
1

CVR COLLEGE OF ENGINEERING

An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 1

Unit - 1

Year and Semester: IIIyear &II Semester
A

Subject: Object Oriented Analysis and Design
Branch: CSE

Faculty: Dr , Professor (CSE)

12IT302CV Object Oriented Analysis and Design

Instruction: 4 Periods/Week Credits: 4 Sessional Marks: 25

End Examination: 75 Marks End Exam Duration : 3 Hours

Unit I Introduction to UML – CO1: Importance of Modeling – CO1, Principles of Modeling –
CO1, Object Oriented modeling – CO1, Conceptual Model of the UML – CO1, Architecture –

CO1, Software Development Life Cycle – CO1.

Unit II Basic Structural Modeling - CO2: Classes – CO2, Relationships – CO2, Common

Mechanisms – CO2, and diagrams – CO2.

Advanced Structural Modeling – CO2: Advanced Classes – CO2, advanced relationships CO2,

interfaces, Types and Roles – CO2, Packages – CO2.

Unit III Class & Object Diagrams – CO1 & CO2: Terms - CO1 & CO2, concepts - CO1 & CO2,

modeling techniques for Class & Object Diagrams - CO1 & CO2.

Unit IV Basic Behavioral Modeling-I – CO2: Interactions CO2, Interaction diagrams CO2.

Unit V Basic Behavioral Modeling-II - CO2 & CO3: Use cases - CO2 & CO3, Use case Diagrams

- CO2 & CO3, Activity Diagrams - CO2 & CO3.

Unit VI Advanced Behavioral Modeling - CO2 & CO3: Events and signals - CO2 & CO3, state

machines - CO2 & CO3, processes and Threads - CO2 & CO3, time and space - CO2 & CO3,

state chart diagrams - CO2 & CO3.

Unit VII Architectural Modeling – CO4: Component – CO4, Deployment – CO4, Component

Diagrams – CO4 and Deployment diagrams – CO4.

Unit VIII Case Study: The Unified Library application – CO5.

Text Books:

1. The Unified Modeling Language User Guide, Ivar Jacobson and Grady Booch, James

Rumbaugh, Pearson Education, 2009.

2. UML 2 Toolkit, Magnus Penker, Brian Lyons, David Fado and Hans-Erik Eriksson,

Wiley-Dreamtech India Pvt.Ltd., 2004.

References:

1. Fundamentals of Object Oriented Design in UML, Meilir Page-Jones, Pearson Education,

2000.

2. Modeling Software Systems Using UML2, Pascal Roques, Wiley-Dreamtech India Pvt.

Ltd., 2007.

3. Object Oriented Analysis & Design, Atul Kahate, 1
st
 Edition, McGraw-Hill Companies,

2007.

2

CVR COLLEGE OF ENGINEERING

An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 1

Unit - 1

Year and Semester: IIIyear &II Semester
A

Subject: Object Oriented Analysis and Design
Branch: CSE

Faculty: Dr , Professor (CSE)

12IT302CV Object Oriented Analysis and Design

Unit I

Introduction to UML - CO1……………….3

 Importance of Modeling - CO1……………………………6

 Principles of Modeling - CO1……………………………...9

Object Oriented modeling - CO1…………………………..10

Conceptual Model of the UML - CO1……………………...12

 Architecture - CO1………………………………………….22

 Software Development Life Cycle - CO1…………………..27

3

CVR COLLEGE OF ENGINEERING

An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 1

Unit - 1

Year and Semester: IIIyear &II Semester
A

Subject: Object Oriented Analysis and Design
Branch: CSE

Faculty: Dr , Professor (CSE)

Unit I

Introduction to UML – CO1
Unified Modeling Language (UML) is a general purpose modelling language. The main aim of UML

is define a standard way to visualize the way a system has been designed. It is quite similar to

blueprints used in other fields of engineering.

UML is not a programming language, it is rather a visual language. We use UML diagrams to

portray the behavior and structure of a system. UML helps software engineers, businessmen and

system architects with modelling, design and analysis. The Object Management Group (OMG)

adopted Unified Modelling Language as a standard in 1997. Its been managed by OMG ever since.

International Organization for Standardization (ISO) published UML as an approved standard in 2005.

UML has been revised over the years and is reviewed periodically.

Uses of UML:

 Complex applications need collaboration and planning from multiple teams and hence require a

clear and concise way to communicate amongst them.

 Businessmen do not understand code. So UML becomes essential to communicate with non

programmers essential requirements, functionalities and processes of the system.

 A lot of time is saved down the line when teams are able to visualize processes, user interactions

and static structure of the system.

UML is linked with object oriented design and analysis. UML makes the use of elements and forms

associations between them to form diagrams. Diagrams in UML can be broadly classified as:

1. Structural Diagrams – Capture static aspects or structure of a system. Structural Diagrams

include: Component Diagrams, Object Diagrams, Class Diagrams and Deployment Diagrams.

2. Behavior Diagrams – Capture dynamic aspects or behavior of the system. Behavior diagrams

include: Use Case Diagrams, State Diagrams, Activity Diagrams and Interaction Diagrams.

The image below shows the hierarchy of diagrams according to UML 2.2

4

Object Oriented Concepts Used in UML –

1. Class – A class defines the blue print i.e. structure and functions of an object.

2. Objects – Objects help us to decompose large systems and help us to modularize our system.

Modularity helps to divide our system into understandable components so that we can build our

system piece by piece. An object is the fundamental unit (building block) of a system which is

used to depict an entity.

3. Inheritance – Inheritance is a mechanism by which child classes inherit the properties of their

parent classes.

4. Abstraction – Mechanism by which implementation details are hidden from user.

5. Encapsulation – Binding data together and protecting it from the outer world is referred to as

encapsulation.

6. Polymorphism – Mechanism by which functions or entities are able to exist in different forms.

Additions in UML 2.0 –
 Software development methodologies like agile have been incorporated and scope of original

UML specification has been broadened.

 Originally UML specified 9 diagrams. UML 2.x has increased the number of diagrams from 9 to

13. The four diagrams that were added are : timing diagram, communication diagram, interaction

overview diagram and composite structure diagram. UML 2.x renamed statechart diagrams to

state machine diagrams.

 UML 2.x added the ability to decompose software system into components and sub-components.

Structural UML Diagrams –

1. Class Diagram – The most widely use UML diagram is the class diagram. It is the building

block of all object oriented software systems. We use class diagrams to depict the static structure

of a system by showing system’s classes,their methods and attributes. Class diagrams also help

us identify relationship between different classes or objects.

2. Composite Structure Diagram – We use composite structure diagrams to represent the internal

structure of a class and its interaction points with other parts of the system. A composite

structure diagram represents relationship between parts and their configuration which determine

how the classifier (class, a component, or a deployment node) behaves. They represent internal

structure of a structured classifier making the use of parts, ports, and connectors. We can also

model collaborations using composite structure diagrams. They are similar to class diagrams

except they represent individual parts in detail as compared to the entire class.

5

3. Object Diagram – An Object Diagram can be referred to as a screenshot of the instances in a

system and the relationship that exists between them. Since object diagrams depict behaviour

when objects have been instantiated, we are able to study the behaviour of the system at a

particular instant. An object diagram is similar to a class diagram except it shows the instances of

classes in the system. We depict actual classifiers and their relationships making the use of class

diagrams. On the other hand, an Object Diagram represents specific instances of classes and

relationships between them at a point of time.

4. Component Diagram – Component diagrams are used to represent the how the physical

components in a system have been organized. We use them for modelling implementation

details. Component Diagrams depict the structural relationship between software system

elements and help us in understanding if functional requirements have been covered by

planned development. Component Diagrams become essential to use when we design and build

complex systems. Interfaces are used by components of the system to communicate with each

other.

5. Deployment Diagram – Deployment Diagrams are used to represent system hardware and its

software.It tells us what hardware components exist and what software components run on

them.We illustrate system architecture as distribution of software artifacts over distributed

targets. An artifact is the information that is generated by system software. They are primarily

used when a software is being used, distributed or deployed over multiple machines with

different configurations.

6. Package Diagram – We use Package Diagrams to depict how packages and their elements

have been organized. A package diagram simply shows us the dependencies between different

packages and internal composition of packages. Packages help us to organise UML diagrams

into meaningful groups and make the diagram easy to understand. They are primarily used to

organise class and use case diagrams.

Behavior Diagrams –

1. State Machine Diagrams – A state diagram is used to represent the condition of the system or

part of the system at finite instances of time. It’s a behavioral diagram and it represents the

behavior using finite state transitions. State diagrams are also referred to as State

machines andState-chart Diagrams . These terms are often used interchangeably.So simply, a

state diagram is used to model the dynamic behavior of a class in response to time and changing

external stimuli.

2. Activity Diagrams – We use Activity Diagrams to illustrate the flow of control in a system. We

can also use an activity diagram to refer to the steps involved in the execution of a use case. We

model sequential and concurrent activities using activity diagrams. So, we basically depict

workflows visually using an activity diagram.An activity diagram focuses on condition of flow

and the sequence in which it happens. We describe or depict what causes a particular event using

an activity diagram.

3. Use Case Diagrams – Use Case Diagrams are used to depict the functionality of a system or a

part of a system. They are widely used to illustrate the functional requirements of the system and

its interaction with external agents(actors). A use case is basically a diagram representing

different scenarios where the system can be used. A use case diagram gives us a high level view

of what the system or a part of the system does without going into implementation details.

4. Sequence Diagram – A sequence diagram simply depicts interaction between objects in a

sequential order i.e. the order in which these interactions take place.We can also use the terms

6

event diagrams or event scenarios to refer to a sequence diagram. Sequence diagrams describe

how and in what order the objects in a system function. These diagrams are widely used by

businessmen and software developers to document and understand requirements for new and

existing systems.

5. Communication Diagram – A Communication Diagram(known as Collaboration Diagram in

UML 1.x) is used to show sequenced messages exchanged between objects. A communication

diagram focuses primarily on objects and their relationships. We can represent similar

information using Sequence diagrams,however, communication diagrams represent objects and

links in a free form.

6. Timing Diagram – Timing Diagram are a special form of Sequence diagrams which are used

to depict the behavior of objects over a time frame. We use them to show time and duration

constraints which govern changes in states and behavior of objects.

