routine.

o Let the operations be SET and RESET, denoted by s and r respectively,
and we want to know if there is a SET followed immediately a SET or a
RESET followed immediately by a RESET (an ss or an rr sequence).

o Some more application examples:
1. A file can be opened (o), closed (c), read (r), or written (w). If

the file is read or written to after it's been closed, the sequence
is nonsensical. Therefore, cr and cw are anomalous. Similarly,
if the file is read before it's been written, just after opening, we
may have a bug. Therefore, or is also anomalous.
Furthermore, oo and cc, though not actual bugs, are a waste of
time and therefore should also be examined.

2. A tape transport can do a rewind (d), fast-forward (f), read (r),
write (w), stop (p), and skip (k). There are rules concerning the
use of the transport; for example, you cannot go from rewind to
fast-forward without an intervening stop or from rewind or fast-
forward to read or write without an intervening stop. The
following sequences are anomalous: df, dr, dw, fd, and fr. Does
the flowgraph lead to anomalous sequences on any path? If so,
what sequences and under what circumstances?

3. The data-flow anomalies discussed in Unit 4 requires us to
detect the dd, dk, kk, and ku sequences. Are there paths with
anomalous data flows?

4.

 THE METHOD:
o Annotate each link in the graph with the appropriate operator or the null

operator 1.
o Simplify things to the extent possible, using the fact that a + a = a and 12

= 1.
o You now have a regular expression that denotes all the possible

sequences of operators in that graph. You can now examine that regular
expression for the sequences of interest.

o EXAMPLE: Let A, B, C, be nonempty sets of character sequences whose
smallest string is at least one character long. Let T be a two-character
string of characters. Then if T is a substring of (i.e., if T appears within)
ABnC, then T will appear in AB2C. (HUANG's Theorem)

o As an example, let

A= pp
B= srr
C= rp
T= ss

The theorem states that ss will appear in pp(srr)nrp if it appears
in pp(srr)2rp.

o However, let

A= p + pp + ps
B= psr + ps(r + ps)
C= rp
T= P4

Is it obvious that there is a p4 sequence in ABnC? The theorem states that
we have only to look at

(p + pp + ps)[psr + ps(r + ps)]2rp

Multiplying out the expression and simplifying shows that there is
no p4 sequence.

o Incidentally, the above observation is an informal proof of the wisdom of
looping twice discussed in Unit 2. Because data-flow anomalies are
represented by two-character sequences, it follows the above theorem
that looping twice is what you need to do to find such anomalies.

 LIMITATIONS:
o Huang's theorem can be easily generalized to cover sequences of greater

length than two characters. Beyond three characters, though, things get
complex and this method has probably reached its utilitarian limit for
manual application.

o There are some nice theorems for finding sequences that occur at the
beginnings and ends of strings but no nice algorithms for finding strings
buried in an expression.

o Static flow analysis methods can't determine whether a path is or is not
achievable. Unless the flow analysis includes symbolic execution or
similar techniques, the impact of unachievable paths will not be included
in the analysis.

o The flow-anomaly application, for example, doesn't tell us that there will
be a flow anomaly - it tells us that if the path is achievable, then there will
be a flow anomaly. Such analytical problems go away, of course, if you
take the trouble to design routines for which all paths are achievable.

CVR COLLEGE OF ENGINEERING

An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 1

Unit - 5

Year and Semester: IV yr & I Sem
A

Subject: Software Testing Methodologies

Branch: CSE

Faculty: Revathi Lavanya Baggam, Assistant Professor (CSE)

MATRIX OF A GRAPH - CO4

 A graph matrix is a square array with one row and one column for every node in the graph.

 Each row-column combination corresponds to a relation between the node corresponding to the

row and the node corresponding to the column.

 The relation for example, could be as simple as the link name, if there is a link between the nodes.

 Some of the things to be observed:

 The size of the matrix equals the number of nodes.

 There is a place to put every possible direct connection or link between any and any other node.

 The entry at a row and column intersection is the link weight of the link that connects the two

nodes in that direction.

 A connection from node i to j does not imply a connection from node j to node i.

 If there are several links between two nodes, then the entry is a sum; the “+” sign denotes parallel

links as usual.

RELATIONS - CO4

A relation is a property that exists between two objects of interest.

For example,

“Node a is connected to node b” or aRb where “R” means “is connected to”.

“a>=b” or aRb where “R” means greater than or equal”.

