INTERNET OF THINGS
C h d pte I 6 A Hands-On Approach

loT Systems — .
Logical Design using Python

Arshdeep Bahga - Vijay Madisetti

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Outline

Introduction to Python

Installing Python

Python Data Types & Data Structures
Control Flow

* Functions

Modules

* Packages

File Input/Output

Date/Time Operations

* Classes

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Python

* Python is a general-purpose high level programming language and suitable for providing a solid
foundation to the reader in the area of cloud computing.

* The main characteristics of Python are:
* Multi-paradigm programming language

* Python supports more than one programming paradigms including object-oriented programming and structured
programming

* Interpreted Language

e Python is an interpreted language and does not require an explicit compilation step. The Python interpreter
executes the program source code directly, statement by statement, as a processor or scripting engine does.

* Interactive Language

* Python provides an interactive mode in which the user can submit commands at the Python prompt and interact
with the interpreter directly.

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Python - Benefits

* Easy-to-learn, read and maintain

* Python is a minimalistic language with relatively few keywords, uses English keywords and has fewer syntactical constructions
as compared to other languages. Reading Python programs feels like English with pseudo-code like constructs. Python is easy
to learn yet an extremely powerful language for a wide range of applications.

* Object and Procedure Oriented

. P?/thon supports both procedure-oriented programming and object-oriented programming. Procedure oriented paradigm
allows programs to be written around procedures or functions that allow reuse of code. Procedure oriented paradigm allows
programs to be written around objects that include both data and functionality.

 Extendable

* Python is an extendable language and allows integration of low-level modules written in languages such as C/C++. This is
useful when you want to speed up a critical portion of a program.

* Scalable
* Due to the minimalistic nature of Python, it provides a manageable structure for large programs.

* Portable

* Since Python is an interpreted language, programmers do not have to worry about compilation, linking and loading of
programs. Python programs can be directly executed from source

* Broad Library Support

* Python has a broad library support and works on various platforms such as Windows, Linux, Mac, etc.

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Python - Setup

* Windows
* Python binaries for Windows can be downloaded from http://www.python.org/getit .

* For the examples and exercise in this book, you would require Python 2.7 which can be directly downloaded from:
http://www.python.org/ftp/python/2.7.5/python-2.7.5.msi

* Once the python binary is installed you can run the python shell at the command prompt using
> python

* Linux

#Install Dependencies
sudo apt-get install build-essential
sudo apt-get install libreadline-gplv2-dev libncursesw5-dev libssl-dev libsglite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev

#Download Python

wget http://python.org/ftp/python/2.7.5/Python-2.7.5.tgz
tar -xvf Python-2.7.5.tgz

cd Python-2.7.5

#Install Python
./configure

make

sudo make install

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Numbers

e Numbers

* Number data type is used to store numeric values. Numbers are immutable data types, therefore changing the value of a number data

type results in a newly allocated object.

#Integer
>>>3=5
>>>type(a)
<type 'int’>

#Floating Point
>>>b=2.5
>>>type(b)
<type ‘float’>

#long
>>>x=9898878787676L
>>>type(x)

<type ’long’>

#Complex
>>>y=2+5j

>>>y

(2+5j)

>>>type(y)
<type ‘complex’>
>>>y.real

2

>>>y.imag

5

Book website: http://www.internet-of-things-book.com

#Addition
>>>c=a+b
>>>C

7.5
>>>type(c)
<type ‘float’>

#Subtraction
>>>d=a-b
>>>d

2.5
>>>type(d)
<type ‘float’>

#Multiplication
>>>e=a*b
>>>e

125
>>>type(e)
<type ‘float’>

#Division
>>>f=b/a
>>>f

0.5
>>>type(f)
<type float’>

#Power
>>>g=a%*2
>>>g

25

Bahga & Madisetti, © 2015



Strings

* Strings
* Astring is simply a list of characters in order. There are no limits to the number of characters you can have in a string.
#Create string #Print string #strip: Returns a copy of the string with the
>>>s="Hello World!" >>>print s #leading and trailing characters removed.
>>>type(s) Hello World!
<type 'str’> >>>s.strip("1")
#Formatting output "Hello World’
#String concatenation >>>print "The string (The string (Hello World!)
>>>t="This is sample program." has 12 characters
>>>r = s+t
>>>r #Convert to upper/lower case
"Hello World!This is sample program.’ >>>s.upper()
"HELLO WORLDY
#Get length of string >>>s.lower()
>>>len(s) "hello world!’
12
#Accessing sub-strings
#Convert string to integer >>>s[0]
>>>x="100" 'H’
>>>type(s) >>>5[6:]
<type 'str’> "World!
>>>y=int(x) >>>5[6:-1]
>>>y "World’
100

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Lists

e Lists

* List a compound data type used to group together other values. List items need not all have the same type. A list contains items
separated by commas and enclosed within square brackets.