7. Interaction Overview Diagram – An Interaction Overview Diagram models a sequence of

actions and helps us simplify complex interactions into simpler occurrences. It is a mixture of

activity and sequence diagrams.

Importance of Modeling – CO1
UML is a pictorial language used to make software blueprints. UML can be described as a general

purpose visual modeling language to visualize, specify, construct, and document software system.

Although UML is generally used to model software systems, it is not limited within this boundary.

The Unified Modeling Language (UML) is a standard language for specifying, visualizing,

constructing, and documenting the artifacts of software systems, as well as for business modeling and

other non-software systems. ... It has been found that all the UML diagrams plays vital role in s/w

development.

Research has found that modeling decreases student error, positively affects the

perceived importance of a task and increases self-regulated learning. For effective modeling, teachers

should use think-aloud to make important connections and share their expert thinking with their

students.

Modeling serves multiple purposes in the software world, some of which are systems modeling for

system determination (such as for real time system behavior) or scientific modeling used for better

understanding of scientific phenomenon (which can also be used in real time systems to perform real

time operations).

A UML class diagram is not only used to describe the object and information structures in an

application, but also show the communication with its users. It provides a wide range of usages; from

modeling the static view of an application to describing responsibilities for a system.

Modeling Benefits:

Manage Complexity.

Modeling is essential in complexity management. Modeling benefits include:

 Viewing systems from multiple perspectives

 Discovering causes and effects using model traceability

 Improving system understanding through visual analysis

 Discovering errors earlier and reducing system defects

 Exploring alternatives earlier in the system lifecycle

 Improving impact analysis, identifying potential consequences of a change, or estimating

modifications to implement a change

7

 Simulating system solutions without code generation

Preserve Knowledge and Corporate Memory

Modeling helps enterprises preserve knowledge and corporate memory by:

 Storing the corporate memory in a versioned repository

 Enabling quick and easy understanding of our systems within an organization by all members of our

teams

 Assisting new team members in getting up to speed quickly

Reuse

Modeling helps us reuse parts of existing information and knowledge in our new projects, saving time

and money.

Automate

Modeling facilitates automation including these examples:

 Automate generation of a real working system or part of a system from models

 Automate repeatable tasks by writing scripts

 Use thousands of shortcuts and features for getting the expected results in a single click

The popularity of modeling is increasing. And with good reason, because modeling (especially based

on standards) provides a means for communication, thinking and complexity management.

Modeling is essential for these major activities:

Sketches/Prototype Designs/Throw-away Models

Although these are the simplest forms of modeling activities, modeling is still much better than doing

no modeling at all. Transform our words into pictures – they are better understood. Transform our

ideas into a model – now they have structure. Frankly, in most of these cases, paper or a whiteboard

will substitute for a modeling tool. If we still want software for this task, we can even consider

a drawing tool. The major requirements for a tool are Fast and Inexpensive.

Code Engineering

The architect’s dream is to model the system and then … launch it. However, the reality is not so
glamorous. Usually modeling tools generate skeletons of code, saving some time, but on the other

hand consuming time for creating code-level class models. There is a reason for such behavior –

models usually do not have enough information to produce full code, and it would take a lot of time if

we wanted to model all those little details.

Do not use code generation. Concentrate on higher-level architecture and design, and leave code to

coders.

Use MDA (Model Driven Architecture) tools. These tools can (in combination with modeling tools)

generate 60-100% of our system – code, persistence, etc. However, they have to be chosen wisely,

since they provide the most value for repetitive/machine-like tasks. For example, if we are modeling a

mobile application which slightly differs from platform to platform, then it makes sense to generate

code for different platforms from a single source – the model. This way we save the money for

maintaining two, three or even more similar code bases which are still different.

Code reverse engineering into a model is a different story. This is good for quick code reviews –

reverse, visualize, review, throw away. There is no need to maintain those models, since it should be

easy to reverse engineer them from the latest version of our code base.

Creating Complex Systems

Creating a complex system is a complex task. There are certain qualities in a modeling tool that can

make this task easier. The primary goal for a modeling tool is to create a collaborative environment

that allows users to create and validate design ideas, prevent errors early, and communicate those

8

ideas/designs to those who will further refine them. Let’s break down the benefits we should expect

from a modeling tool for production of complex systems.

Robustness and ease of use. If it takes more time to manage the tool than to do the actual work – we

need a different tool.

Standards-compliant. Communication in producing a complex system is a very important component;

therefore, we need a modeling solution that:

Is based on standards, since learning a proprietary methodology is expensive and unnecessary.

Forces to create standards-compliant models. Creating non-standard models introduces the risk of

interpreting them differently. Ambiguity leads to communication problems.

Centralized repository. We really do not want to look for the latest version of our models somewhere

on the network. And if we are working with an older version, it will be difficult to incorporate changes

to the latest one.

Teamwork. Complex systems require large teams, so our selected tool has to allow for multiple

people working on the same model, preventing conflicts while allowing model branches. Plus, we

might not want a team developer to have the ability to modify high-level architecture.

Analysis/validation functions. The larger the model gets, the easier it is to miss things. We want the

tool to:

Provide multiple views of the model, allowing users to study the model from different perspectives.

Automatically validate the model, allowing the user to identify obvious model gaps or inconsistencies.

Document output. Unfortunately, there is a lot of paperwork circulating in the IT world. However, a

carefully selected modeling tool should do it for us – the information is in the model, we just need to

“transform” it to a paper format.

Simulation. For really complex systems, mission-critical systems, or hardware systems, errors that

could be prevented in the design/analysis phase are very expensive in the production phase. The best

way to make sure that the system works as described in the model is to simulate it.

Support for all types of related models. The last thing we want to have is multiple types of models,

created by different modeling tools. That means we will struggle with traceability, synchronization of

data, etc.

Multiplatform. If our company is not strict about the operating system (Windows/MacOS/Linux/etc.),

our selection of a modeling tool should be multiplatform as well.

Creating Integrated Models for our Business

If we want to improve our business, we need to know three things: Current situation, Future

(improved) situation and How to get there.

So it starts with knowing the current situation:

Traceability. In the case of business processes, we need to know who is responsible for this task, why

this task is performed, and how it is automated by the IT system.

Integrated models. Businesses involve different types of models such as organizational charts,

business processes, etc. We need those models to be tightly integrated.

Ability to customize. Every business is different, so the modeling solution which we select needs to

take that into account. Our modeling solution should be able to adapt, to match the specific details that

make up our business unique.

Web output. Information that is in the model is important to all the people in our company. Our

colleagues should not need a special tool to access the models.

9

Principles of Modeling – CO1
The use of modeling has a rich history in all the engineering disciplines. That experience suggests four

basic principles of modeling. First,

The choice of what models to create has a profound influence on how a problem is attacked and

how a solution is shaped.
In other words, choosing our models well. The right models will brilliantly illuminate the most wicked

development problems, offering insight that we simply could not gain otherwise; the wrong models

will mislead us, causing us to focus on irrelevant issues.

Setting aside software for a moment, suppose we are trying to tackle a problem in quantum physics.

Certain problems, such as the interaction of photons in space-time, are full of wonderfully hairy

mathematics. Choose a different model and suddenly this inherent complexity becomes doable, if not

exactly easy. In this field, this is precisely the value of Feynmann diagrams, which provide a graphical

rendering of a very complex problem. Similarly, in a totally different domain, suppose we are

constructing a new building and we are concerned about how it might behave in high winds. If we

build a physical model and then subject it to wind tunnel tests, we might learn some interesting things,

although materials in the small don't flex exactly as they do in the large. Hence, if we build a

mathematical model and then subject it to simulations, we will learn some different things, and we will

also probably be able to play with more new scenarios than if we were using a physical model. By

rigorously and continuously testing our models, we'll end up with a far higher level of confidence that

the system we have modeled will behave as we expect it to in the real world.

In software, the models we choose can greatly affect our world view. If we build a system through the

eyes of a database developer, we will likely focus on entity-relationship models that push behavior

into triggers and stored procedures. If we build a system through the eyes of a structured analyst, we

will likely end up with models that are algorithmic-centric, with data flowing from process to process.

If we build a system through the eyes of an object-oriented developer, we'll end up with a system

whose architecture is centered around a sea of classes and the patterns of interaction that direct how

those classes work together. Executable models can greatly help testing. Any of these approaches

might be right for a given application and development culture, although experience suggests that the

object-oriented view is superior in crafting resilient architectures, even for systems that might have a

large database or computational element. That fact notwithstanding, the point is that each world view

leads to a different kind of system, with different costs and benefits.

Second,

Every model may be expressed at different levels of precision.

If we are building a high rise, sometimes we need a 30,000-foot view for instance, to help our

investors visualize its look and feel. Other times, we need to get down to the level of the studs for

instance, when there's a tricky pipe run or an unusual structural element.

The same is true with software models. Sometimes a quick and simple executable model of the user

interface is exactly what we need; at other times we have to get down and dirty with the bits, such as

when we are specifying cross-system interfaces or wrestling with networking bottlenecks. In any case,

the best kinds of models are those that let us choose our degree of detail, depending on who is doing

the viewing and why they need to view it. An analyst or an end user will want to focus on issues of

10

what; a developer will want to focus on issues of how. Both of these stakeholders will want to

visualize a system at different levels of detail at different times.

Third,

The best models are connected to reality.
A physical model of a building that doesn't respond in the same way as do real materials has only

limited value; a mathematical model of an aircraft that assumes only ideal conditions and perfect

manufacturing can mask some potentially fatal characteristics of the real aircraft. It's best to have

models that have a clear connection to reality, and where that connection is weak, to know exactly

how those models are divorced from the real world. All models simplify reality; the trick is to be sure

that our simplifications don't mask any important details.

In software, the Achilles heel of structured analysis techniques is the fact that there is a basic

disconnect between its analysis model and the system's design model. Failing to bridge this chasm

causes the system as conceived and the system as built to diverge over time. In object-oriented

systems, it is possible to connect all the nearly independent views of a system into one semantic

whole.