A graph consists of set of abstract objects called nodes and a relation R between the nodes.

If aRb, which is to say that a has the relation R to b, it is denoted by a link from a to b.

For some relations we can associate properties called as link weights.

Transitive:

A relation is transitive if aRb and bRc implies aRc.

Most relations used in testing are transitive.

Examples of transitive relations include: is connected to, is greater than or equal to, is less than or equal
to, is a relative of, is faster than, is slower than, takes more time than, is a subset of, includes, shadows, is
the boss of.

Examples of intransitive relations include: is acquainted with, is a friend of, is a neighbor of, is lied to,
has a du chain between.

REFLEXIVE

A relation R is reflexive if, for every a, aRa.

A reflexive relation is equivalent to a self loop at every node.

Examples of reflexive relations include: equals, is acquainted with, is a relative of.

Examples of irreflexive relations include: not equals, is a friend of, is on top of, is under.

SYMMETRIC

A relation R is symmetric if for every a and b, aRb implies bRa.

A symmetric relation mean that if there is a link from a to b then there is also a link from b to a.

A graph whose relations are not symmetric are called directed graph.

A graph over a symmetric relation is called an undirected graph.

The matrix of an undirected graph is symmetric (aij=aji) for all i,j)

ANTI SYMMETRIC

A relation R is antisymmetric if for every a and b, if aRb and bRa, then a=b, or they are the same

elements.

Examples of antisymmetric relations: is greater than or equal to, is a subset of, time.

Examples of nonantisymmetric relations: is connected to, can be reached from, is greater than, is a
relative of, is a friend of

EQUIVALLENCE

An equivalence relation is a relation that satisfies the reflexive, transitive, and symmetric properties.

Equality is the most familiar example of an equivalence relation.

If a set of objects satisfy an equivalence relation, we say that they form an equivalence class over that
relation.

The importance of equivalence classes and relations is that any member of the equivalence class is, with
respect to the relation, equivalent to any other member of that class.

The idea behind partition testing strategies such as domain testing and path testing, is that we can partition
the input space into equivalence classes.

Testing any member of the equivalence class is as effective as testing them all.

PARTIAL ORDERING

A partial ordering relation satisfies the reflexive, transitive, and antisymmetric properties.

Partial ordered graphs have several important properties: they are loop free, there is at least one

maximum element, there is atleast one minimum element.

POWER OF A MATRIX - CO4

Each entry in the graph’s matrix expresses a relation between the pair of nodes that corresponds to that

entry.

Squaring the matrix yields a new matrix that expresses the relation between each pair of nodes via one
intermediate node under the assumption that the relation is transitive.

The square of the matrix represents all path segments two links long.

The third power represents all path segments three links long.

Given a matrix whose entries are aij, the square of that matrix is obtained by replacing every entry

with
 n

 aij=Σ aik akj

 k=1

more generally, given two matrices A and B with entries aik and bkj, respectively, their product is a new
matrix C, whose entries are cij, where:

 n

 Cij=Σ aik bkj

 k=1

NODE REDUCTION ALGORITHM - CO4

The matrix powers usually tell us more than we want to know about most graphs.

In the context of testing, we usually interested in establishing a relation between two nodes-typically the
entry and exit nodes.

In a debugging context it is unlikely that we would want to know the path expression between every node
and every other node.

The advantage of matrix reduction method is that it is more methodical than the graphical method called
as node by node removal algorithm.

Select a node for removal; replace the node by equivalent links that bypass that node and add those links
to the links they parallel.

Combine the parallel terms and simplify as you can.

Observe loop terms and adjust the outlinks of every node that had a self loop to account for the effect of
the loop.

The result is a matrix whose size has been reduced by 1. continue until only the two nodes of interest
exist.

SYSTEM AND ACCEPTANCE TESTING

Functional System Testing - CO3

Functional Testing is defined as a type of testing which verifies that each function of

the software application operates in conformance with the requirement specification.

This testing mainly involves black box testing and it is not concerned about the source

code of the application.

Each and every functionality of the system is tested by providing appropriate input,

verifying the output and comparing the actual results with the expected results.

This testing involves checking of User Interface, APIs, Database, security, client/

server applications and functionality of the Application Under Test. The testing can be

done either manually or using automation

The prime objective of Functional testing is checking the functionalities of the

software system. It mainly concentrates on -

Mainline functions: Testing the main functions of an application

Basic Usability: It involves basic usability testing of the system. It checks

whether a user can freely navigate through the screens without any difficulties.