#Create List
>>>fruits=["apple’,’orange’,’banana’,’mango’]
>>>type(fruits)

<type ’list’>

#Get Length of List
>>>len(fruits)
4

#Access List Elements
>>>fruits[1]

‘orange’

>>>fruits[1:3]

['orange’, 'banana’]
>>>fruits[1:]

['orange’, ‘banana’, ‘mango’]

#Appending an item to a list
>>>fruits.append(’pear’)

>>>fruits

['apple’, ‘orange’, ‘banana’, ‘'mango’, ‘pear’]

Book website: http://www.internet-of-things-book.com

#Removing an item from a list
>>>fruits.remove(’mango’)
>>>fruits

['apple’, ‘orange’, 'banana’, ‘pear’]

#Inserting an item to a list
>>>fruits.insert(1,’mango’)

>>>fruits

['apple’, ‘mango’, ‘orange’, ‘banana’, ‘pear’]

#Combining lists
>>>vegetables=['potato’,’carrot’,’onion’,’beans’,’r
adish’]

>>>vegetables

[’potato’, ‘carrot’, ‘onion’, ’beans’, ‘radish’]

>>>eatables=fruits+vegetables
>>>eatables

["appl

€,
"mang

’

o,
‘orang

’

e,
’banan

’

a,
"pear’, 'potato’, ‘carrot’, ‘onion’, ’beans’, ‘radish’]

#Mixed data types in a list
>>>mixed=['data’,5,100.1,8287398L]
>>>type(mixed)

<type ’list’>
>>>type(mixed[0])

<type ’str'>
>>>type(mixed[1])
<type’int’>
>>>type(mixed[2])

<type ‘float’>
>>>type(mixed([3])

<type ’'long’>

#Change individual elements of a list
>>>mixed[0]=mixed[0]+" items"
>>>mixed[1]=mixed[1]+1
>>>mixed[2]=mixed[2]+0.05

>>>mixed

['data items’, 6, 100.14999999999999, 8287398L]

#Lists can be nested
>>>nested=[fruits,vegetables]

>>>nested

[["apple’, ‘'mango’, ‘orange’, ‘banana’, 'pear’],
[’potato’, ‘carrot’, ‘onion’, "beans’, ‘radish’]]

Bahga & Madisetti, © 2015



Tuples

e Tuples

* Atupleis asequence data type that is similar to the list. A tuple consists of a number of values separated by commas and enclosed
within parentheses. Unlike lists, the elements of tuples cannot be changed, so tuples can be thought of as read-only lists.

#Create a Tuple #Get an element from a tuple
>>>fruits=("apple","mango","banana","pineapple") >>>fruits[0]

>>>fruits ‘apple’

("apple’, ‘'mango’, ‘banana’, ‘pineapple’) >>>fruits[:2]

("apple’, ‘'mango’)
>>>type(fruits)

<type ‘tuple’> #Combining tuples
>>>vegetables=('potato’,’carrot’,’onion’,’ radish’)
#Get length of tuple >>>eatables=fruits+vegetables
>>>|en(fruits) >>>eatables
4 ("apple’, ‘'mango’, ‘banana’, ‘pineapple’, ‘potato’, ‘carrot’, ‘onion’, ‘radish’)

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Dictionaries

* Dictionaries

* Dictionary is a mapping data type or a kind of hash table that maps keys to values. Keys in a dictionary can be of any data type, though

numbers and strings are commonly used for keys. Values in a dictionary can be any data type or object.