Fourth,

No single model or view is sufficient. Every nontrivial system is best approached through a small set

of nearly independent models with multiple viewpoints.
If we are constructing a building, there is no single set of blueprints that reveal all its details. At the

very least, we'll need floor plans, elevations, electrical plans, heating plans, and plumbing plans. And

within any kind of model, we need multiple views to capture the breadth of the system, such as

blueprints of different floors.

The operative phrase here is "nearly independent." In this context, it means having models that can be

built and studied separately but that are still interrelated. As in the case of a building, we can study

electrical plans in isolation, but we can also see how they map to the floor plan and perhaps even their

interaction with the routing of pipes in the plumbing plan.

The same is true of object-oriented software systems. To understand the architecture of such a system,

we need several complementary and interlocking views: a use case view (exposing the requirements of

the system), a design view (capturing the vocabulary of the problem space and the solution space), an

interaction view (showing the interactions among the parts of the system and between the system and

the environment), an implementation view (addressing the physical realization of the system), and a

deployment view (focusing on system engineering issues). Each of these views may have structural, as

well as behavioral, aspects. Together, these views represent the blueprints of software.

Object Oriented modeling – CO1
• Two most common ways in modeling software systems are

• Algorithmic - Procedures or functions

• Object oriented - Objects or classes

11

Object-oriented modeling (OOM) is the construction of objects using a collection of objects that

contain stored values of the instance variables found within an object. Unlike models that are record-

oriented, object-oriented values are solely objects.

The object-oriented modeling approach creates the union of the application and database development

and transforms it into a unified data model and language environment. Object-oriented modeling

allows for object identification and communication while supporting data abstraction, inheritance and

encapsulation.

Object-oriented modeling is the process of preparing and designing what the model’s code will

actually look like. During the construction or programming phase, the modeling techniques are

implemented by using a language that supports the object-oriented programming model.

OOM consists of progressively developing object representation through three phases: analysis,

design, and implementation. During the initial stages of development, the model developed is abstract

because the external details of the system are the central focus. The model becomes more and more

detailed as it evolves, while the central focus shifts toward understanding how the system will be

constructed and how it should function.

Object oriented modeling is entirely a new way of thinking about problems. This methodology is all

about visualizing the things by using models organized around real world concepts. Object oriented

models help in understanding problems, communicating with experts from a distance, modeling

enterprises, and designing programs and database. We all can agree that developing a model for a

software system, prior to its development or transformation, is as essential as having a blueprint for

large building essential for its construction. Object oriented models are represented by diagrams. A

good model always helps communication among project teams, and to assure architectural soundness.

It is important to note that with the increasing complexity of systems, importance of modeling

techniques increases. Because of its characteristics Object Oriented Modeling is a suitable modeling

technique for handling a complex system. OOM basically is building a model of an application, which

includes implementation details of the system, during design of the system.

As we know, any system development refers to the initial portion of the software life cycle: analysis,

design, and implementation. During object oriented modeling identification and organization of

application with respect to its domain is done, rather than their final representation in any specific

programming language. We can say that OOM is not language specific. Once modeling is done for an

application, it can be implemented in any suitable programming language available.

OOM approach is a encouraging approach in which software developers have to think in terms of the

application domain through most of the software engineering life cycle. In this process, the developer

is forced to identify the inherent concepts of the application. First, developer organize, and understood

12

the system properly and then finally the details of data structure and functions are addressed

effectively.

In OOM the modeling passes through the following processes: • System Analysis • System Design •
Object Design, and • Final Implementation. System Analysis: In this stage a statement of the problem
is formulated and a model is build by the analyst in encouraging real-world situation. This phase show

the important properties associated with the situation. Actually, the analysis model is a concise, precise

abstraction and agreement on how the desired system must be developed. We can say that, here the

objective is to provide a model that can be understood and criticized by any application experts in the

area whether the expert is a programmer or not. System Design: At this stage, the complete system

architecture is designed. This is the stage where the whole system is divided into subsystems, based on

both the system analysis model and the proposed architecture of the system. Object Design: At this

stage, a design model is developed based on the analysis model which is already developed in the

earlier phase of development. The object design decides the data structures and algorithms needed to

implement each of the classes in the system with the help of implementation details given in the

analysis model. Final Implementation: At this stage, the final implementation of classes and

relationships developed during object design takes place a particular programming language, database,

or hardware implementation (if needed). Actual implementation should be done using software

engineering practice. This helps to develop a flexible and extensible system. Whole object oriented

modeling is covered by using three kinds of models for a system description. These models are: •
object model, • dynamic model, and • functional model. Object models are used for describing the
objects in the system and their relationship among each other in the system. The dynamic model

describes interaction among objects and information flow in the system. The data transformations in

the system are described by a functional model. All three models are applicable during all stages of

development. These models bear the responsibility of acquiring implementation details of the system

development. It is important to note that we cannot describe a system completely until unless all three

modes are described properly. In block 3 of this course, we will discuss these three models in detail.

Before we discuss the characteristics of object oriented modeling, let us see how object oriented

development is different from structured development of the system. In the structured approach, the

main emphasis is on specifying and decomposing system functionality. Structured approach is seen as

the most direct way of implementing a desired goal. A structured approach has certain basic problems,

such as, if the requirements of system change then a system based on decomposing functionality may

require massive restructuring, and, the system gradually become unmanageable. In contrast to the

structured approach, the basic focus of object oriented approach is to identify objects from the

application domain, and then to associate procedures (methods) around these identified objects.

We can say that object oriented development is an indirect way of system development because in this

approach a holistic view of application domain is considered, and objects are identified in the related

problem domain. A historic view of application helps in realizing the situations and characteristics of

the system. Taking a holistic view of the problem domain rather than considering functional

requirements of a single problem give an edge to object oriented development. Once the objects are

created with the needed characteristics, they communicate with each other by message passing during

problem solving.

Conceptual Model of the UML – CO1
To understand the UML, we need to form a conceptual model of the language, and this requires

learning three major elements: the UML's basic building blocks, the rules that dictate how those

building blocks may be put together, and some common mechanisms that apply throughout the UML.

13

Once we have grasped these ideas, we will be able to read UML models and create some basic ones.

As we gain more experience in applying the UML, we can build on this conceptual model, using more

advanced features of the language.

Building Blocks of the UML

The vocabulary of the UML encompasses three kinds of building blocks:

1. Things 2. Relationships 3. Diagrams

Things are the abstractions that are first-class citizens in a model; relationships tie these things

together; diagrams group interesting collections of things.

Things in the UML

There are four kinds of things in the UML:

1. Structural things 2. Behavioral things 3. Grouping things 4. Annotational things

These things are the basic object-oriented building blocks of the UML. We use them to write well-

formed models.

Structural Things

Structural things are the nouns of UML models. These are the mostly static parts of a model,

representing elements that are either conceptual or physical. Collectively, the structural things are

called classifiers.

A class is a description of a set of objects that share the same attributes, operations, relationships, and

semantics. A class implements one or more interfaces. Graphically, a class is rendered as a rectangle,

usually including its name, attributes, and operations, as in Figure.

Figure. Classes

An interface is a collection of operations that specify a service of a class or component. An interface

therefore describes the externally visible behavior of that element. An interface might represent the

complete behavior of a class or component or only a part of that behavior. An interface defines a set of

operation specifications (that is, their signatures) but never a set of operation implementations. The

declaration of an interface looks like a class with the keyword «interface» above the name; attributes

are not relevant, except sometimes to show constants. An interface rarely stands alone, however. An

interface provided by a class to the outside world is shown as a small circle attached to the class box

by a line. An interface required by a class from some other class is shown as a small semicircle

attached to the class box by a line, as in Figure.

Figure. Interfaces

14

A collaboration defines an interaction and is a society of roles and other elements that work together to

provide some cooperative behavior that's bigger than the sum of all the elements. Collaborations have

structural, as well as behavioral, dimensions. A given class or object might participate in several collaborations.

These collaborations therefore represent the implementation of patterns that make up a system. Graphically,

a collaboration is rendered as an ellipse with dashed lines, sometimes including only its name, as in Figure.

Figure . Collaborations

A use case is a description of sequences of actions that a system performs that yield observable results of

value to a particular actor. A use case is used to structure the behavioral things in a model. A use case is

realized by a collaboration. Graphically, a use case is rendered as an ellipse with solid lines, usually including

only its name, as in Figure.

Figure. Use Cases

The remaining three things active classes, components, and nodes are all class-like, meaning they also

describe sets of entities that share the same attributes, operations, relationships, and semantics. However,

these three are different enough and are necessary for modeling certain aspects of an object-oriented system,

so they warrant special treatment.

An active class is a class whose objects own one or more processes or threads and therefore can

initiate control activity. An active class is just like a class except that its objects represent elements

whose behavior is concurrent with other elements. Graphically, an active class is rendered as a class

with double lines on the left and right; it usually includes its name, attributes, and operations, as

in Figure.

Figure. Active Classes

A component is a modular part of the system design that hides its implementation behind a set of

external interfaces. Within a system, components sharing the same interfaces can be substituted while

preserving the same logical behavior. The implementation of a component can be expressed by wiring

together parts and connectors; the parts can include smaller components. Graphically, a component is

rendered like a class with a special icon in the upper right corner, as in Figure.

Figure. Components

The remaining two elements artifacts and nodes are also different. They represent physical things,

whereas the previous five things represent conceptual or logical things.

15

An artifact is a physical and replaceable part of a system that contains physical information ("bits"). In

a system, we'll encounter different kinds of deployment artifacts, such as source code files,

executables, and scripts. An artifact typically represents the physical packaging of source or run-time

information. Graphically, an artifact is rendered as a rectangle with the keyword «artifact» above the

name, as in Figure.

Figure. Artifacts

A node is a physical element that exists at run time and represents a computational resource, generally

having at least some memory and, often, processing capability. A set of components may reside on a

node and may also migrate from node to node. Graphically, a node is rendered as a cube, usually

including only its name, as in Figure.

Figure. Nodes

These elements classes, interfaces, collaborations, use cases, active classes, components, artifacts, and

nodes are the basic structural things that we may include in a UML model. There are also variations on

these, such as actors, signals, and utilities (kinds of classes); processes and threads (kinds of active

classes); and applications, documents, files, libraries, pages, and tables (kinds of artifacts).