Accessibility: Checks the accessibility of the system for the user

Error Conditions: Usage of testing techniques to check for error

conditions. It checks whether suitable error messages are displayed.

How to perform Functional Testing: Complete Process

In order to functionally test an application, the following steps must be observed.

Understand the Software Engineering Requirements

Identify test input (test data)

Compute the expected outcomes with the selected test input values

Execute test cases

Comparison of actual and computed expected result

Non Functional System Testing - CO3

Non-functional testing is the testing of a software application or system for its non-functional

requirements: the way a system operates, rather than specific behaviours of that system. This is in contrast

to functional testing, which tests against functional requirements that describe the functions of a system

and its components. The names of many non-functional tests are often used interchangeably because of

the overlap in scope between various non-functional requirements. For example, software performance is

a broad term that includes many specific requirements like reliability and scalability.

Non-functional testing includes:

Baseline testing

Compliance testing

Documentation testing

Endurance testing

Load testing

Localization testing and Internationalization testing

Performance testing

Recovery testing

Resilience testing

Security testing

Scalability testing

https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Functional_testing
https://en.wikipedia.org/wiki/Functional_requirement
https://en.wikipedia.org/wiki/Performance_engineering
https://en.wikipedia.org/wiki/Reliability_engineering
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Compliance_testing
https://en.wikipedia.org/wiki/Documentation_testing
https://en.wikipedia.org/wiki/Endurance_testing
https://en.wikipedia.org/wiki/Load_testing
https://en.wikipedia.org/wiki/Software_performance_testing
https://en.wikipedia.org/wiki/Recovery_testing
https://en.wikipedia.org/wiki/Security_testing
https://en.wikipedia.org/wiki/Scalability_testing

Stress testing

Usability testing

Volume testing

Objectives of Non-functional testing

Non-functional testing should increase usability, efficiency, maintainability, and portability of

the product.

Helps to reduce production risk and cost associated with non-functional aspects of the product.

Optimize the way product is installed, setup, executes, managed and monitored.

Collect and produce measurements, and metrics for internal research and development.

Improve and enhance knowledge of the product behavior and technologies in use.

Characteristics of Non-functional testing

Non-functional testing should be measurable, so there is no place for subjective characterization

like good, better, best, etc.

Exact numbers are unlikely to be known at the start of the requirement process

Important to prioritize the requirements

Ensure that quality attributes are identified correctly in Software Engineering.

ACCEPTANCE TESTING - CO5

ACCEPTANCE TESTING is a level of software testing where a system is tested for acceptability. The

purpose of this test is to evaluate the system’s compliance with the business requirements and assess

whether it is acceptable for delivery.

Definition by ISTQB

Acceptance testing: Formal testing with respect to user needs, requirements, and

business processes conducted to determine whether or not a system satisfies the acceptance

criteria and to enable the user, customers or other authorized entity to determine whether or not

to accept the system.

Analogy

During the process of manufacturing a ballpoint pen, the cap, the body, the tail and clip, the ink cartridge

and the ballpoint are produced separately and unit tested separately. When two or more units are ready,

they are assembled and Integration Testing is performed. When the complete pen is integrated, System

Testing is performed. Once System Testing is complete, Acceptance Testing is performed so as to

confirm that the ballpoint pen is ready to be made available to the end-users.

https://en.wikipedia.org/wiki/Stress_testing
https://en.wikipedia.org/wiki/Usability_testing
https://en.wikipedia.org/wiki/Volume_testing

Method

Usually, Black Box Testing method is used in Acceptance Testing. Testing does not normally follow a

strict procedure and is not scripted but is rather ad-hoc.

Tasks

Acceptance Test Plan

Prepare

Review

Rework

Baseline

Acceptance Test Cases/Checklist

Prepare

Review

Rework

Baseline

Acceptance Test

Perform

When is it performed?

Acceptance Testing is the fourth and last level of software testing performed after System Testing and

before making the system available for actual use.

Who performs it?

Internal Acceptance Testing (Also known as Alpha Testing) is performed by members of the

organization that developed the software but who are not directly involved in the project

(Development or Testing). Usually, it is the members of Product Management, Sales and/or

Customer Support.

External Acceptance Testing is performed by people who are not employees of the organization

that developed the software.