#Create a dictionary
>>>student={"name’:"Mary’,’id’:’8776’,’major’:’CS’}
>>>student

{major’:'CS’, 'name’: ‘Mary’, 'id’": '8776'}
>>>type(student)

<type 'dict’>

#Get length of a dictionary
>>>len(student)
3

#Get the value of a key in dictionary
>>>student['name’]
"Mary’

#Get all items in a dictionary

>>>student.items()

[(gender’, 'female’), (‘'major’, 'CS’), (‘'name’, '"Mary’),
("id’, ’8776’)]

Book website: http://www.internet-of-things-book.com

#Get all keys in a dictionary
>>>student.keys()
['gender’, ‘'major’, 'name’, ’id’]

#Get all values in a dictionary
>>>student.values()
['female’, 'CS’, 'Mary’, '8776’]

#Add new key-value pair
>>>student[’gender’]="female’

>>>student

{’gende

r': 'female’, ‘major’: 'CS’, ‘'name’: ‘Mary’, ’'id’: 8776’}

#A value in a dictionary can be another dictionary
>>>studentl={'"name’:’David’,’id’:"9876’,’'major’:’ECE’}
>>>students={"1": student,’2’:student1}

>>>students

{1

{’gende

r': 'female’, ‘major’: 'CS’, ‘'name’: ‘Mary’, ’id’: '8776’}, '2":
¢

major’: 'ECE’, ‘'name’: ‘David’, ’id’: '9876'}}

#Check if dictionary has a key
>>>student.has_key('name’)
True
>>>student.has_key('grade’)
False

Bahga & Madisetti, © 2015



Type Conversions

* Type conversion examples

#Convert to string
>>>3=10000
>>>str(a)

10000’

#Convert to int
>>>p="2013"
>>>int(b)

2013

#Convert to float
>>>float(b)
2013.0

Book website: http://www.internet-of-things-book.com

#Convert to long
>>>long(b)
2013L

#Convert to list
>>>s="aeiou"
>>>list(s)
['a’,’e’,’'i’,’o’, 'u’]

#Convert to set
>>>x=["mango’,’apple’,’banana’,’mango’,’banana’]
>>>set(x)

set([’'mango’, ‘apple’, ‘banana’])

Bahga & Madisetti, © 2015



Control Flow — if statement

e The if statement in Python is similar to the if statement in other languages.

>>>3 = 25**5 >>>if a>10000: >>>s="Hello World" >>>student={'name’:’"Mary’,’id’:’8776'}
>>>if a>10000: if a<1000000: >>>if "World" in s: >>>if not student.has_key(’major’):
print "More" print "Between 10k and 100k" s=s+"1" student[’'major’]="CS’
else: else: print s
print "Less" print "More than 100k" >>>student
elif a==10000: Hello World! {'major’: 'CS’, ‘'name’: ‘Mary’, 'id’: ‘8776'}
More print "Equal to 10k"
else:

print "Less than 10k"

More than 100k

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Control Flow — for statement

* The for statement in Python iterates over items of any sequence (list, string, etc.) in the order in which they
appear in the sequence.

* This behavior is different from the for statement in other languages such as C in which an initialization,
incrementing and stopping criteria are provided.

#Looping over characters in a string #Looping over items in a list #Looping over keys in a dictionary
helloString = "Hello World" fruits=["apple’,’orange’,’banana’,’mango’] student
for cin helloString: i=0 ‘nam
print ¢ for item in fruits: e’
print "Fruit-%d: %s" % (i,item) "Mar
i=i+1 y’,’id’: '8776’,'gender’: ‘female’, ‘'major’: 'CS’

for key in student:
print "%s: %s" % (key,student[key]

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Control Flow — while statement

* The while statement in Python executes the statements within the while loop as long as the while condition is
true.

#Prints even numbers upto 100
>>>i=0

>>> while i<=100:

if i%2 == 0:

printi
i=i+l

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Control Flow — range statement

* The range statement in Python generates a list of numbers in arithmetic progression.

#Generate a list of numbers from 0-9 #Generate a list of numbers from 10 - 100 with increments

of 10
>>>range (10)

[0,1,2,3,4,5,6,7,8,9] >>>range(10,110,10)
[10, 20, 30, 40, 50, 60, 70, 80, 90,100]

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Control Flow — break/continue statements

* The break and continue statements in Python are similar to the statements in C.

* Brea k #Break statement example
* Break statement breaks out of the for/while loop L
>>>for x in range(4,256,4):
y=y*x
if y>512:
break
printy
4
32
384
[ ]
COﬂtI nue #Continue statement example
* Continue statement continues with the next iteration. >>>fruits=["apple’,’orange’,’banana’,’mango’]

>>>for item in fruits:
if item == "banana":

continue
else:
print item
apple
orange
mango

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Control Flow — pass statement

* The pass statement in Python is a null operation.

* The pass statement is used when a statement is required syntactically but you do not want any command or
code to execute.