Behavioral Things

Behavioral things are the dynamic parts of UML models. These are the verbs of a model, representing

behavior over time and space. In all, there are three primary kinds of behavioral things.

First, an interaction is a behavior that comprises a set of messages exchanged among a set of objects

or roles within a particular context to accomplish a specific purpose. The behavior of a society of

objects or of an individual operation may be specified with an interaction. An interaction involves a

number of other elements, including messages, actions, and connectors (the connection between

objects). Graphically, a message is rendered as a directed line, almost always including the name of its

operation, as in Figure.

Figure. Messages

Second, a state machine is a behavior that specifies the sequences of states an object or an interaction

goes through during its lifetime in response to events, together with its responses to those events. The

behavior of an individual class or a collaboration of classes may be specified with a state machine. A

state machine involves a number of other elements, including states, transitions (the flow from state to

state), events (things that trigger a transition), and activities (the response to a transition). Graphically,

a state is rendered as a rounded rectangle, usually including its name and its substates, if any, as

in Figure.

Figure. States

Third, an activity is a behavior that specifies the sequence of steps a computational process performs.

16

In an interaction, the focus is on the set of objects that interact. In a state machine, the focus is on the

life cycle of one object at a time. In an activity, the focus is on the flows among steps without regard to

which object performs each step. A step of an activity is called an action. Graphically, an action is

rendered as a rounded rectangle with a name indicating its purpose. States and actions are

distinguished by their different contexts.

Figure. Actions

These three elements interactions, state machines, and activities are the basic behavioral things that we

may include in a UML model. Semantically, these elements are usually connected to various structural

elements, primarily classes, collaborations, and objects.

Grouping Things

Grouping things are the organizational parts of UML models. These are the boxes into which a model

can be decomposed. There is one primary kind of grouping thing, namely, packages.

A package is a general-purpose mechanism for organizing the design itself, as opposed to classes,

which organize implementation constructs. Structural things, behavioral things, and even other

grouping things may be placed in a package. Unlike components (which exist at run time), a package

is purely conceptual (meaning that it exists only at development time). Graphically, a package is

rendered as a tabbed folder, usually including only its name and, sometimes, its contents, as in Figure.

Figure. Packages

Packages are the basic grouping things with which we may organize a UML model. There are also

variations, such as frameworks, models, and subsystems (kinds of packages).

Annotational Things

Annotational things are the explanatory parts of UML models. These are the comments we may apply

to describe, illuminate, and remark about any element in a model. There is one primary kind of

annotational thing, called a note. A note is simply a symbol for rendering constraints and comments

attached to an element or a collection of elements. Graphically, a note is rendered as a rectangle with a

dog-eared corner, together with a textual or graphical comment, as in Figure.

Figure. Notes

This element is the one basic annotational thing we may include in a UML model. We'll typically use

notes to adorn our diagrams with constraints or comments that are best expressed in informal or formal

text. There are also variations on this element, such as requirements (which specify some desired

behavior from the perspective of outside the model).

Relationships in the UML

There are four kinds of relationships in the UML:

1. Dependency 2. Association 3. Generalization 4. Realization

These relationships are the basic relational building blocks of the UML. We use them to write well-

formed models.

17

First, a dependency is a semantic relationship between two model elements in which a change to one

element (the independent one) may affect the semantics of the other element (the dependent one).

Graphically, a dependency is rendered as a dashed line, possibly directed, and occasionally including a

label, as in Figure.

Figure. Dependencies

Second, an association is a structural relationship among classes that describes a set of links, a link

being a connection among objects that are instances of the classes. Aggregation is a special kind of

association, representing a structural relationship between a whole and its parts. Graphically, an

association is rendered as a solid line, possibly directed, occasionally including a label, and often

containing other adornments, such as multiplicity and end names, as in Figure

Figure. Associations

Third, a generalization is a specialization/generalization relationship in which the specialized element

(the child) builds on the specification of the generalized element (the parent). The child shares the

structure and the behavior of the parent. Graphically, a generalization relationship is rendered as a

solid line with a hollow arrowhead pointing to the parent, as in Figure.

Figure. Generalizations

Fourth, a realization is a semantic relationship between classifiers, wherein one classifier specifies a

contract that another classifier guarantees to carry out. We'll encounter realization relationships in two

places: between interfaces and the classes or components that realize them, and between use cases and

the collaborations that realize them. Graphically, a realization relationship is rendered as a cross

between a generalization and a dependency relationship, as in Figure.

Figure. Realizations

These four elements are the basic relational things we may include in a UML model. There are also

variations on these four, such as refinement, trace, include, and extend.

Diagrams in the UML

A diagram is the graphical presentation of a set of elements, most often rendered as a connected graph

of vertices (things) and paths (relationships). We draw diagrams to visualize a system from different

perspectives, so a diagram is a projection into a system. For all but the most trivial systems, a diagram

represents an elided view of the elements that make up a system. The same element may appear in all

diagrams, only a few diagrams (the most common case), or in no diagrams at all (a very rare case). In

theory, a diagram may contain any combination of things and relationships. In practice, however, a

small number of common combinations arise, which are consistent with the five most useful views

that comprise the architecture of a software-intensive system. For this reason, the UML includes

thirteen kinds of diagrams:

1. Class diagram 2. Object diagram 3. Component diagram 4. Composite structure diagram

5. Use case diagram 6. Sequence diagram 7. Communication diagram 8. State diagram

9. Activity diagram 10. Deployment diagram 11. Package diagram 12. Timing diagram

12. Interaction overview diagram

A class diagram shows a set of classes, interfaces, and collaborations and their relationships. These

diagrams are the most common diagram found in modeling object-oriented systems. Class diagrams

address the static design view of a system. Class diagrams that include active classes address the static

process view of a system. Component diagrams are variants of class diagrams.

18

An object diagram shows a set of objects and their relationships. Object diagrams represent static

snapshots of instances of the things found in class diagrams. These diagrams address the static design

view or static process view of a system as do class diagrams, but from the perspective of real or

prototypical cases.

A component diagram is shows an encapsulated class and its interfaces, ports, and internal structure

consisting of nested components and connectors. Component diagrams address the static design

implementation view of a system. They are important for building large systems from smaller parts.

(UML distinguishes a composite structure diagram, applicable to any class, from a component

diagram, but we combine the discussion because the distinction between a component and a structured

class is unnecessarily subtle.)

A use case diagram shows a set of use cases and actors (a special kind of class) and their relationships.

Use case diagrams address the static use case view of a system. These diagrams are especially

important in organizing and modeling the behaviors of a system.

Both sequence diagrams and communication diagrams are kinds of interaction diagrams.

An interaction diagram shows an interaction, consisting of a set of objects or roles, including the

messages that may be dispatched among them. Interaction diagrams address the dynamic view of a

system. A sequence diagram is an interaction diagram that emphasizes the time-ordering of messages;

a communication diagram is an interaction diagram that emphasizes the structural organization of the

objects or roles that send and receive messages. Sequence diagrams and communication diagrams

represent similar basic concepts, but each diagram emphasizes a different view of the concepts.

Sequence diagrams emphasize temporal ordering, and communication diagrams emphasize the data

structure through which messages flow. A timing diagram (not covered in this book) shows the actual

times at which messages are exchanged.

A state diagram shows a state machine, consisting of states, transitions, events, and activities. A state

diagrams shows the dynamic view of an object. They are especially important in modeling the

behavior of an interface, class, or collaboration and emphasize the event-ordered behavior of an object,

which is especially useful in modeling reactive systems

An activity diagram shows the structure of a process or other computation as the flow of control and

data from step to step within the computation. Activity diagrams address the dynamic view of a

system. They are especially important in modeling the function of a system and emphasize the flow of

control among objects.

A deployment diagram shows the configuration of run-time processing nodes and the components that

live on them. Deployment diagrams address the static deployment view of an architecture. A node

typically hosts one or more artifacts.

An artifact diagram shows the physical constituents of a system on the computer. Artifacts include

files, databases, and similar physical collections of bits. Artifacts are often used in conjunction with

deployment diagrams. Artifacts also show the classes and components that they implement. (UML

treats artifact diagrams as a variety of deployment diagram, but we discuss them separately.)

A package diagram shows the decomposition of the model itself into organization units and their

dependencies.

A timing diagram is an interaction diagram that shows actual times across different objects or roles, as

opposed to just relative sequences of messages. An interaction overview diagram is a hybrid of an

activity diagram and a sequence diagram. These diagrams have specialized uses and so are not

discussed in this book. See the UML Reference Manual for more details.

This is not a closed list of diagrams. Tools may use the UML to provide other kinds of diagrams,

although these are the most common ones that we will encounter in practice.

19

Rules of the UML

The UML's building blocks can't simply be thrown together in a random fashion. Like any language,

the UML has a number of rules that specify what a well-formed model should look like. A well-

formed model is one that is semantically self-consistent and in harmony with all its related models.

The UML has syntactic and semantic rules for

 Names What we can call things, relationships, and diagrams

 Scope The context that gives specific meaning to a name

 Visibility How those names can be seen and used by others

 Integrity How things properly and consistently relate to one another

 Execution What it means to run or simulate a dynamic model

Models built during the development of a software-intensive system tend to evolve and may be viewed

by many stakeholders in different ways and at different times. For this reason, it is common for the

development team to not only build models that are well-formed, but also to build models that are

 Elided Certain elements are hidden to simplify the view

 Incomplete Certain elements may be missing

 Inconsistent The integrity of the model is not guaranteed

These less-than-well-formed models are unavoidable as the details of a system unfold and churn

during the software development life cycle. The rules of the UML encourage us but do not force us to

address the most important analysis, design, and implementation questions that push such models to

become well-formed over time.

Common Mechanisms in the UML

A building is made simpler and more harmonious by the conformance to a pattern of common

features. A house may be built in the Victorian or French country style largely by using certain

architectural patterns that define those styles. The same is true of the UML. It is made simpler by the

presence of four common mechanisms that apply consistently throughout the language.