Customer Acceptance Testing is performed by the customers of the organization that

developed the software. They are the ones who asked the organization to develop the

software. [This is in the case of the software not being owned by the organization that

developed it.]

User Acceptance Testing (Also known as Beta Testing) is performed by the end users of

the software. They can be the customers themselves or the customers’ customers.

TESTING OBJECT ORIENTED SYSTEMS - CO5

http://softwaretestingfundamentals.com/black-box-testing/
http://softwaretestingfundamentals.com/ad-hoc-testing/
http://softwaretestingfundamentals.com/software-testing-levels/
http://softwaretestingfundamentals.com/system-testing/

The shift from traditional to object-oriented environment involves looking at and reconsidering old

strategies and methods for testing the software. The traditional programming consists of procedures

operating on data, while the object-oriented paradigm focuses on objects that are instances of classes. In

object-oriented (OO) paradigm, software engineers identify and specify the objects and services provided

by each object. In addition, interaction of any two objects and constraints on each identified object are

also determined. The main advantages of OO paradigm include increased reusability, reliability,

interoperability, and extendibility.

With the adoption of OO paradigm, almost all the phases of software development have changed

in their approach, environments, and tools. Though OO paradigm helps make the designing and

development of software easier, it may pose new kind of problems. Thus, testing of software

developed using OO paradigm has to deal with the new problems also. Note that object-oriented

testing can be used to test the object-oriented software as well as conventional software.

OO program should be tested at different levels to uncover all the errors. At the algorithmic

level, each module (or method) of every class in the program should be tested in isolation. For

this, white-box testing can be applied easily. As classes form the main unit of object-oriented

program, testing of classes is the main concern while testing an OO program. At the class level,

every class should be tested as an individual entity. At this level, programmers who are involved

in the development of class conduct the testing. Test cases can be drawn from requirements

specifications, models, and the language used. In addition, structural testing methods such as

boundary value analysis are extremely used. After performing the testing at class level, cluster

level testing should be performed. As classes are collaborated (or integrated) to form a small

subsystem (also known as cluster), testing each cluster individually is necessary. At this level,

focus is on testing the components that execute concurrently as well as on the interclass

interaction. Hence, testing at this level may be viewed as integration testing where units to be

integrated are classes. Once all the clusters in the system are tested, system level testing begins.

At this level, interaction among clusters is tested.

Usually, there is a misconception that if individual classes are well designed and have proved to

work in isolation, then there is no need to test the interactions between two or more classes when

they are integrated. However, this is not true because sometimes there can be errors, which can

be detected only through integration of classes. Also, it is possible that if a class does not contain

a bug, it may still be used in a wrong way by another class, leading to system failure.

Developing Test Cases in Object-oriented Testing

The methods used to design test cases in OO testing are based on the conventional methods.

However, these test cases should encompass special features so that they can be used in the

object-oriented environment. The points that should be noted while developing test cases in an

object-oriented environment are listed below.

1.It should be explicitly specified with each test case which class it should test.

2.Purpose of each test case should be mentioned.

3.External conditions that should exist while conducting a test should be clearly stated with each

test case.

4.All the states of object that is to be tested should be specified.

5.Instructions to understand and conduct the test cases should be provided with each test case.

Object-oriented Testing Methods

As many organizations are currently using or targeting to switch to the OO paradigm, the

importance of OO software testing is increasing. The methods used for performing object-

oriented testing are discussed in this section.

State-based testing is used to verify whether the methods (a procedure that is executed by an object) of a

class are interacting properly with each other. This testing seeks to exercise the transitions among the

states of objects based upon the identified inputs.

For this testing, finite-state machine (FSM) or state-transition diagram representing the possible states of

the object and how state transition occurs is built. In addition, state-based testing generates test cases,

which check whether the method is able to change the state of object as expected. If any method of the

class does not change the object state as expected, the method is said to contain errors.

To perform state-based testing, a number of steps are followed, which are listed below.

1.Derive a new class from an existing class with some additional features, which are used to examine and

set the state of the object.

2.Next, the test driver is written. This test driver contains a main program to create an object, send

messages to set the state of the object, send messages to invoke methods of the class that is being tested

and send messages to check the final state of the object.

3.Finally, stubs are written. These stubs call the untested methods.