>fruits=["apple’,’orange’,’banana’,’mango’]
>for item in fruits:
if item == "banana":
pass
else:
print item

apple
orange
mango

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Functions

* Afunction is a block of code that takes information in (in the form of
parameters), does some computation, and returns a new piece of
information based on the parameter information.

e A function in Python is a block of code that begins with the keyword
def followed by the function name and parentheses. The function
parameters are enclosed within the parenthesis.

e The code block within a function begins after a colon that comes after
the parenthesis enclosing the parameters.

* The first statement of the function body can optionally be a
documentation string or docstring.

Book website: http://www.internet-of-things-book.com

students = {'1": {'name": 'Bob’, 'grade': 2.5},
2" {'name': 'Mary', 'grade': 3.5},
'3": {'name": 'David’, 'grade': 4.2},
‘4" {'name": 'John', 'grade': 4.1},
'5': {'name": 'Alex’, 'grade': 3.8}}

def averageGrade(students):
“This function computes the average grade”
sum =0.0
for key in students:
sum = sum + students[key]['grade']
average = sum/len(students)
return average

avg = averageGrade(students)
print "The average garde is: %0.2f" % (avg)

Bahga & Madisetti, © 2015



Functions - Default Arguments

* Functions can have default values of the parameters.

 |f a function with default values is called with fewer parameters or without any parameter, the default values of the
parameters are used

>>>def displayFruits(fruits=["apple’,’orange’]):
print "There are %d fruits in the list" % (len(fruits))
for item in fruits:
print item

#Using default arguments
>>>displayFruits()

apple
orange

>>>fruits = ['banana’, ‘pear’, 'mango’]
>>>displayFruits(fruits)

banana

pear

mango

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Functions - Passing by Reference

« All parameters in the Python functions are passed by reference.

* |f a parameter is changed within a function the change also reflected back in the calling function.

>>>def displayFruits(fruits):
print "There are %d fruits in the list" % (len(fruits))
for item in fruits:
print item
print "Adding one more fruit"
fruits.append('mango’)

>>>fruits = ['banana’, 'pear’, 'apple']
>>>displayFruits(fruits)

There are 3 fruits in the list

banana

pear

apple

#Adding one more fruit

>>>print "There are %d fruits in the list" % (len(fruits))
There are 4 fruits in the list

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Functions - Keyword Arguments

e Functions can also be called using keyword arguments that identifies the arguments by the parameter name when the

function is called.

>>>def
printStudentRecords(name,age=20,major="CS’):
print "Name: " + name
print "Age: " + str(age)
print "Major: " + major

#This will give error as name is required argument
>>>printStudentRecords()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypekError: printStudentRecords() takes at least 1
argument (0 given)

Book website: http://www.internet-of-things-book.com

#Correct use
>>>printStudentRecords(name="Alex’)
Name: Alex

Age: 20

Major: CS

>>>printStudentRecords(name="Bob’,age=22,major="EC

E’)

Name: Bob
Age: 22
Major: ECE

>>>printStudentRecords(name="Alan’,major="ECE’)
Name: Alan

Age: 20

Major: ECE

#name is a formal argument.

#**kwargs is a keyword argument that receives all
arguments except the formal argument as a
dictionary.

>>>def student(name, **kwargs):
print "Student Name: " + name
for key in kwargs:
print key +’: ’ + kwargs[key]

>>>student(name="Bob’, age="20’, major = 'CS’)
Student Name: Bob

age: 20

major: CS

Bahga & Madisetti, © 2015



Functions - Variable Length Arguments

e Python functions can have variable length arguments. The variable length arguments are passed to as a tuple to the
function with an argument prefixed with asterix (*)

>>>def student(name, *varargs):
print "Student Name: " + name
for item in varargs:
print item

>>>student(’Nav’)
Student Name: Nav

>>>student(’Amy’, ‘Age: 24’)
Student Name: Amy
Age: 24

>>>student(’Bob’, 'Age: 20’, '"Major: CS’)
Student Name: Bob

Age: 20

Major: CS

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Modules

Python allows organizing the program
code into different modules which
improves the code readability and
management.

A module is a Python file that defines
some functionality in the form of functions
or classes.

Modules can be imported using the import
keyword.

Modules to be imported must be present
in the search path.