1. Specifications 2. Adornments 3. Common divisions 4. Extensibility mechanisms

Specifications

The UML is more than just a graphical language. Rather, behind every part of its graphical notation

there is a specification that provides a textual statement of the syntax and semantics of that building

block. For example, behind a class icon is a specification that provides the full set of attributes,

operations (including their full signatures), and behaviors that the class embodies; visually, that class

icon might only show a small part of this specification. Furthermore, there might be another view of

that class that presents a completely different set of parts yet is still consistent with the class's

underlying specification. We use the UML's graphical notation to visualize a system; we use the

UML's specification to state the system's details. Given this split, it's possible to build up a model

incrementally by drawing diagrams and then adding semantics to the model's specifications, or directly

by creating a specification, perhaps by reverse engineering an existing system, and then creating

diagrams that are projections into those specifications.

The UML's specifications provide a semantic backplane that contains all the parts of all the models of

a system, each part related to one another in a consistent fashion. The UML's diagrams are thus simply

visual projections into that backplane, each diagram revealing a specific interesting aspect of the

system.

20

Adornments

Most elements in the UML have a unique and direct graphical notation that provides a visual

representation of the most important aspects of the element. For example, the notation for a class is

intentionally designed to be easy to draw, because classes are the most common element found in

modeling object-oriented systems. The class notation also exposes the most important aspects of a

class, namely its name, attributes, and operations.

A class's specification may include other details, such as whether it is abstract or the visibility of its

attributes and operations. Many of these details can be rendered as graphical or textual adornments to

the class's basic rectangular notation. For example, Figure shows a class, adorned to indicate that it is

an abstract class with two public, one protected, and one private operation.

Figure. Adornments

Every element in the UML's notation starts with a basic symbol, to which can be added a variety of

adornments specific to that symbol.

Common Divisions

In modeling object-oriented systems, the world often gets divided in several ways.

First, there is the division of class and object. A class is an abstraction; an object is one concrete

manifestation of that abstraction. In the UML, we can model classes as well as objects, as shown

in Figure. Graphically, the UML distinguishes an object by using the same symbol as its class and then

simply underlying the object's name.

Figure. Classes and Objects

In this figure, there is one class, named Customer, together with three objects: Jan (which is marked

explicitly as being a Customer object), :Customer (an anonymous Customer object),

and Elyse (which in its specification is marked as being a kind of Customer object, although it's not

shown explicitly here).

Almost every building block in the UML has this same kind of class/object dichotomy. For example,

we can have use cases and use case executions, components and component instances, nodes and node

instances, and so on.

Second, there is the separation of interface and implementation. An interface declares a contract, and

an implementation represents one concrete realization of that contract, responsible for faithfully

carrying out the interface's complete semantics. In the UML, we can model both interfaces and their

implementations, as shown in Figure.

Figure. Interfaces and Implementations

21

In this figure, there is one component named SpellingWizard.dll that provides (implements) two

interfaces, IUnknown and ISpelling. It also requires an interface, IDictionary, that must be

provided by another component.

Almost every building block in the UML has this same kind of interface/implementation dichotomy.

For example, we can have use cases and the collaborations that realize them, as well as operations and

the methods that implement them.

Third, there is the separation of type and role. The type declares the class of an entity, such as an

object, an attribute, or a parameter. A role describes the meaning of an entity within its context, such

as a class, component, or collaboration. Any entity that forms part of the structure of another entity,

such as an attribute, has both characteristics: It derives some of its meaning from its inherent type and

some of its meaning from its role within its context (Figure).

Figure. Part with role and type

Extensibility Mechanisms

The UML provides a standard language for writing software blueprints, but it is not possible for one

closed language to ever be sufficient to express all possible nuances of all models across all domains

across all time. For this reason, the UML is opened-ended, making it possible for us to extend the

language in controlled ways. The UML's extensibility mechanisms include

 Stereotypes

 Tagged values

 Constraints

A stereotype extends the vocabulary of the UML, allowing we to create new kinds of building blocks

that are derived from existing ones but that are specific to our problem. For example, if we are

working in a programming language, such as Java or C++, we will often want to model exceptions. In

these languages, exceptions are just classes, although they are treated in very special ways. Typically,

we only want to allow them to be thrown and caught, nothing else. We can make exceptions first-class

citizens in our models meaning that they are treated like basic building blocks by marking them with

an appropriate stereotype, as for the class Overflow in Figure.

A tagged value extends the properties of a UML stereotype, allowing us to create new information in

the stereotype's specification. For example, if we are working on a shrink-wrapped product that

undergoes many releases over time, we often want to track the version and author of certain critical

abstractions. Version and author are not primitive UML concepts. They can be added to any building

block, such as a class, by introducing new tagged values to that building block. In Figure, for example,

the class EventQueue is extended by marking its version and author explicitly.

A constraint extends the semantics of a UML building block, allowing us to add new rules or modify

existing ones. For example, we might want to constrain the EventQueue class so that all additions are

done in order. As Figure shows, we can add a constraint that explicitly marks these for the

operation add.

Figure. Extensibility Mechanisms

22

Collectively, these three extensibility mechanisms allow us to shape and grow the UML to our

project's needs. These mechanisms also let the UML adapt to new software technology, such as the

likely emergence of more powerful distributed programming languages. We can add new building

blocks, modify the specification of existing ones, and even change their semantics. Naturally, it's

important that we do so in controlled ways so that through these extensions, we remain true to the

UML's purpose the communication of information.

Architecture – CO1
A model is a simplified representation of the system. To visualize a system, we will build various

models. The subset of these models is a view. Architecture is the collection of several views.

 The stakeholders (end users, analysts, developers, system integrators, testers, technical writers and

project managers) of a project will be interested in different views.

 Architecture can be best represented as a collection five views: 1) Use case view, 2) Design/logical

view, 3) Implementation/development view, 4) Process view and 5) Deployment/physical view.

Developed by Philippe Kruchten

Software architecture involves the high level structure of software system abstraction, by using

decomposition and composition, with architectural style and quality attributes. A software

architecture design must conform to the major functionality and performance requirements of the

system, as well as satisfy the non-functional requirements such as reliability, scalability, portability,

and availability.

The five views can be summarized as shown in the below table:

23

A software architecture must describe its group of components, their connections, interactions among

them and deployment configuration of all components.

A software architecture can be defined in many ways −

 UML (Unified Modeling Language) − UML is one of object-oriented solutions used in

software modeling and design.

 Architecture View Model (4+1 view model) − Architecture view model represents the
functional and non-functional requirements of software application.

 ADL (Architecture Description Language) − ADL defines the software architecture
formally and semantically.

UML

UML stands for Unified Modeling Language. It is a pictorial language used to make software

blueprints. UML was created by Object Management Group (OMG). The UML 1.0 specification

draft was proposed to the OMG in January 1997. It serves as a standard for software requirement

analysis and design documents which are the basis for developing a software.

UML can be described as a general purpose visual modeling language to visualize, specify, construct,

and document a software system. Although UML is generally used to model software system, it is not

limited within this boundary. It is also used to model non software systems such as process flows in a

manufacturing unit.

The elements are like components which can be associated in different ways to make a complete

UML picture, which is known as a diagram. So, it is very important to understand the different

diagrams to implement the knowledge in real-life systems. We have two broad categories of diagrams

and they are further divided into sub-categories i.e. Structural Diagrams and Behavioral Diagrams.

Structural Diagrams

Structural diagrams represent the static aspects of a system. These static aspects represent those parts

of a diagram which forms the main structure and is therefore stable.

These static parts are represented by classes, interfaces, objects, components and nodes. Structural

diagrams can be sub-divided as follows −

 Class diagram

 Object diagram

 Component diagram

24

 Deployment diagram

 Package diagram

 Composite structure

The following table provides a brief description of these diagrams −

Sr.No. Diagram & Description

1 Class
Represents the object orientation of a system. Shows how classes are statically

related.

2 Object
Represents a set of objects and their relationships at runtime and also represent

the static view of the system.

3 Component
Describes all the components, their interrelationship, interactions and interface of

the system.

4 Composite structure
Describes inner structure of component including all classes, interfaces of the

component, etc.

5 Package
Describes the package structure and organization. Covers classes in the package

and packages within another package.

6 Deployment
Deployment diagrams are a set of nodes and their relationships. These nodes are

physical entities where the components are deployed.

Behavioral Diagrams

Behavioral diagrams basically capture the dynamic aspect of a system. Dynamic aspects are basically

the changing/moving parts of a system. UML has the following types of behavioral diagrams −

 Use case diagram

 Sequence diagram

 Communication diagram

 State chart diagram

 Activity diagram

 Interaction overview

 Time sequence diagram

The following table provides a brief description of these diagram −

Sr.No. Diagram & Description

1 Use case
Describes the relationships among the functionalities and their internal/external

controllers. These controllers are known as actors.

25

2 Activity
Describes the flow of control in a system. It consists of activities and links. The

flow can be sequential, concurrent, or branched.

3 State Machine/state chart
Represents the event driven state change of a system. It basically describes the

state change of a class, interface, etc. Used to visualize the reaction of a system

by internal/external factors.

4 Sequence
Visualizes the sequence of calls in a system to perform a specific functionality.

5 Interaction Overview
Combines activity and sequence diagrams to provide a control flow overview of

system and business process.

6 Communication
Same as sequence diagram, except that it focuses on the object’s role. Each

communication is associated with a sequence order, number plus the past

messages.

7 Time Sequenced
Describes the changes by messages in state, condition and events.

Architecture View Model

A model is a complete, basic, and simplified description of software architecture which is composed

of multiple views from a particular perspective or viewpoint.

A view is a representation of an entire system from the perspective of a related set of concerns. It is

used to describe the system from the viewpoint of different stakeholders such as end-users,

developers, project managers, and testers.

4+1 View Model

The 4+1 View Model was designed by Philippe Kruchten to describe the architecture of a software–
intensive system based on the use of multiple and concurrent views. It is a multiple view model that

addresses different features and concerns of the system. It standardizes the software design

documents and makes the design easy to understand by all stakeholders.

It is an architecture verification method for studying and documenting software architecture design

and covers all the aspects of software architecture for all stakeholders. It provides four essential views

−

 The logical view or conceptual view − It describes the object model of the design.
 The process view − It describes the activities of the system, captures the concurrency and

synchronization aspects of the design.

 The physical view − It describes the mapping of software onto hardware and reflects its
distributed aspect.