Fault-based Testing

Fault-based testing is used to determine or uncover a set of plausible faults. In other words, the focus of

tester in this testing is to detect the presence of possible faults. Fault-based testing starts by examining the

analysis and design models of OO software as these models may provide an idea of problems in the

implementation of software. With the knowledge of system under test and experience in the application

domain, tester designs test cases where each test case targets to uncover some particular faults.

The effectiveness of this testing depends highly on tester experience in application domain and the system

under test. This is because if he fails to perceive real faults in the system to be plausible, testing may leave

many faults undetected. However, examining analysis and design models may enable tester to detect large

number of errors with less effort. As testing only proves the existence and not the absence of errors, this

testing approach is considered to be an effective method and hence is often used when security or safety

of a system is to be tested.

Integration testing applied for OO software targets to uncover the possible faults in both operation calls

and various types of messages (like a message sent to invoke an object). These faults may be unexpected

outputs, incorrect messages or operations, and incorrect invocation. The faults can be recognized by

determining the behavior of all operations performed to invoke the methods of a class.

Scenario-based Testing

Scenario-based testing is used to detect errors that are caused due to incorrect specifications and improper

interactions among various segments of the software. Incorrect interactions often lead to incorrect outputs

that can cause malfunctioning of some segments of the software. The use of scenarios in testing is a

common way of describing how a user might accomplish a task or achieve a goal within a specific context

or environment. Note that these scenarios are more context- and user specific instead of being product-

specific. Generally, the structure of a scenario includes the following points.

1.A condition under which the scenario runs.

2.A goal to achieve, which can also be a name of the scenario.

3.A set of steps of actions.

4.An end condition at which the goal is achieved.

5.A possible set of extensions written as scenario fragments.

Scenario- based testing combines all the classes that support a use-case (scenarios are subset of use-cases)

and executes a test case to test them. Execution of all the test cases ensures that all methods in all the

classes are executed at least once during testing. However, testing all the objects (present in the classes

combined together) collectively is difficult. Thus, rather than testing all objects collectively, they are

tested using either top-down or bottom-up integration approach.

This testing is considered to be the most effective method as scenarios can be organized in such a manner

that the most likely scenarios are tested first with unusual or exceptional scenarios considered later in the

testing process. This satisfies a fundamental principle of testing that most testing effort should be devoted

to those paths of the system that are mostly used.

Challenges in Testing Object-oriented Programs

Traditional testing methods are not directly applicable to OO programs as they involve OO concepts

including encapsulation, inheritance, and polymorphism. These concepts lead to issues, which are yet to

be resolved. Some of these issues are listed below.

1.Encapsulation of attributes and methods in class may create obstacles while testing. As methods are

invoked through the object of corresponding class, testing cannot be accomplished without object. In

addition, the state of object at the time of invocation of method affects its behavior. Hence, testing

depends not only on the object but on the state of object also, which is very difficult to acquire.

2.Inheritance and polymorphism also introduce problems that are not found in traditional software. Test

cases designed for base class are not applicable to derived class always (especially, when derived class is

used in different context). Thus, most testing methods require some kind of adaptation in order to

function properly in an OO environment.

DIFFERENCES IN OO TESTING - CO5

What Is Different about Testing Object-Oriented Software?

Object-oriented programming features in programming languages obviously impact some aspects of

testing. Features such as class inheritance and interfaces support polymorphism in which code

manipulates objects without their exact class being known. Testers must ensure the code works no matter

what the exact class of such objects might be. Language features that support and enforce data hiding can

complicate testing because operations must sometimes be added to a class interface just to support testing.

On the other hand, the availability of these features can contribute to better and reusable testing software.

Not only do changes in programming languages affect testing, but so do changes in the development

process and changes in the focus of analysis and design. Many object-oriented software-testing activities

have counterparts in traditional processes. We still have a use for unit testing although the meaning

of unit has changed. We still do integration testing to make sure various subsystems can work correctly in

concert. We still need system testing to verify that software meets requirements. We still do regression

testing to make sure the latest round of changes to the software hasn't adversely affected what it could do

before.

The differences between "old" and "new" ways of developing and testing software are much deeper than a

focus on objects instead of on functions that transform inputs to outputs. The most significant difference

is in the way object-oriented software is designed as a set of objects that essentially model a problem and

then collaborate to effect a solution. Underlying this approach is the concept that while a solution to a

problem might need to change over time, the structure and components of the problem itself do not

change as much or as frequently. Consequently, a program whose design is structured from the problem

(and not on an immediately required solution) will be more adaptable to changes later. A programmer

familiar with the problem and its components can recognize them in the software, thereby making the

program more maintainable. Furthermore, because components are derived from the problem, they can

often be reused in the development of other programs to solve similar or related problems, thereby

improving the reusability of software components.