Book website: http://www.internet-of-things-book.com

#student module - saved as student.py
def averageGrade(students):
sum = 0.0
for key in students:
sum = sum + students[key]['grade']
average = sum/len(students)
return average

def printRecords(students):
print "There are %d students" %(len(students))
i=1
for key in students:
print "Student-%d: " % (i)
print "Name: " + students[key]['name']
print "Grade: " + str(students[key]['grade'])
=i+l

# Importing a specific function from a module
>>>from student import averageGrade

# Listing all names defines in a module
>>>dir(student)

#Using student module

>>>import student

>>>students = '1': 'name': 'Bob’, 'grade': 2.5,
'2':'name': 'Mary', 'grade': 3.5,

'3": 'name': 'David’, 'grade': 4.2,

'4": 'name": 'John', 'grade': 4.1,

'5': 'name': 'Alex', 'grade': 3.8

>>>student.printRecords(students)
There are 5 students
Student-1:

Name: Bob

Grade: 2.5
Student-2:

Name: David

Grade: 4.2
Student-3:

Name: Mary

Grade: 3.5
Student-4:

Name: Alex

Grade: 3.8
Student-5:

Name: John

Grade: 4.1

>>>avg = student. averageGrade(students)
>>>print "The average garde is: %0.2f" % (avg)

362 Bahga & Madisetti, © 2015



Packages

* Python package is hierarchical file structure that consists of

modules and subpackages.

* Packages allow better organization of modules related to a single

application environment.

Book website: http://www.internet-of-things-book.com

# skimage package listing

skimage/ Top level package
__init__.py Treat directory as a package
color/ color color subpackage
__init__.py
colorconv.py
colorlabel.py

rgb_colors.py

draw/ draw draw subpackage
__init__.py
draw.py
setup.py

exposure/ exposure subpackage
__init__.py
_adapthist.py
exposure.py

feature/ feature subpackage
__init__.py
_brief.py
_daisy.py

Bahga & Madisetti, © 2015



File Handling

e Python allows reading and writing to files using the file # Example of reading an entire file

ObJeCt' >>>fp = open('file.txt','r')

>>>content = fp.read()
>>>print content
This is a test file.

* The open(filename, mode) function is used to get a file >>>fp.close()

object.
# Example of reading line by line
. >>>fp = open('filel.txt','r')
* The mode can be read (r), write (w), append (a), read and >>>print "Line-1: " + fp.readline()
write (r+ or w+), read-binary (rb), write-binary (wb), etc. Line-1: Python supports more than one programming paradigms.

>>>print "Line-2: " + fp.readling()
Line-2: Python is an interpreted language.
>>>fp.close()

» After the file contents have been read the close function is
called which closes the file object. RO L G eSO e
>>>fp = open(filel.txt’,’r’)
>>>lines = fp.readlines()

>>>for line in lines:
print line

Python supports more than one programming paradigms.
Python is an interpreted language.

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



File Handling

# Example of reading a certain number of bytes # Example of seeking to a certain position
>>>fp = open('file.txt','r') >>>fp = open('file.txt','r')
>>>fp.read(10) >>>fp.seek(10,0)
'Python sup' >>>content = fp.read(10)
>>>fp.close() >>>print content
ports more

>>>fp.close()

# Example of getting the current position of read # Example of writing to a file

>>>fp = open('file.txt','r') >>>fo = open('filel.txt','w')

>>>fp.read(10) >>>content='This is an example of writing to a file in
‘Python sup' Python.'

>>>currentpos = fp.tell >>>fo.write(content)

>>>print currentpos >>>fo.close()

<built-in method tell of file object at 0x0000000002391390>
>>>fp.close()

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Date/Time Operations

e Python provides several functions for date and time access and conversions.
* The datetime module allows manipulating date and time in several ways.

e The time module in Python provides various time-related functions.

# Examples of manipulating with date # Examples of manipulating with time
>>>from datetime import date >>>import time
>>>nowtime = time.time()
>>>now = date.today() >>>time.localtime(nowtime)
>>>print "Date: " + now.strftime("%m-%d-%y") time.struct_time(tm_year=2013, tm_mon=7, tm_mday=24, tm_ec=51, tm_wday=2, tm_yday=205,
Date: 07-24-13 tm_isdst=0)
>>>print "Day of Week: " + now.strftime("%A") >>>time.asctime(time.localtime(nowtime))
Day of Week: Wednesday 'Wed Jul 24 16:14:51 2013’
>>>print "Month: " + now.strftime("%B") >>>time.strftime("The date is %d-%m-%y. Today is a %A. It is %H hours, %M minutes and %S seconds now.")
Month: July 'The date is 24-07-13. Today is a Wednesday. It is 16 hours, 15 minutes and 14 seconds now.'

>>>then = date(2013, 6, 7)
>>>timediff = now - then
>>>timediff.days

47

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Classes

* Python is an Object-Oriented Programming (OOP) language. Python provides all the standard features of Object
Oriented Programming such as classes, class variables, class methods, inheritance, function overloading, an
operator overloading.