 The development view − It describes the static organization or structure of the software in its
development of environment.

26

This view model can be extended by adding one more view called scenario view or use case view for

end-users or customers of software systems. It is coherent with other four views and are utilized to

illustrate the architecture serving as “plus one” view, (4+1) view model. The following figure

describes the software architecture using five concurrent views (4+1) model.

Reason for calling it 4+1 instead of 5 is:

The use case view has a special significance as it details the high level requirement of a system while

other views details — how those requirements are realized. When all other four views are completed,

it’s effectively redundant. However, all other views would not be possible without it. The following

image and table shows the 4+1 view in detail −

 Logical Process Development Physical Scenario

Description Shows the

component

(Object) of

system as well

as their

interaction

Shows the

processes /

Workflow

rules of

system and

how those

processes

communicate

, focuses on

dynamic

view of

system

Gives

building block

views of

system and

describe static

organization

of the system

modules

Shows the

installation,

configuration

and

deployment

of software

application

Shows the

design is

complete

by

performing

validation

and

illustration

Viewer /

Stake

holder

End-User,

Analysts and

Designer

Integrators &

developers

Programmer

and software

project

managers

System

engineer,

operators,

system

administrator

s and system

installers

All the

views of

their views

and

evaluators

Consider Functional Non Software Nonfunction System

27

requirements Functional

Requirements

Module

organization

(Software

management

reuse,

constraint of

tools)

al

requirement

regarding to

underlying

hardware

Consistenc

y and

validity

UML –

Diagram

Class, State,

Object,

sequence,

Communicatio

n Diagram

Activity

Diagram

Component,

Package

diagram

Deployment

diagram

Use case

diagram

Architecture Description Languages (ADLs)

An ADL is a language that provides syntax and semantics for defining a software architecture. It is a

notation specification which provides features for modeling a software system’s conceptual

architecture, distinguished from the system’s implementation.

ADLs must support the architecture components, their connections, interfaces, and configurations

which are the building block of architecture description. It is a form of expression for use in

architecture descriptions and provides the ability to decompose components, combine the

components, and define the interfaces of components.

An architecture description language is a formal specification language, which describes the software

features such as processes, threads, data, and sub-programs as well as hardware component such as

processors, devices, buses, and memory.

It is hard to classify or differentiate an ADL and a programming language or a modeling language.

However, there are following requirements for a language to be classified as an ADL −

 It should be appropriate for communicating the architecture to all concerned parties.

 It should be suitable for tasks of architecture creation, refinement, and validation.

 It should provide a basis for further implementation, so it must be able to add information to

the ADL specification to enable the final system specification to be derived from the ADL.

 It should have the ability to represent most of the common architectural styles.

 It should support analytical capabilities or provide quick generating prototype

implementations.

Software Development Life Cycle – CO1
UML is a software development life cycle or process independent language. But to get most out of

UML, the software development process should have the following properties:

 Use case driven

 Architecture centric

 Iterative and Incremental

 Rational Unified Process (RUP) is a software development process framework developed by Rational

Corporation which satisfies the above three properties. The overall software development life cycle

can be visualized as shown below:

28

Critical activities in each phase:

 Inception:

 Business case is established

 20% of the critical use cases are identified

 Elaboration:

 Develop the architecture

 Analyze the problem domain (80% of use cases are identified)

Construction:

 Source code

 User manual

 Verification and validation of code

 Transition:

 Deployment of software

 New releases

 Training

http://www.startertutorials.com/uml/wp-content/uploads/2013/08/sdlc.gif

1

CVR COLLEGE OF ENGINEERING

An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 3

Unit - 3

Year and Semester: IIIyear &II Semester
A

Subject: Object Oriented Analysis and Design
Branch: CSE

Faculty: Dr , Professor (CSE)

12IT302CV Object Oriented Analysis and Design

Instruction: 4 Periods/Week Credits: 4 Sessional Marks: 25

End Examination: 75 Marks End Exam Duration : 3 Hours

Unit I Introduction to UML – CO1: Importance of Modeling – CO1, Principles of Modeling –

CO1, Object Oriented modeling – CO1, Conceptual Model of the UML – CO1, Architecture –

CO1, Software Development Life Cycle – CO1.

Unit II Basic Structural Modeling - CO2: Classes – CO2, Relationships – CO2, Common

Mechanisms – CO2, and diagrams – CO2.

Advanced Structural Modeling – CO2: Advanced Classes – CO2, advanced relationships CO2,

interfaces, Types and Roles – CO2, Packages – CO2.

Unit III Class & Object Diagrams – CO1 & CO2: Terms - CO1 & CO2, concepts - CO1 & CO2,

modeling techniques for Class & Object Diagrams - CO1 & CO2.

Unit IV Basic Behavioral Modeling-I – CO2: Interactions CO2, Interaction diagrams CO2.

Unit V Basic Behavioral Modeling-II - CO2 & CO3: Use cases - CO2 & CO3, Use case Diagrams

- CO2 & CO3, Activity Diagrams - CO2 & CO3.

Unit VI Advanced Behavioral Modeling - CO2 & CO3: Events and signals - CO2 & CO3, state

machines - CO2 & CO3, processes and Threads - CO2 & CO3, time and space - CO2 & CO3,

state chart diagrams - CO2 & CO3.

Unit VII Architectural Modeling – CO4: Component – CO4, Deployment – CO4, Component

Diagrams – CO4 and Deployment diagrams – CO4.

Unit VIII Case Study: The Unified Library application – CO5.

Text Books:

1. The Unified Modeling Language User Guide, Ivar Jacobson and Grady Booch, James

Rumbaugh, Pearson Education, 2009.

2. UML 2 Toolkit, Magnus Penker, Brian Lyons, David Fado and Hans-Erik Eriksson,

Wiley-Dreamtech India Pvt.Ltd., 2004.

References:

1. Fundamentals of Object Oriented Design in UML, Meilir Page-Jones, Pearson Education,

2000.

2. Modeling Software Systems Using UML2, Pascal Roques, Wiley-Dreamtech India Pvt.

Ltd., 2007.

3. Object Oriented Analysis & Design, Atul Kahate, 1
st
 Edition, McGraw-Hill Companies,

2007.

2

CVR COLLEGE OF ENGINEERING

An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 3

Unit - 3

Year and Semester: IIIyear &II Semester
A

Subject: Object Oriented Analysis and Design
Branch: CSE

Faculty: Dr , Professor (CSE)

12IT302CV Object Oriented Analysis and Design

Unit III

 Class & Object Diagrams – CO1 & CO2……………………….3

Terms, concepts, modeling techniques for Class & Object Diagrams..3

3

CVR COLLEGE OF ENGINEERING

An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 3

Unit - 3

Year and Semester: IIIyear &II Semester
A

Subject: Object Oriented Analysis and Design
Branch: CSE

Faculty: Dr , Professor (CSE)

Unit III

Class & Object Diagrams – CO1 & CO2
A static UML object diagram is an instance of a class diagram; it shows a snapshot of the detailed

state of a system at a point in time, thus an object diagram encompasses objects and their

relationships at a point in time. It may be considered a special case of a class diagram or a

communication diagram. The use of object diagrams is fairly limited, mainly to show examples of

data structures. Class diagram shows a collection of declarative (static) model elements, such

as classes, types, and their contents and relationships. Object diagram encompasses objects and their

relationships at a point in time.

Terms, concepts, modeling techniques for Class Diagrams – CO1 &

CO2

Terms and concepts: A class diagram is a diagram that shows a set of classes, interfaces, and

collaborations and their relationships. Graphically, a class diagram is a collection of vertices and arcs.

Common Properties: A class diagram is just a special kind of diagram and shares the same common

properties as do all other diagrams name and graphical content that are a projection into a model. What

distinguishes a class diagram from other kinds of diagrams is its particular content.

Contents: Class diagrams commonly contain the following things: • Classes • Interfaces•
Collaborations • Dependency, generalization, and association relationships. Like all other diagrams,
class diagrams may contain notes and constraints. Class diagrams may also contain packages or

subsystems, both of which are used to group elements of our model into larger chunks. Sometimes

we'll want to place instances in our class diagrams as well, especially when we want to visualize the

(possibly dynamic) type of an instance.

Common Uses : We use class diagrams to model the static design view of a system. This view

primarily supports the functional requirements of a system the services the system should provide to

its end users. When we model the static design view of a system, we'll typically use class diagrams in

one of three ways.

1. To model the vocabulary of a system Modeling the vocabulary of a system involves making a

decision about which abstractions are a part of the system under consideration and which fall outside

its boundaries. We use class diagrams to specify these abstractions and their responsibilities.

2. To model simple collaborations A collaboration is a society of classes, interfaces, and other

elements that work together to provide some cooperative behavior that's bigger than the sum of all the

elements. For example, when we’re modeling the semantics of a transaction in a distributed system,

4

we can't just stare at a single class to understand what's going on. Rather, these semantics are carried

out by a set of classes that work together. We use class diagrams to visualize and specify this set of

classes and their relationships.

3. To model a logical database schema Think of a schema as the blueprint for the conceptual design

of a database. In many domains, we'll want to store persistent information in a relational database or in

an object-oriented database. We can model schemas for these databases using class diagrams.

Common Modeling Techniques: 1. Modeling Simple Collaborations To model a collaboration, •
Identify the mechanism we'd like to model. A mechanism represents some function or behavior of the

part of the system we are modeling that results from the interaction of a society of classes, interfaces,

and other things.

• For each mechanism, identify the classes, interfaces, and other collaborations that participate in this

collaboration. Identify the relationships among these things as well.

• Use scenarios to walk through these things. Along the way, we'll discover parts of our model that

were missing and parts that were just plain semantically wrong.

• Be sure to populate these elements with their contents. For classes, start with getting a good balance
of responsibilities. Then, over time, turn these in to concrete attributes and operations.

 2. Modeling a Logical Database Schema To model a schema,

• Identify those classes in our model whose state must transcend the lifetime of their applications. •
Create a class diagram that contains these classes. We can define our own set of stereotypes and

tagged values to address database-specific details.

• Expand the structural details of these classes. In general, this means specifying the details of their
attributes and focusing on the associations and their multiplicities that relate these classes.