A big benefit of this approach to design is that analysis models map straightforwardly to design models

that, in turn, map to code. Thus, we can start testing during analysis and refine the tests done in analysis

to tests for design. Tests for design, in turn, can be refined to tests of implementation. This means that a

testing process can be interwoven with the development process. We see three significant advantages to

testing analysis and design models:

1.Test cases can be identified earlier in the process, even as requirements are being determined.

Early testing helps analysts and designers to better understand and express requirements and to

ensure that specified requirements are "testable."

2.Bugs can be detected early in the development process, saving time, money, and effort. It is

widely acknowledged that the sooner problems are detected, the easier and cheaper they are to

fix.

3.Test cases can be reviewed for correctness early in a project. The correctness of test cases—in

particular, system test cases—is always an issue. If test cases are identified early and applied to

models early in a project, then any misunderstandings of requirements on the part of the testers

can be corrected early. In other words, model testing helps to ensure that testers and developers

have a consistent understanding of system requirements.

Although testing models is very beneficial, it is important to not let testing them become the sole focus of

testing efforts. Code testing is still an important part of the process.

Another difference between traditional projects and projects using object-oriented technologies concerns

objectives for software. Consider, for example, that an important new goal in many companies is to

produce reusable software, extensible designs, or even object-oriented frameworks that represent reusable

designs. Testing can (and should) be done to uncover failures in meeting these objectives. Traditional

testing approaches and techniques do not address such objectives.

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 1
	Unit - 1
	Year and Semester: IV yr & I Sem
	Faculty: Revathi Lavanya Baggam, Assistant Professor (CSE)
	Figure : A Model for Testing

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 1
	Unit - 2
	Year and Semester: IV yr & I Sem
	Faculty: Revathi Lavanya Baggam, Assistant Professor (CSE)
	Figure 2.1: Flowgraph Elements
	Figure 2.2: Program Example (PDL)
	Figure 2.3: One-to-one flowchart for example program in Figure 2.2
	Figure 2.4: Control Flowgraph for example in Figure 2.2
	Figure 2.5: Simplified Flowgraph Notation
	Figure 2.6: Even Simplified Flowgraph Notation
	Figure 2.7: Linked List Control Flowgraph Notation
	Figure 2.8: Alternative Flowgraphs for same logic (Statement "IF (A=0) AND (B=1) THEN . . .").
	Figure 2.9: An example flowgraph to explain path selection
	Figure 2.10: Example of Loop types
	ABCD+EBCD=(A+E)BCD
	PATH SENSITIZING - CO2
	(A+BC) (D+E) (FGH) (IJ) (K) (l) (L).
	ADFGHIJKL+AEFGHIJKL+BCDFGHIJKL+BCEFGHIJKL
	Figure 2.11: Coincidental Correctness
	3. Figure 2.12: Single Link Marker Instrumentation
	4. Figure 2.13: Why Single Link Markers aren't enough.
	7. Figure 2.14: Double Link Marker Instrumentation.
	Figure 5.1: Examples of paths.
	Figure 5.2: Examples of path sums.
	Figure 5.3: Examples of path loops.
	Figure 5.4: Another example of path loops.
	Figure 5.5: Example Flowgraph for demonstrating reduction procedure.
	Figure 5.6: Some graphs and their path expressions.
	Figure 5.7: Structured Flowgraph Transformations.
	Figure 5.8: Un-structured sub-graphs.
	Figure 5.9: Result of the PUSH / POP Graph Analysis.

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 1
	Unit - 5
	Year and Semester: IV yr & I Sem
	Faculty: Revathi Lavanya Baggam, Assistant Professor (CSE)
	Functional Testing is defined as a type of testing which verifies that each function of the software application operates in conformance with the requirement specification. This testing mainly involves black box testing and it is not concerned about ...
	How to perform Functional Testing: Complete Process
	Objectives of Non-functional testing
	Characteristics of Non-functional testing
	Analogy
	Method
	Tasks
	Developing Test Cases in Object-oriented Testing
	Object-oriented Testing Methods
	Fault-based Testing
	Scenario-based Testing
	Challenges in Testing Object-oriented Programs

	What Is Different about Testing Object-Oriented Software?