* Class

* Aclassis simply a representation of a type of object and user-defined prototype for an object that is composed of three things: a name,
attributes, and operations/methods.

* Instance/Object
* Objectis an instance of the data structure defined by a class.

* Inheritance
* Inheritance is the process of forming a new class from an existing class or base class.

* Function overloading
* Function overloading is a form of polymorphism that allows a function to have different meanings, depending on its context.

e Operator overloading
* Operator overloading is a form of polymorphism that allows assignment of more than one function to a particular operator.

* Function overriding

* Function overriding allows a child class to provide a specific implementation of a function that is already provided by the base class. Child class
implementation of the overridden function has the same name, parameters and return type as the function in the base class.

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



Class Example

* The variable studentCount is a
class variable that is shared by
all instances of the class
Student and is accessed by
Student.studentCount.

* The variables name, id and
grades are instance variables
which are specific to each
instance of the class.

* There is a special method by
the name __init_ () which is
the class constructor.

* The class constructor
initializes a new instance
when it is created. The
function __del () is the class
destructor

Book website: http://www.internet-of-things-book.com

# Examples of a class
class Student:

studentCount =0

def __init__(self, name, id):
print "Constructor called"
self.name = name
self.id = id

Student.studentCount = Student.studentCount + 1

self.grades={}

def __del__(self):
print "Destructor called"

def getStudentCount(self):
return Student.studentCount

def addGrade(self,key,value):
self.grades[key]=value
def getGrade(self,key):
return self.grades[key]

def printGrades(self):
for key in self.grades:

print key + ": " + self.grades[key]

>>>s = Student(’Steve’,’98928’)
Constructor called

>>>s.addGrade(’Math’,’90’)
>>>s.addGrade(’Physics’,’85’)
>>>s.printGrades()

Physics: 85

Math: 90

>>>mathgrade = s.getGrade(’Math’)
>>>print mathgrade
90

>>>count = s.getStudentCount()
>>>print count

1

>>>del s
Destructor called

Bahga & Madisetti, © 2015



Class Inheritance

* In this example Shape is the base class and Circle is the derived class. The class Circle inherits the attributes of the Shape class.

* The child class Circle overrides the methods and attributes of the base class (eg. draw() function defined in the base class Shape is overridden in child

class Circle).

# Examples of class inheritance
class Shape:
def __init__ (self):
print "Base class constructor"
self.color ='Green’
self.lineWeight = 10.0

def draw(self):
print "Draw - to be implemented"
def setColor(self, c):
self.color =c
def getColor(self):
return self.color

def setLineWeight(self,lwt):
self.lineWeight = lwt

def getLineWeight(self):
return self.lineWeight

class Circle(Shape):
def __init__ (self, c,r):
print "Child class constructor"
self.center = ¢
self.radius =r
self.color = 'Green’
self.lineWeight = 10.0

self.__label =’Hidden circle label’

def setCenter(self,c):
self.center = c
def getCenter(self):
return self.center

def setRadius(self,r):
self.radius =r

def getRadius(self):
return self.radius

def draw(self):

print "Draw Circle (overridden function)"

Book website: http://www.internet-of-things-book.com

class Point:
def __init__ (self, x, y):
self.xCoordinate = x
self.yCoordinate =y

def setXCoordinate(self,x):
self.xCoordinate = x

def getXCoordinate(self):
return self.xCoordinate

def setYCoordinate(self,y):
self.yCoordinate =y

def getYCoordinate(self):
return self.yCoordinate

>>>p = Point(2,4)

>>>circ = Circle(p,7)

Child class constructor
>>>circ.getColor()

'Green’

>>>circ.setColor(’Red’)
>>>circ.getColor()

'Red’

>>>circ.getLineWeight()

10.0
>>>circ.getCenter().getXCoordinate()
2
>>>circ.getCenter().getYCoordinate()
4

>>>circ.draw()

Draw Circle (overridden function)
>>>circ.radius

7

Bahga & Madisetti, © 2015



Further Reading

Code Academy Python Tutorial, http://www.codecademy.com/tracks/python

Google's Python Class, https://developers.google.com/edu/python/

Python Quick Reference Cheat Sheet, http://www.addedbytes.com/cheat-sheets/python-cheat-sheet/

PyCharm Python IDE, http://www.jetbrains.com/pycharm/

Book website: http://www.internet-of-things-book.com Bahga & Madisetti, © 2015