• Watch for common patterns that complicate physical database design, such as cyclic associations and
one-to-one associations. Where necessary, create intermediate abstractions to simplify our logical

structure.

• Consider also the behavior of these classes by expanding operations that are important for data
access and data integrity. In general, to provide a better separation of concerns, business rules

concerned with the manipulation of sets of these objects should be encapsulated in a layer above these

persistent classes.

• Where possible, use tools to help us transform our logical design into a physical design.

Forward and Reverse Engineering:

Forward engineering is the process of transforming a model into code through a mapping to an

implementation language. Forward engineering results in a loss of information, because models

written in the UML are semantically richer than any current object-oriented programming language. In

fact, this is a major reason why we need models in addition to code. Structural features, such as

collaborations, and behavioral features, such as interactions, can be visualized clearly in the UML, but

not so clearly from raw code.

To forward engineer a class diagram,

• Identify the rules for mapping to our implementation language or languages of choice. This is

something we'll want to do for our project or our organization as a whole.

• Depending on the semantics of the languages we choose, we may want to constrain our use of certain

UML features. For example, the UML permits us to model multiple inheritance, but Smalltalk permits

only single inheritance. We can choose to prohibit developers from modeling with multiple inheritance

(which makes our models language-dependent), or we can develop idioms that transform these richer

features into the implementation language (which makes the mapping more complex).

5

• Use tagged values to guide implementation choices in our target language. We can do this at the

level of individual classes if we need precise control. We can also do so at a higher level, such as with

collaborations or packages.

• Use tools to generate code.
public abstract class EventHandler {

EventHandler successor;

private Integer currentEventID;

private String source;

EventHandler() {}

public void handleRequest() {}

}

Reverse engineering is the process of transforming code into a model through a mapping from a

specific implementation language. Reverse engineering results in a flood of information, some of

which is at a lower level of detail than we'll need to build useful models. At the same time, reverse

engineering is incomplete. There is a loss of information when forward engineering models into code,

and so we can't completely recreate a model from code unless our tools encode information in the

source comments that goes beyond the semantics of the implementation language.

To reverse engineer a class diagram,

•Identify the rules for mapping from our implementation language or languages of choice. This is

something we'll want to do for our project or our organization as a whole.

• Using a tool, point to the code we'd like to reverse engineer. Use our tool to generate a new model or

modify an existing one that was previously forward engineered. It is unreasonable to expect to reverse

engineer a single concise model from a large body of code. We need to select portion of the code and

build the model from the bottom.

• Using our tool, create a class diagram by querying the model. For example, we might start with one

or more classes, then expand the diagram by following specific relationships or other neighboring

classes. Expose or hide details of the contents of this class diagram as necessary to communicate our

intent.

• Manually add design information to the model to express the intent of the design that is missing or

hidden in the code.

Terms, concepts, modeling techniques for Object Diagrams – CO1 &

CO2
Object diagrams model the instances of things contained in class diagrams. An object diagram shows a

set of objects and their relationships at a point in time.

Terms and concepts: An object diagram is a diagram that shows a set of objects and their

relationships at a point in time. Graphically, an object diagram is a collection of vertices and arcs.

Common Properties: An object diagram is a special kind of diagram and shares the same common

properties as all other diagrams that is, a name and graphical contents that are a projection into a

model. What distinguishes an object diagram from all other kinds of diagrams is its particular content.

Contents: Object diagrams commonly contain •Objects •Links Like all other diagrams, object
diagrams may contain notes and constraints. Sometimes we'll want to place classes in our object

diagrams as well, especially when we want to visualize the classes behind each instance.

Common Uses: We use object diagrams to model the static design view or static process view of a

system just as we do with class diagrams, but from the perspective of real or prototypical instances.

6

This view primarily supports the functional requirements of a system that is, the services the system

should provide to its end users. Object diagrams let us model static data structures.

When we model the static design view or static process view of a system, we typically use object

diagrams in one way: To model object structures Modeling object structures involves taking a

snapshot of the objects in a system at a given moment in time. An object diagram represents one static

frame in the dynamic storyboard represented by an interaction diagram. We use object diagrams to

visualize, specify, construct, and document the existence of certain instances in our system, together

with their relationships to one another.

Common Modeling Techniques: Modeling Object Structures To model an object structure,

•Identify the mechanism we'd like to model. A mechanism represents some function or behavior of the

part of the system we are modeling that results from the interaction of a society of classes, interfaces,

and other things.

• Create a collaboration to describe a mechanism.
• For each mechanism, identify the classes, interfaces, and other elements that participate in this

collaboration; identify the relationships among these things as well.

•Consider one scenario that walks through this mechanism. Freeze that scenario at a moment in time,
and render each object that participates in the mechanism.

•Expose the state and attribute values of each such object, as necessary, to understand the scenario.
•Similarly, expose the links among these objects, representing instances of associations among them.

Forward And Reverse Engineering

Forward engineering (the creation of code from a model) an object diagram is theoretically possible

but pragmatically of limited value. In an object-oriented system, instances are things that are created

and destroyed by the application during run time. Therefore, we cannot exactly instantiate these

objects from the outside.

Reverse engineering (the creation of a model from code) an object diagram can be useful. In fact,

while we are debugging our system, this is something that we or our tools will do all the time. For

example, if we are chasing down a dangling link, we'll want to literally or mentally draw an object

diagram of the affected objects to see where, at a given moment in time, an object's state or its

relationship to other objects is broken.

To reverse engineer an object diagram,

•Choose the target we want to reverse engineer. Typically, we'll set our context inside an operation or

relative to an instance of one particular class.

• Using a tool or simply walking through a scenario, stop execution at a certain moment in time.

• Identify the set of interesting objects that collaborate in that context and render them in an object
diagram.

• As necessary to understand their semantics, expose these object's states.

• As necessary to understand their semantics, identify the links that exist among these objects.

1

CVR COLLEGE OF ENGINEERING

An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 4

Unit - 4

Year and Semester: IIIyear &II Semester
A

Subject: Object Oriented Analysis and Design
Branch: CSE

Faculty: Dr , Professor (CSE)

12IT302CV Object Oriented Analysis and Design

Instruction: 4 Periods/Week Credits: 4 Sessional Marks: 25

End Examination: 75 Marks End Exam Duration : 3 Hours

Unit I Introduction to UML – CO1: Importance of Modeling – CO1, Principles of Modeling –

CO1, Object Oriented modeling – CO1, Conceptual Model of the UML – CO1, Architecture –

CO1, Software Development Life Cycle – CO1.

Unit II Basic Structural Modeling - CO2: Classes – CO2, Relationships – CO2, Common

Mechanisms – CO2, and diagrams – CO2.

Advanced Structural Modeling – CO2: Advanced Classes – CO2, advanced relationships CO2,

interfaces, Types and Roles – CO2, Packages – CO2.

Unit III Class & Object Diagrams – CO1 & CO2: Terms - CO1 & CO2, concepts - CO1 & CO2,

modeling techniques for Class & Object Diagrams - CO1 & CO2.

Unit IV Basic Behavioral Modeling-I – CO2: Interactions CO2, Interaction diagrams CO2.

Unit V Basic Behavioral Modeling-II - CO2 & CO3: Use cases - CO2 & CO3, Use case Diagrams

- CO2 & CO3, Activity Diagrams - CO2 & CO3.

Unit VI Advanced Behavioral Modeling - CO2 & CO3: Events and signals - CO2 & CO3, state

machines - CO2 & CO3, processes and Threads - CO2 & CO3, time and space - CO2 & CO3,

state chart diagrams - CO2 & CO3.

Unit VII Architectural Modeling – CO4: Component – CO4, Deployment – CO4, Component

Diagrams – CO4 and Deployment diagrams – CO4.

Unit VIII Case Study: The Unified Library application – CO5.

Text Books:

1. The Unified Modeling Language User Guide, Ivar Jacobson and Grady Booch, James

Rumbaugh, Pearson Education, 2009.

2. UML 2 Toolkit, Magnus Penker, Brian Lyons, David Fado and Hans-Erik Eriksson,

Wiley-Dreamtech India Pvt.Ltd., 2004.

References:

1. Fundamentals of Object Oriented Design in UML, Meilir Page-Jones, Pearson Education,

2000.

2. Modeling Software Systems Using UML2, Pascal Roques, Wiley-Dreamtech India Pvt.

Ltd., 2007.

3. Object Oriented Analysis & Design, Atul Kahate, 1
st
 Edition, McGraw-Hill Companies,

2007.

2

CVR COLLEGE OF ENGINEERING

An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 4

Unit - 4

Year and Semester: IIIyear &II Semester
A

Subject: Object Oriented Analysis and Design
Branch: CSE

Faculty: Dr , Professor (CSE)

12IT302CV Object Oriented Analysis and Design

Unit IV

Basic Behavioral Modeling-I – CO2………….3

 Interactions – CO2…………………………………………..3

Interaction diagrams – CO2…………………………………6

3

CVR COLLEGE OF ENGINEERING

An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 4

Unit - 4

Year and Semester: IIIyear &II Semester
A

Subject: Object Oriented Analysis and Design
Branch: CSE

Faculty: Dr , Professor (CSE)

Unit IV

Basic Behavioral Modeling-I – CO2

UML 2.1 defines thirteen basic diagram types, divided into two general sets:

structural modeling diagrams and behavioral modeling diagrams. The UML is used to define a

software system – to detail the artifacts in the systems, to document and construct; it is the language

the blueprint is written in.

Interactions – CO2
In UML, the dynamic aspects of a system can be modeled using interactions. Interactions contain

messages that are exchanged between objects. A message can be an invocation of an operation or a

signal. The messages may also include creation and destruction of other objects.

We can use interactions to model the flow of control within an operation, a class, a component, a use

case or the system as a whole. Using interaction diagrams, we can model these flows in two ways: one

is by focusing on how the messages are dispatched across time and the second is by focusing on the

structural relationships between objects and then consider how the messages are passed between the

objects.

Graphically a message is rendered as a directed line with the name of its operation as show below:

Interaction (Definition)

 An interaction is a behavior that contains a set of messages exchanged among a set of objects within a

context to accomplish a purpose. A message is specification of a communication between objects that

conveys information with the expectation that the activity will succeed.

 Objects and Roles

 The objects that participate in an interaction are either concrete things or prototypical things. As a

concrete thing, an object represents something in the real world. For example, p an instance of the

class Person, might denote a particular human. Alternately, as a prototypical thing, p might represent

any instance of Person.

Links

4

 A link is a semantic connection among objects. In general, a link is an instance of association.

Wherever, a class has an association with another class, there may be a link between the instances of

the two classes.

 Wherever there is a link between two objects, one object can send messages to another object. We can

adorn the appropriate end of the link with any of the following standard stereotypes:

 Messages

 A message is the specification of communication among objects that conveys information with the

expectation that activity will succeed. The receipt of a message instance may be considered an

instance of an event.

 When a message is passed, the action that results is an executable statement that forms an abstraction

of a computational procedure. An action may result in a change of state. In UML, we can model

several kinds of actions like:

Sequencing

 When an object passes a message to another object, the receiving object might in turn send a message

to another object, which might send a message to yet a different object and so on.

 This stream of messages forms a sequence. So, we can define a sequence as a stream of messages.

Any sequence must have a beginning. The start of every sequence is associated with some process or

thread.

 To model the sequence of a message, we can explicitly represent the order of the message relative to

the start of the sequence by prefixing the message with a sequence number set apart by a colon

separator.

http://www.startertutorials.com/uml/wp-content/uploads/2013/08/2-link-setreotypes.gif
http://www.startertutorials.com/uml/wp-content/uploads/2013/08/3-link-example.gif
http://www.startertutorials.com/uml/wp-content/uploads/2013/08/4-types-of-actions.gif
http://www.startertutorials.com/uml/wp-content/uploads/2013/08/5-messages-example.gif

5

 Most commonly, we can specify a procedural or nested flow of control, rendering using a filled solid

arrowhead. Less common but also possible, we can specify a flat flow of control, rendered using a

stick arrowhead.

 We will use flat sequences only when modeling interactions in the context of use cases that involve

the system as a whole, together with actors outside the system.

 In all other cases, we will use procedural sequences, because they represent ordinary, nested operation

calls of the type we find in most programming languages.

 Representation

 When we model an interaction, we typically include both objects and messages. We can visualize

those objects and messages involved in an interaction in two ways: by emphasizing the time ordering

of messages and by emphasizing the structural organization of the objects that send and receive

messages.

 In UML, the first kind of representation is called a sequence diagram and the second kind of

representation is called a collaboration diagram. Both sequence and collaboration diagrams are known

as interaction diagrams.

 Sequence diagrams and collaboration diagrams are isomorphic, meaning that we can take one and

transform it into the other without loss of information. Sequence diagram lets us to model the lifeline

of an object. An object’s lifeline represents the existence of the object at a particular time.

 A collaboration diagram lets us to model the structural links that may exist among the objects in the

interaction.

 Common Modeling Techniques

 Modeling a flow of control

 To model a flow of control,

1. Set the context for the interaction, whether it is the system as a whole, a class or an individual

operation.

2. Identify the objects and their initial properties which participate in the interaction.

3. Identify the links between objects for communication through messages.

4. In time order, specify the messages that pass from object to object. Use parameters and return

values as necessary.

5. To add semantics, adorn each object at every moment in time with its state and role.

Consider the following example of railway reservation system’s sequence and collaboration diagrams:

http://www.startertutorials.com/uml/wp-content/uploads/2013/08/6-procedural-sequence2.gif
http://www.startertutorials.com/uml/wp-content/uploads/2013/08/7-flat-sequence.gif

6

Interaction diagrams – CO2
Introduction

 An interaction diagram represents an interaction, which contains a set of objects and the relationships

between them including the messages exchanged between the objects.

 A sequence diagram is an interaction diagram in which the focus is on time ordering of messages.

Collaboration diagram is another interaction diagram in which the focus is on the structural

organization of the objects. Both sequence diagrams and collaboration diagrams are isomorphic

diagrams.

 Common Properties

 Interaction diagrams share the properties which are common to all the diagrams in UML. They are: a

name which identifies the diagram and the graphical contents which are a projection into the model.

 Contents

 Interaction diagrams commonly contain:

1. Objects 2. Links 3. Messages

 Like all other diagrams, interaction diagrams may contain notes and constraints.

 Sequence Diagrams

 A sequence diagram is one of the two interaction diagrams. The sequence diagram emphasizes on the

time ordering of messages. In a sequence diagram, the objects that participate in the interaction are

arranged at the top along the x-axis.

 Generally, the object which initiates the interaction is placed on the left and the next important object

to its right and so on. The messages dispatched by the objects are arranged from top to bottom along

the y-axis. This gives the user the detail about the flow of control over time.

http://www.startertutorials.com/uml/wp-content/uploads/2013/08/8-modeling-flow-of-control-sequence.gif
http://www.startertutorials.com/uml/wp-content/uploads/2013/08/9-modeling-flow-of-control-collaboration.gif

7

 Sequence diagram has two features that distinguish them from collaboration diagrams. First, there is

the object lifeline, which is a vertical dashed line that represents the existence of an object over a

period of time. Most of the objects are alive throughout the interaction.

 Objects may also be created during the interaction with the receipt of the message stereotyped with

create. Objects may also be destroyed during the interaction with the receipt of the message

stereotyped with destroy.

 Second, there is focus of control which is represented as a thin rectangle over the life line of the

object. The focus of control represents the points in time at which the object is performing an action.

We can also represent recursion by using a self message.

 Collaboration Diagrams

 A collaboration diagram is one of the two interaction diagrams. The collaboration diagram

emphasizes on the structural organization of the objects in the interaction.

 A collaboration diagram is made up of objects which are the vertices and these are connected by links.

Finally, the messages are represented over the links between the objects. This gives the user the detail

about the flow of control in the context of structural organization of objects that collaborate.

 Collaboration diagram has two features that distinguish them from the sequence diagrams. First, there

is a path which indicates one object is linked to another. Second, there is a sequence number to

indicate the time ordering of a message by prefixing the message with a number.

 We can use Dewey decimal numbering system for the sequence numbers. For example a message can

be numbered as 1 and the next messages in the nested sequence can be numbered 1.1 and so on.

Common Uses

 We use interaction diagrams to model the dynamic aspects (interactions) of the system. When we use

an interaction diagram to model some dynamic aspect of a system, we do so in the context of the

system as a whole, a subsystem, an operation or a class. We typically use the interaction diagrams in

two ways:

1. To model flows of control by time ordering

2. To model flows of control by organization

 Common Modeling Techniques

 Modeling flow of control by time ordering

 To model a flow of control by time ordering,

1. Set the context for the interaction, whether it is a system, subsystem, operation or class or one

scenario of a use case or collaboration.

2. Identify the objects that take part in the interaction and lay them out at the top along the x-axis

in a sequence diagram.

3. Set the life line for each object.

4. Layout the messages between objects from the top along the y-axis.

5. To visualize the points at which the object is performing an action, use the focus of control.

6. To specify time constraints, adorn each message with the time and space constraints.

7. To specify the flow of control in a more formal manner, attach pre and post conditions to each

message.

 Modeling flow of control by organization

 To model a flow of control by organization,

1. Set the context for the interaction, whether it is a system, subsystem, operation or class or one

scenario of a use case or collaboration.

2. Identify the objects that take part in the interaction and lay them out in a collaboration diagram

as the vertices in a graph.

8

3. Set the initial properties of each of these objects.

4. Specify the links among these objects.

5. Starting with the messages that initiate the interaction, attach each subsequent message to the

appropriate link, setting its sequence number, as appropriate. Use Dewey numbering system to

specify nested flow of control.

6. To specify time constraints, adorn each message with the time and space constraints.

7. To specify the flow of control in a more formal manner, attach pre and post conditions to each

message.

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 1
	Unit - 1
	Year and Semester: IIIyear &II Semester
	Faculty: Dr , Professor (CSE)
	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 1
	Unit - 1
	Year and Semester: IIIyear &II Semester
	Faculty: Dr , Professor (CSE)
	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 1
	Unit - 1
	Year and Semester: IIIyear &II Semester
	Faculty: Dr , Professor (CSE)
	Object Oriented Concepts Used in UML –
	Structural UML Diagrams –
	Behavior Diagrams –
	Preserve Knowledge and Corporate Memory
	Reuse
	Automate
	Building Blocks of the UML
	Things in the UML
	Structural Things
	Figure. Classes
	Figure. Interfaces
	Figure . Collaborations
	Figure. Use Cases
	Figure. Active Classes
	Figure. Components
	Figure. Artifacts
	Figure. Nodes
	Behavioral Things
	Figure. Messages
	Figure. States
	Figure. Actions
	Grouping Things
	Figure. Packages
	Annotational Things
	Figure. Notes
	Relationships in the UML
	Figure. Dependencies
	Figure. Associations
	Figure. Generalizations
	Figure. Realizations
	Diagrams in the UML

	Rules of the UML
	Common Mechanisms in the UML
	Specifications
	Adornments
	Figure. Adornments
	Common Divisions
	Figure. Classes and Objects
	Figure. Interfaces and Implementations
	Figure. Part with role and type
	Figure. Extensibility Mechanisms

	UML
	Structural Diagrams
	Behavioral Diagrams

	Architecture View Model
	4+1 View Model
	Reason for calling it 4+1 instead of 5 is:

	Architecture Description Languages (ADLs)

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 3
	Unit - 3
	Year and Semester: IIIyear &II Semester
	Faculty: Dr , Professor (CSE)
	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 3
	Unit - 3
	Year and Semester: IIIyear &II Semester
	Faculty: Dr , Professor (CSE)
	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 3
	Unit - 3
	Year and Semester: IIIyear &II Semester
	Faculty: Dr , Professor (CSE)
	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 4
	Unit - 4
	Year and Semester: IIIyear &II Semester
	Faculty: Dr , Professor (CSE)
	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 4
	Unit - 4
	Year and Semester: IIIyear &II Semester
	Faculty: Dr , Professor (CSE)
	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 4
	Unit - 4
	Year and Semester: IIIyear &II Semester
	Faculty: Dr , Professor (CSE)
	Interaction (Definition)
	Sequencing
	Introduction
	Common Uses

